
Statistica Sinica 23 (2013), 1091-1116

doi:http://dx.doi.org/10.5705/ss.2012.133

LOCAL LEAST ABSOLUTE RELATIVE ERROR

ESTIMATING APPROACH FOR PARTIALLY

LINEAR MULTIPLICATIVE MODEL

Qingzhao Zhang and Qihua Wang

Chinese Academy of Science

Abstract: The partially linear multiplicative regression model is considered. This

model, which becomes a partially linear regression model after taking logarithmic

transformation, is useful in analyzing data with positive responses. Chen et al.

(2010) mentioned that in many applications the size of relative error, rather than

that of error itself, is the central concern of practitioners. We extend the criterion of

least absolute relative error (LARE) to the partially linear multiplicative regression

model by local smoothing techniques. Consistency and asymptotic normality are

investigated. We utilize a random weighting method to estimate asymptotic covari-

ance of the parameter estimator. We also propose a simple and effective method

to select important variables in the linear part. The oracle property (Fan and Li

(2001)) is proved. Some numerical studies are conducted to evaluate and compare

the performance of the proposed estimators. The body fat dataset is analyzed for

illustration.

Key words and phrases: Lasso, least absolute relative error, partially linear model,

variable selection.

1. Introduction

In linear, non-linear, and semiparametric regression analysis, commonly used

approaches are least squares (LS) and quantile regression (QR) methods. The

LS method is sensitive to outliers, and its efficiency can be significantly improved

for non-normal errors; QR estimators are more robust. However, we note that

QR method requires positivity of the density of the errors at quantiles and the

asymptotic relative efficiency of a single quantile to LS can be arbitrarily small.

For a complete discussion on quantile regression, see Koenker (2005).

The two criteria are based on absolute errors, while in many applications the

concern is with relative errors. Some papers have suggested estimation methods

for linear model and non-linear model based on relative errors. See Narula and

Wellington (1977), Khoshgoftaar, Bhattacharyya, and Richardson (1992), Park

and Stefanski (1998), for examples. Chen et al. (2010) note that for relative error

methods, consistency and asymptotic normality of their estimators have not been
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established for linear or nonlinear models under general regularity conditions;

furthermore, the relative error in all such studies was the ratio of the error with

respect to the target and that could be inadequate. They suggested instead the

ratio of the error with respect to the predictor, and proposed the least absolute

relative errors criterion (LARE) that used both types of relative errors for the

linear multiplicative model yi = exp(xTi β0)εi. They found the least absolute

relative error (LARE) estimator by minimizing

LAREn(β) =

n∑
i=1

{∣∣∣yi − exp(xTi β)

yi

∣∣∣+ ∣∣∣yi − exp(xTi β)

exp(xTi β)

∣∣∣}, (1.1)

and consistency and asymptotic normality were proved. The asymptotic proper-

ties of this estimator do not require the positivity of the density of the error over

its support.

As pointed out by Chen et al. (2010), an advantage of the LARE criterion is

that it is scale free; this is important for applying the LARE criterion to certain

types of data, and they give some examples of this.

In many cases, the linear multiplicative model is not complex enough to

capture the underlying relationship between response variables and their asso-

ciated covariates. This motivates us to consider the following partially linear

multiplicative model

Y = H(XTβ0 + g(T ))ε, (1.2)

where H(·) > 0 is a given function, Y is a scalar response variable, X is a p-

dimensionial random covariate vector, T is a random variable with a bounded

support Ω, g(·) is an unknown univariate link function on Ω, and the random

error ε has P (ε > 0) = 1 with probability density function f . For the sake

of identification, the intercept term is not included in β0. This model reduces

to the linear multiplicative model when H(·) is the exponential function and

g(·) = 0. It is useful and more flexible in analyzing data with positive responses,

such as stock prices or life times, which are particulary common in economic and

biomedical studies.

Our first aim is to extend Chen et al. (2010)’s work to Model (1.2), and to

propose the semiparametric least absolute relative errors criterion (Semi-LARE)

for estimating both parametric and nonparametric parts. This extension involves

nonparametric estimation and kernel smoothing techniques. We use a random

weighting method to approximate the asymptotic covariance matrix of the esti-

mators in linear part.

A second goal is variable selection for the parametric part of (1.2). There

are often many covariates in the parametric part of Model (1.2). With sparsity,

variable selection can improve the estimation accuracy by effectively identifying
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the subset of important predictors and can enhance model interpretability with

parsimonious representation (see Fan and Li (2006)). A number of variable se-

lection methods are popular, such as the LASSO (Tibshirani (1996)), SCAD(Fan

and Li (2001)), and the Adaptive LASSO (Zou (2006)). Here we give an easy and

effective variable selection to select significant parametric components in Model

(1.2). Our approach makes use of the LARS algorithm in Efron et al. (2004) and

can be quickly implemented to obtain the solution path. Moreover, The oracle

property (Fan and Li (2001)) is proved.

The rest of the paper is organized as follows. The method and its theoretical

properties are investigated in Section 2. In Section 3, we address issues related

to asymptotic covariance estimation. We propose variable selection for the para-

metric part and give its oracle properties in Section 4. Simulation studies are

presented in Section 5 to show the finite sample performance of the proposed

methods. A data set is analyzed in Section 6. All technical details are in the

Appendix.

2. Semi-LARE Method and Its Asymptotic Properties

Let {xi, ti, yi}, i = 1, . . . , n be an i.i.d sample from Model (1.2). Let K(·) be
a given kernel function and Kh(·) = K( ·

h)/h with bandwidth h. We define our

estimator in several steps.

Step 1. For ti in the neighborhood of t, use a local linear approximation

g(ti) ≈ g(t) + g′(t)(ti − t) ≡ a(t) + b(t)(ti − t),

and let {β̃, ã, b̃} be the minimizer of the local absolute relative loss function

n∑
i=1

{∣∣∣yi −H{xTi β + a+ b(ti − t)}
yi

∣∣∣+ ∣∣∣yi −H{xTi β + a+ b(ti − t)}
H{xTi β + a+ b(ti − t)}

∣∣∣}Kh(ti − t).

(2.1)

Then g̃(t) = ã, g̃′(t) = b̃.

Step 2. Compute an improved estimator of β0 as

β̂ = argmin
β

n∑
i=1

{∣∣∣yi −H{xTi β + g̃(ti)}
yi

∣∣∣+ ∣∣∣yi −H{xTi β + g̃(ti)}
H{xTi β + g̃(ti)}

∣∣∣}. (2.2)

Step 3. Let {â, b̂} be the minimizer of

n∑
i=1

{∣∣∣yi −H{xTi β̂ + a+ b(ti − t)}
yi

∣∣∣+ ∣∣∣yi −H{xTi β̂ + a+ b(ti − t)}
H{xTi β̂ + a+ b(ti − t)}

∣∣∣}Kh(ti − t).

(2.3)
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Then ĝ(t) = â, ĝ′(t) = b̂.
We establish theoretical justifications for the these estimators. Take J =

E[εiH
−1(0)sgn(εiH

−1(0) − 1)], Vt = E[(xT , 1)T (xT , 1)|T = t], γ = H ′(0)/H(0),
A = E(εiH

−1(0) + ε−1
i H(0))2, and

µj =

∫
ujK(u)du and νj =

∫
ujK2(u)du, j = 0, 1, 2.

Let 0p be the p × 1 zero vector. The aysmptotic properties of {β̃, g̃(t)} are as
follows.

Theorem 1. Under the regularity conditions in the Appendix, if h → 0 and
nh→ ∞ as n→ ∞, then

√
nh

{(
β̃ − β0

g̃(t)− g(t)

)
− µ2h

2f(H(0))H(0)g′′(t)

2(J + 2f(H(0))H(0))
V −1
t

(E[x|T = t]

1

)}
d→ N

(
0,

ν0
4γ2fT (t)

[J + 2f(H(0))H(0)]−2AV −1
t

)
,

where fT (t) is the density function of T and f(·) is the density function of ε.

The next result gives the asymptotic normality of β̂.

Theorem 2. Let

η(t, x) =
J

J + 2f(H(0))H(0)
E[x(0Tp , 1)|T = t]V −1

t (xT , 1)T .

Under the regularity conditions in the Appendix, if nh4 → 0 and nh2/ log(1/h) →
∞ as n→ ∞, then

√
n(β̂ − β0) →d N

(
0,

1

4

{
γ[J + 2f(H(0))H(0)]

}−2
AC−1ΞC−1

)
,

where C = E(xxT ),Ξ = E[{x− η(t, x)}{x− η(t, x)}T ].
The optimal bandwidth in Theorem 1 is h ∼ n−1/5, but this bandwidth does

not satisfy the condition in Theorem 2. Hence, in order to obtain the root-n
consistency and asymptotic normality of β̂, undersmoothing of g̃(t) is necessary.
This is a common requirement in semiparametric models; see Carroll et al. (1997)
for a detailed discussion. We use a random weighted approach to estimate the
asymptotic variance, see the next section.

Theorem 3. Under the regularity conditions given in the Appendix, if h → 0
and nh→ ∞ as n→ ∞, then

√
nh

{
ĝ(t)− g(t)− µ2h

2f(H(0))H(0)g′′(t)

2(J + 2f(H(0))H(0))
(0Tp , 1)V

−1
t E[(xT , 1)T |T = t]

}
→d N

(
0,

ν0
4γ2fT (t)

[J + 2f(H(0))H(0)]−2A
)
.
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The asymptotic variance of ĝ(t) here is smaller than that of g̃(t). The proof

of Theorem 3 is similar to that of Theorem 1, and is omitted.

3. Asymptotic Covariance Estimate

We look to the estimation of the asymptotic variance of β̂. It involves the

density function of the error terms and cannot be properly estimated using plug-

in rules (Chen et al. (2010)). To avoid density estimation, we apply a random

weighting method in our two-step semiparametric inference.

For m = 1, . . . ,M ,

Step 1. Generate i.i.d nonnegative random variables wm
1 , . . . , w

m
n , that have mean

and variance equal to 1;

Step 2. Let {β̃m, ãm, b̃m} be the minimizer of

n∑
i=1

wm
i

{∣∣∣yi−H{xTi β+a+b(ti−t)}
yi

∣∣∣+∣∣∣yi−H{xTi β + a+ b(ti−t)}
H{xTi β + a+ b(ti − t)}

∣∣∣}Kh(ti − t).

(3.1)

Then g̃m(t) = ãm, g̃′m(t) = b̃m.

Step 3. Compute β̂m by minimizing

n∑
i=1

wm
i

{∣∣∣yi −H{xTi β + g̃m(ti)}
yi

∣∣∣+ ∣∣∣yi −H{xTi β + g̃m(ti)}
H{xTi β + g̃m(ti)}

∣∣∣}. (3.2)

Similar to Jin, Ying, and Wei (2001), we find that the distribution of
√
n(β̂−

β0) can be approximated by the resampling distribution of
√
n(β̂m − β̂), the

covariance matrix of β̂ consistently estimated by

Σ̂ =
1

M

M∑
m=1

(β̂m − β̂)(β̂m − β̂)⊤.

Under the regularity conditions of Theorem 2, it can be verified that

nΣ̂ →p
1

4

{
γ[J + 2f(H(0))H(0)]

}−2
AC−1ΞC−1,

where J,A,C, and Ξ are defined as in Section 2. Our simulation also illustrates

that the method can produce a good covariance estimator for
√
n(β̂ − β0).

4. Variable Selection

4.1. Variable selection method

We propose a simple variable selection approach. The main idea is to sepa-

rate the process into steps: (1) construct U , linearly dependent on predictors X;
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(2) apply the variable selection methods for linear models to the linear regression

of U on X. Oracle properties (Fan and Li (2001)) are proved.

Set

ui = xTi β̂, i = 1, . . . , n, (4.1)

where β̂ is obtained by minimizing (2.2). Then define

Hn(β) =
n∑

i=1

(ui − xTi β)
2 + λn

p∑
j=1

ωj |βj |, (4.2)

where λn is a tuning parameter and the weight is ωj = |β̂|−τ with τ > 0. We

define a new estimator as β̂λn = argminβ Hn(β).

Let β0 = (β01, β02, . . . , β0p)
T and take ℵ = {j : β0j ̸= 0}. Similarly, let

ℵ̂ = {j : β̂λn
j ̸= 0}.

Theorem 4. If the regularity conditions of Theorem 2 hold, and if λn/
√
n → 0

and λnn
(τ−1)/2 → ∞ as n→ ∞, then

(i) P (ℵ̂ = ℵ) → 1;

(ii)
√
n(β̂λn − β0) →d N(0, (1/4)

{
γ[J + 2f(H(0))H(0)]

}−2
AΠℵℵ), where Πℵℵ =

C−1
ℵℵΞℵℵC

−1
ℵℵ whose entries correspond to the variables in ℵ.

It is natural to conduct variable selection by minimizing Tn(β) given by

n∑
i=1

{∣∣∣yi −H{xTi β + g̃(ti)}
yi

∣∣∣+ ∣∣∣yi −H{xTi β + g̃(ti)}
H{xTi β + g̃(ti)}

∣∣∣}+ λ∗n

p∑
j=1

ωj |βj |, (4.3)

where λ∗n is a tuning parameter. We define a new estimator as β̂λ
∗
n =argmin

β
Tn(β)

and ℵ̂∗ = {j : β̂λ
∗
n

j ̸= 0}.

Theorem 5. If the regularity conditions of Theorem 2 hold, and if λ∗n/
√
n → 0

and λ∗nn
(τ−1)/2 → ∞ as n→ ∞, then

(i) P (ℵ̂∗ = ℵ) → 1;

(ii)
√
n(β̂λ

∗
n − β0) →d N(0, 14

{
γ[J + 2f(H(0))H(0)]

}−2
AΠℵℵ).

The properties of the estimators that minimize (4.2) and (4.3) are identical.

However, it is time-consuming to obtain the solution path of the minimizer of

(4.3), while the solution path of our proposed estimator can be computed by the

LARS algorithm.
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4.2. Tuning selection

The features of Theorem 4 depend on the appropriate choice of the tuning

parameter λn. Various techniques have been proposed. For example, Golub,

Heath, and Wahba (1979) used GCV method to estimate the ridge parameter;

Wang, Li, and Tsai (2007) proposed a BIC tuning parameter selector that was

able to identify the true model consistently. We propose two approaches to

selecting the tuning parameter.

We are motivated by Wang and Leng (2007) to propose the criterion

WIC(λn) = (β̂λn − β̂)⊤(nΣ̂n)
−1(β̂λn − β̂)+dfλn

log(n)

n
,

where nΣ̂n is the estimator for the asymptotic covariance of
√
n(β̂ − β0) given

in Section 3, and dfλn corresponds to the number of non-zero coefficients in the

parametric part of the fitting model. Take λ̂WIC = argminWIC(λn).

In addition, as for estimators are based on semi-LARE, we use the BIC-type

criterion BIC(λn), which is defined as

log
( 1

n

n∑
i=1

{∣∣∣yi−H{xTi β̂λn+g̃(ti)}
yi

∣∣∣+∣∣∣yi−H{xTi β̂λn+g̃(ti)}
H{xTi β̂λn+g̃(ti)}

∣∣∣})+dfλn
log(n)

n
,

where g̃(ti) are obtained from the full model at Step 1, Section 2. Take λ̂BIC =

argminBIC(λn).

The estimator β̂λn defines a candidate model ℵλn = {j : β̂λn
j ̸= 0} and the

selection consistency of the proposed criteria are as follows.

Theorem 6. Assume the regularity conditions of Theorem 2. The tuning pa-

rameters are selected by the WIC and BIC criteria satisfy P (ℵλ̂WIC = ℵ) → 1

and P (ℵλ̂BIC = ℵ) → 1 as n→ ∞.

The proof is similar to that of Theorem 4 in Wang and Leng (2007). The

finite sample performance of WIC and BIC are illustrated in the next section.

5. Numerical Study

We conducted a simulation study to investigate the finite-sample perfor-

mances of our proposed method. In all examples, we fixed the kernel function to

be the Epanechnikov kernel K(u) = (3/4)(1 − u2)+. We set the bandwidth h1
to be n−1/3 for Step 1 and h2 = n−1/5 for Step 3. The selection of h1 might not

be so critical in terms of the
√
n-rate asymptotic normality of β̂, and a proper

choice of h1 depends on only the second order term of the mean square error of

β̂. For a detailed discussions, see Remark 3.3 in Wang and Rao (2002). Here
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h1 = n−1/3 satisfies the conditions in Theorem 2, while h2 = n−1/5, selected by

the rule of thumb, is required for achieving the optimal rate of convergence from

the term of mean squares error. In our study we repeated the simulation 500

times.

Example 1. We considered two situations with sample sizes of n = 60, n = 120,

and n = 200. We considered

Y = exp{XTβ + 8T (1− T )}ε, (5.1)

where the predictor X is independently generated from a p-dimensional nor-

mal distribution with mean 0 and covariances cov(Xij , Xik) = 0.5|j−k|. The

covariate T is uniformly distributed on [0, 1]. Here we fixed p = 3 and set

β0 = (2,−1, 0.5)⊤ to compare the estimation efficiency of semi-LARE with that

of least squares (LS) and least absolute deviation (LAD). We got the LS and

LAD estimators by minimizing L2 and L1-norm absolute errors based on the

data set {log(Y ), X, T}, respectively. We considered two error distributions:

log(ε) ∼ N(0, 1) and log(ε) ∼ U(−2, 2).

To assess performance, we calculated mean of the biases (Bias), absolute

bias (AB), and standard errors(SE) of the three estimators. Moreover, we set

M=500 and used the proposed method in Section 3 to obtain standard error

estimators(SEE) of semi-LARE estimator. The simulation results are reported

in Tables 1.

Both the sample bias and SE decreased as n increased, which is expected.

When log(ε) ∼ N(0, 1), semi-LARE did well compared to the LS which is effi-

cient, while LAD showed poorly, in terms of AB and SE. For log(ε) ∼ U(−2, 2),

semi-LARE performed much better than LS and LAD. These results are coin-

cide with that of Chen et al. (2010). Moreover, SEE and SE were close when n

increased.

Similar to Xue and Wang (2012), we computed root mean squared error

(RMSE) for the functional component estimator ĝ(·),

RMSE =
[
n−1
grid

ngrid∑
k=1

{ĝ(tk)−g(tk)}2
]1/2

,

where {tk, k = 1, . . . , ngrid} were regular grid points. Here ngrid = 100. The

boxplots for 500 RMSEs under log-norm and log-uniform error distributions are

shown in Figure 1 and 2. From Figures 1 and 2, one gets conclusions similar to

those of the estimates of β in terms of median RMSEs.
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Table 1. Summary of Bias and Standard Deviation of Example 1.

n Method
log(ε) ∼ U(−2, 2) log(ε) ∼ N(0, 1)

β1 β2 β3 β1 β2 β3

60 LARE Bias -0.0138 0.0094 -0.0051 0.0066 -0.0028 0.0057

AB 0.1470 0.1631 0.1430 0.1371 0.1523 0.1408

SE 0.1839 0.2080 0.1783 0.1720 0.1892 0.1744

SEE 0.1693 0.1893 0.1713 0.1572 0.1733 0.1552

LAD Bias -0.0111 0.0116 -0.0076 0.0104 -0.0079 -0.0013

AB 0.2228 0.2588 0.2271 0.1642 0.1773 0.1690

SE 0.2743 0.3194 0.2795 0.2071 0.2229 0.2102

LS Bias -0.0104 0.0087 -0.0070 0.0084 -0.0033 0.0049

AB 0.1516 0.1664 0.1476 0.1305 0.1441 0.1338

SE 0.1876 0.2105 0.1842 0.1645 0.1813 0.1678

120 LARE Bias -0.0048 0.0002 0.0048 0.0012 -0.0015 -0.0127

AB 0.0944 0.1085 0.0982 0.0905 0.1054 0.0950

SE 0.1213 0.1371 0.1222 0.1132 0.1323 0.1147

SEE 0.1163 0.1303 0.1160 0.1078 0.1200 0.1064

LAD Bias -0.0105 0.0015 0.0088 0.0056 -0.0062 -0.0047

AB 0.1638 0.1765 0.1602 0.1077 0.1150 0.1088

SE 0.2045 0.2189 0.2024 0.1347 0.1440 0.1362

LS Bias -0.0060 -0.0017 0.0074 0.0007 -0.0009 -0.0102

AB 0.0997 0.1145 0.1026 0.0863 0.0997 0.0895

SE 0.1271 0.1434 0.1278 0.1080 0.1254 0.1095

200 LARE Bias 0.0019 0.0007 -0.0034 -0.0015 -0.0064 0.0031

AB 0.0784 0.0828 0.0731 0.0686 0.0802 0.0691

SE 0.0966 0.1030 0.0926 0.0862 0.1003 0.0879

SEE 0.0887 0.0987 0.0886 0.0833 0.0926 0.0829

LAD Bias 0.0065 -0.0030 -0.0087 -0.0015 -0.0055 0.0002

AB 0.1375 0.1414 0.1250 0.0816 0.0928 0.0819

SE 0.1664 0.1784 0.1597 0.1024 0.1169 0.1033

LS Bias 0.0019 0.0009 -0.0048 -0.0002 -0.0088 0.0038

AB 0.0828 0.0876 0.0784 0.0660 0.0784 0.0658

SE 0.1019 0.1087 0.0989 0.0828 0.0972 0.0828

Example 2. Here we evaluated the performance of the variable selection pro-

posed in Section 4. The setup is same as that of Example 1, except p = 8 and

β0 = (3, 1.5, 0, 0, 2, 0, 0, 0)T . Moreover, we set τ = 2. Since the proposed method

is based on initial estimators, we used semi-LARE to generate the estimator. We

used WIC and BIC to select the tuning parameter.

In Table 2, we report the proportion of under-fitted(PU), the proportion

of over-fitted(PO), the proportion of correct-fitted(PC), the average number of
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Figure 1. The boxplots of 500 RMSEs based on LARE, LAD, and LS criteria
under log-uniform error distribution. Note that LARE-60 means LARE
estimate under sample size 60.

Figure 2. The boxplots of 500 RMSEs based on LARE, LAD, and LS criteria
under log-norm error distribution.

correct zeros (C), and the average size of model selected(Msize). As to perfor-

mance of the variable selection estimation, following Wang and Xia (2009), we



LOCAL LEAST ABSOLUTE RELATIVE ERROR ESTIMATING APPROACH 1101

Table 2. Summary of Example 2.

Proportion of models model size MRGMSEβ MREEg

Method n PU PO PC C Msize unpenalized oracle unpenalized oracle

log(ε) ∼ U(−2, 2)

WIC 60 0.0020 0.2460 0.7520 4.6380 3.3600 0.4479 1.2735 0.9619 1.0144

120 0.0000 0.1740 0.8260 4.7880 3.2120 0.4175 1.1024 0.9822 1.0008

200 0.0000 0.1280 0.8720 4.8500 3.1500 0.4125 1.0708 0.9891 0.9999

BIC 60 0.0060 0.1720 0.8220 4.7520 3.2320 0.4088 1.1815 0.9558 1.0096

120 0.0000 0.0820 0.9180 4.9140 3.0860 0.3804 1.0778 0.9793 0.9999

200 0.0000 0.0540 0.9460 4.9420 3.0580 0.3571 1.0475 0.9882 0.9997

log(ε) ∼ N(0, 1)

WIC 60 0.0020 0.2700 0.7280 4.6280 3.3700 0.4390 1.2681 0.9702 1.0029

120 0.0000 0.1720 0.8280 4.7880 3.2120 0.4219 1.1273 0.9807 1.0016

200 0.0000 0.1220 0.8780 4.8500 3.1500 0.4020 1.0276 0.9863 1.0015

BIC 60 0.0040 0.2200 0.7760 4.7140 3.2820 0.4183 1.2226 0.9702 1.0037

120 0.0000 0.1200 0.8800 4.8540 3.1460 0.3645 1.0977 0.9816 1.0015

200 0.0000 0.0860 0.9140 4.9100 3.0900 0.3763 1.0222 0.9874 1.0016

computed RGMSEβ and the relative estimation error (REEg),

RGMSEβ =
(β̂ − β0)

TE(XXT )(β̂ − β0)

(β̄ − β0)TE(XXT )(β̄ − β0)
, REEg =

∑ngrid

k=1 |ĝ(tk)− g(tk)|∑ngrid

k=1 |ḡ(tk)− g(tk)|
,

where β̄, ḡ(·) are either the unpenalized estimators or the oracle estimators. The

median of RGMSEβ, REEg values (labeled asMRGMSEβ,MREEg) are listed.

Several observations can be made from the tables. Performance gets better

with sample size n as expected: the proportion of the correctly fitted models

increases for every model. This also confirms that the BIC and WIC criteria

proposed in Section 4.2 can indeed identify the true model consistently. Note

that variable selection based on BIC has slightly higher probability of correct-

select than that based on WIC. This is clearest in small samples, and may be

due to the poor performance of the estimate of asymptotic variance when the

sample is small. Implementation of WIC is lengthy due to the estimation of the

asymptotic covariance matrix, so we recommend BIC for selecting the tuning

parameter. The median RGMSEβ of our estimators to that of the unpenalized

estimators based on full model are much less than 1, and close to those of the

oracle estimators based on the true model.

6. Data

We now illustrate the proposed method with an application to the body fat

data that is available at http://lib.stat.cmu.edu/datasets/bodyfat. Accu-

http://lib.stat.cmu.edu/datasets/bodyfat
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Table 3. The estimates from the data.

semi-LRAE semi-LAD semi-LS
est sd vse est sd vse est sd vse

x1 0.1476 0.0633 0 0.1115 0.0570 0 0.1562 0.0718 0
x2 -0.3945 0.3241 -0.2885 -0.3177 0.2753 -0.2977 -0.3773 0.3003 -0.2481
x3 0.1050 0.0979 0 0.0411 0.0806 0 0.0995 0.1062 0
x4 -0.0660 0.0856 0 0.0117 0.0834 0 -0.0803 0.0903 0
x6 0.8309 0.2464 0.7525 0.6325 0.1651 0.6236 0.8277 0.2542 0.7280
x7 -0.1936 0.1791 0 -0.1555 0.1588 0 -0.2480 0.1965 0
x8 0.1665 0.1150 0 0.1352 0.1065 0 0.2049 0.1375 0
x9 -0.0259 0.0952 0 -0.0396 0.0954 0 0.0160 0.0961 0
x10 0.0407 0.0383 0 0.0485 0.0448 0 0.0360 0.0463 0
x11 0.1103 0.1062 0 0.0558 0.0855 0 0.1067 0.1035 0
x12 0.0723 0.0690 0 0.0411 0.0654 0 0.0939 0.0879 0
x13 -0.0860 0.0686 0 -0.0816 0.0639 0 -0.0994 0.0673 0

MAPE 2.9930 3.1461 3.0210

MARE 0.3709 0.3657 0.3861

rate measurement of body fat is inconvenient/costly and it is desirable to have

easy methods of estimating it. The data on 252 men contains twelve baseline

factors X: age (x1), weight(x2), height(x3), and circumference of the skinfold

measurements neck (x4), chest (x5), 2 abdomen (x6), hip (x7), thigh (x8), knee

(x9), ankle (x10), biceps (x11), forearm (x12), and wrist (x13). The response Y is

the percentage of body fat. The aim is to build a predictive model to relate the

response to the covariates. We deleted possible outliers to a sample of size 250.

A descriptive analysis reveals that x5 has a nonlinear relationship with

log(Y ), while other predictors are roughly linear with it. Let Z be the set of

predictors x1, . . . , x4, x6, . . . , x13. Before applying our method, the Z predic-

tors were transformed so that their marginal distribution was approximately

N(0, 1). Also, the nonparametric part x5 was transformed so that its marginal

distribution was approximately U [0, 1]. Therefore, we considered the model

Y = exp(ZTβ + g(x5))ε. The results are presented in Table 3.

We used the first 200 samples to fit the model and to select significant vari-

ables, and then used the remaining observations to evaluate the predictive ability

of the selected model. The estimate (est) and standard error (se) of β are listed.

The only difference is the loss criterions, which we mark as semi-LARE, semi-

LAD and semi-LS, respectively. We applied the variable selection in Section 4

and calculated the estimate of β (vse). Since WIC and BIC produced the same

estimators, we show the the variable selection with the BIC selector. The results

show that all estimates were similar. In particular, the predictors x2 and x6
were selected. The prediction performance is measured by the median absolute



LOCAL LEAST ABSOLUTE RELATIVE ERROR ESTIMATING APPROACH 1103

prediction error (MAPE) and the median absolute relative error (MARE). The

predictor based on semi-LARE was meaningful and gave better predictions.
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Appendix

The following technical conditions are to be assumed.

(C1) ε has a continuous density f(·) in a neighborhood of H(0).

(C2) P (ε > 0) = 1.

(C3) (xTi , ti) and εi are independent, and suptE[∥xi∥4|t] <∞.

(C4) E(εiH
−1(0) + ε−1

i H(0))2 <∞, and

E[{εiH−1(0) + ε−1
i H(0)}sgn(1− εiH

−1(0))] = 0.

(C5) The kernel K(·) is a symmetric density function with bounded support and

satisfies a Lipschitz condition.

(C6) The function H(·) is positive and has a continuous third derivative. More-

over, for any a > 0,

a
H ′′(s)

H2(s)
+
H ′′(s)

a
− 2a

H ′2(s)

H2(s)
> 0 .

(C7) The function g(·) has a bounded second derivative.

(C8) H ′(·) and H ′′(·) satisfy a Lipschitz condition on interval [−M,M ] for some

M > 0.

Remark A.1. Conditions (C1), (C2), and (C3) are regular conditions. Condi-

tion (C4) is needed for the weak consistency and identification. Condition (C5)

has been used in the investigation on some nonparametric kernel estimators, e.g.

in Härdle, Liang, and Gao (2000) and Mack and Silverman (1982). Condition

(C6) is for the convexity of the objective function, see Lemma A.2. Obviously,

H(·) = exp(·) satisfies the condition. Condition (C7) and suptE[xix
T
i |t] <∞ of

(C3) are often seen in the literature on partially linear models.
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Lemma A.1. Let (x1, y1), . . . , (xn, yn) be i.i.d random vectors, the yi’s univariate

random variables. Assume that E|y|r <∞ and supx
∫
|y|rp(x, y)dy <∞, p(x, y)

the joint density of (x, y).If K is a bounded positive function with bounded support

satisfying a Lipschitz condition, then

sup
x

∣∣∣n−1
n∑

i=1

{
Kh(xi − x)yi − E[Kh(xi − x)yi]

}∣∣∣ = Op

( log1/2(1/h)√
nh

)
,

provided that n2ϵ−1h→ ∞ for some ϵ < 1− r−1.

Lemma A.1 is a result of Mack and Silverman (1982). We next give a mod-

ified version of Lemma 1 in Chen et al. (2010).

Lemma A.2. Under (C6), if ψ(x, a) = |1−H(x)/a|+|1−a/H(x)| for a > 0 and

x ∈ R, then for any fixed a > 0, ψ(x, a) is a strictly convex function in x ∈ R.

Proof of Theorem 1. Recall that {β̃, ã, b̃} is the minimizer of (2.1). Let

θ̃ = (β̃T , ã, hb̃)T with the true value θ0 = (βT0 , g(t), hg
′(t))T ,Ki(t) = K((ti −

t)/h), Xi = (xTi , 1, (ti − t)/h)T , and ∆it = g(t) + g′(t)(ti − t) − g(ti). Then, θ̃ is

also the minimizer of

ϕn(θ) =

n∑
i=1

{∣∣∣1− H{XT
i (θ − θ0) + ∆it}

εi

∣∣∣+ ∣∣∣1− εi

H{XT
i (θ − θ0) + ∆it}

∣∣∣}Ki(t).

We prove Theorem 1 in two steps. We first show that the estimator is
√
nh-

consistent, then establish its asymptotic normality. For ease of presentation, we

sometimes denote the matrix vvT by v2 for a vector v.

Step 1: consistency

It suffices to show that for any given ϵ > 0, there exist a large constant r > 0

such that

P
(

inf
||u||=r

ϕn(θ0 + u/
√
nh) > ϕn(θ0)

)
≥ 1− ϵ. (A.1)

This implies that with probability at least 1 − ϵ, ϕn(θ) has a local minimum θ̃

that satisfies θ̃ − θ0 = Op

(
(nh)−1/2

)
, see Fan and Li (2001).

By applying the identity in Knight (1998),

|x− y| − |x| = −y[I(x > 0)− I(x < 0)] + 2

∫ y

0
[I(x ≤ s)− I(x ≤ 0)]ds,

valid for x ̸= 0, we have

ϕn(θ0 +
u√
nh

)− ϕn(θ0)
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= −
n∑
i

ϖiKi(t)
[
I{1− ε−1

i H(∆it) > 0} − I{1− ε−1
i H(∆it) < 0}

]
+2

n∑
i

Ki(t)

∫ ϖi

0

[
I{1− ε−1

i H(∆it) ≤ s} − I{1− ε−1
i H(∆it) ≤ 0}

]
ds

−
n∑
i

ζiKi(t)
[
I{1− εiH

−1(∆it) > 0} − I{1− εiH
−1(∆it) < 0}

]
+2

n∑
i

Ki(t)

∫ ζi

0

[
I{1− εiH

−1(∆it) ≤ s} − I{1− εiH
−1(∆it) ≤ 0}

]
ds

:= I1n + I2n + I3n + I4n, (A.2)

where

ϖi = ε−1
i

{
H(

XT
i u√
nh

+∆it)−H(∆it)
}
,

ζi = εi

{
H−1(

XT
i u√
nh

+∆it)−H−1(∆it)
}
.

Recall that γ=H ′(0)/H(0). Let Λ(t)=diag{E[(xTi , 1)
T (xTi , 1)|T = t], µ2} and

Wn =
γ√
nh

n∑
i

Ki(t){εiH−1(0) + ε−1
i H(0)}sgn(1− εiH

−1(∆it))Xi.

We show that

ϕn(θ0+
u√
nh

)−ϕn(θ0) =W T
n u+γ2fT (t)[J+2f(H(0))H(0)]uTΛtu+op(1). (A.3)

To prove (A.3), we first show that

I1n + I3n =W T
n u+ γ2fT (t)Ju

TΛ(t)u+ op(1). (A.4)

Owing to the fact that ∥u∥ = r, h→ 0, and nh→ ∞, with the standard Taylor

expansion we have

I1n+I3n =
1√
nh

n∑
i

Ki(t)
[
ε−1
i H ′(0) + εi

H ′(0)

H2(0)

]
sgn(1− εiH

−1(∆it))X
T
i u

+
1√
nh

n∑
i

Ki(t)
{
ε−1
i [H ′(∆it)−H ′(0)] + εi[

H ′(∆it)

H2(∆it)
− H ′(0)

H2(0)
]
}

×sgn(1− εiH
−1(∆it))X

T
i u

+uT
{ 1

2nh

n∑
i

Ki(t)
[
εi
H ′′(0)

H2(0)
+ ε−1

i H ′′(0)− εi
2H ′2(0)

H3(0)

]
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×sgn(1− εiH
−1(∆it))XiX

T
i

}
u

+uT
{ 1

2nh

n∑
i

Ki(t)
{
εi
[H ′′(ξ

[2]
i )

H2(ξ
[2]
i )

−
2H ′2(ξ

[2]
i )

H3(ξ
[2]
i )

− H ′′(0)

H2(0)
+

2H ′2(0)

H3(0)

]
+ε−1

i [H ′′(ξ
[1]
i )−H ′′(0)]

}
sgn(1− εiH

−1(∆it))XiX
T
i

}
u

:= I
[1]
13 + I

[2]
13 + uT I

[3]
13u+ uT I

[4]
13u, (A.5)

where ξ
[1]
i and ξ

[2]
i lie between XT

i u/
√
nh+∆it and ∆it. Obviously, I

[1]
13 =W T

n u.
Together with (C5) and (C7), we have ∆it = O(h2). Clearly, by Lemma 1

and (C4) we have

I
[3]
13 =

1

2nh

n∑
i

Ki(t)[εi
H ′′(0)

H2(0)
+ ε−1

i H ′′(0)− εi
2H ′2(0)

H3(0)
]

×sgn(1− εiH
−1(∆it))XiX

T
i

=
1

2
E
[
Kh(ti − t)[εi

H ′′(0)

H2(0)
+ ε−1

i H ′′(0)− εi
2H ′2(0)

H3(0)
]

×sgn(1− εiH
−1(∆it))XiX

T
i

]
+ op(1)

=
1

2
E
[
Kh(ti − t)[εi

H ′′(0)

H2(0)
+ ε−1

i H ′′(0)− εi
2H ′2(0)

H3(0)
]

×sgn(1− εiH
−1(0))XiX

T
i

]
+ op(1)

= γ2JfT (t) diag{E[(xTi , 1)
T (xTi , 1)|T = t], µ2}+ op(1). (A.6)

Similarly, we can prove I
[2]
13 = op(1) and I

[4]
13 = op(1) based on (C8). Therefore,

combining (A.5) and (A.6), (A.4) is proved.
Next we focus on I2n and I4n. Let ℓi(u) = H(XT

i u/
√
nh + ∆it) −H(∆it).

Note that

I2n = 2

n∑
i

Ki(t)

∫ ϖi

0

[
I{1− ε−1

i H(∆it) ≤ s} − I{1− ε−1
i H(∆it) ≤ 0}

]
ds

= 2

n∑
i

Ki(t)

∫ ℓi(u)

0
ε−1
i

[
I{εi ≤ H(∆it) + δ} − I(εi ≤ H(∆it)

]
dδ.

The second equality follows the change of variable δ = sεi. Denote its last
expression by B∗

n(u). Since B∗
n(u) is a summation of i.i.d random variables of

kernel form, it follows by Lemma 1 that

B∗
n(u) = E[B∗

n(u)] +Op

( log1/2(1/h)√
nh

)
.
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It then follows that

I2n = 2

n∑
i

Ki(t)

∫ ℓi(u)

0
Eε|X

{
ε−1
i

[
I{εi≤H(∆it)+δ}−I(εi ≤ H(∆it)

]}
dδ+op(1)

= 2

n∑
i

Ki(t)H
−1(0)

∫ ℓi(u)

0
Eε|X

[
I{εi ≤ H(∆it) + δ} − I(εi ≤ H(∆it)

]
dδ

+2

n∑
i

Ki(t)

∫ ℓi(u)

0
Eε|X

[
(ε−1

i −H−1(0))
[
I{εi ≤ H(∆it) + δ}

−I(εi ≤ H(∆it)
]]
dδ + op(1)

= uT
{ 1

nh

n∑
i

Ki(t)
H ′2(0)

H(0)
f(H(0))XiX

T
i

}
u[1 + op(1)]

= γ2H(0)f(H(0))fT (t)u
TΛu+ op(1). (A.7)

Similarly, it can be proved that

I4n = γ2H(0)f(H(0))fT (t)u
TΛu+ op(1). (A.8)

This together with (A.4) and (A.7) proves (A.3) as follows,

ϕn(θ0 +
u√
nh

)− ϕn(θ0) =W T
n u+ γ2fT (t)[J + 2f(H(0))H(0)]uTΛtu+ op(1).

Here the quadratic term dominates the linear term uniformly in ||u|| = r for
sufficient large r. Therefore, (A.1) holds for sufficient large r, which completes
the proof of consistency.

Step 2: asymptotic normality
Since ϕn(θ) is a strictly convex function of θ by Lemma 2, the local minimizer

θ̃ in Step 1 is also the global minimizer. Applying the epi-convergence results of
Knight and Fu (2000), it can be shown that

√
nh

{
θ̃−θ0

}
has the same asymptotic

distribution as

−1

2

{
γ2fT (t)[J + 2f(H(0))H(0)]

}−1
Λ−1
t Wn. (A.9)

Let

W †
n =

γ√
nh

n∑
i

Ki(t){εiH−1(0) + ε−1
i H(0)}sgn(1− εiH

−1(0))Xi,

and recall that γ = H ′(0)/H(0) and A = E(εiH
−1(0)+ ε−1

i H(0))2. By (C3) and

(C4), we have E[W †
n] = 0 and

V ar[W †
n] = γ2E(εiH

−1(0) + ε−1
i H(0))2E[XiX

T
i

K2
i (t)

h
]
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= γ2AEtiEXi|ti [XiX
T
i

K2
i (t)

h
]

→ γ2AfT (t) diag{ν0E[(xTi , 1)
T (xTi , 1)|T = t], ν2}.

Together with the Cramér-Wold Theorem and Vt = E[(xTi , 1)
T (xTi , 1)|T = t], the

CLT for W †
n holds:

W †
n

d→ N(0, γ2AfT (t) diag{ν0Vt, ν2}).

Let ~i = sgn(1− εiH
−1(∆it))− sgn(1− εiH

−1(0)). We know that if εi lies

between H(0) and H(∆it), |~i| = 2, and otherwise |~i| = 0. Thus

V ar(Wn −W †
n) = V ar

{ γ√
nh

n∑
i

Ki(t){εiH−1(0) + ε−1
i H(0)}~iXi

}
≤ γ2

h
E
{
K2

i (t){εiH−1(0) + ε−1
i H(0)}2~2iXiX

T
i

}
≤ 4N2

0γ
2

h
|F (H(∆it))− F (H(0))|E

{
K2

i (t)XiX
T
i

}
→ 4N2

0γ
2

h
fT (t) diag{ν0Vt, ν2}f(H(0))|H ′(0)||∆it|

= O(h2) → 0.

Here the second inequality follows from (C3), and the third inequality holds due

to the fact that ∆it = O(h2) and there exists a N0 > 0 such that εiH
−1(0) +

ε−1
i H(0) < N0 in the interval between H(0) and H(∆it).

Under the conditions in the Appendix, we have

E(
Wn√
nh

) =
γ

h
E
[
Ki(t){εiH−1(0) + ε−1

i H(0)}sgn(1− εiH
−1(∆it))Xi

]
= γE

[
Kh(ti − t){εiH−1(0) + ε−1

i H(0)}sgn(1− εiH
−1(0))Xi

]
+γE

[
Kh(ti − t){εiH−1(0) + ε−1

i H(0)}~iXi

]
= γE

[
Kh(ti − t){εiH−1(0) + ε−1

i H(0)}~iXi

]
= 2γE

[
Kh(ti − t)I{H(0) < εi < H(∆it)}Xi

]
(1 +O(h2))

= −γµ2h2f(H(0))H ′(0)g′′(t)fT (t)E[(xT , 1, 0)T |T = t] + o(h2).

Then using Slutsky’s Theorem, we have

Wn − E(Wn)
d→ N(0, γ2AfT (t) diag{ν0Vt, ν2}). (A.10)
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Thus, we obtain

√
nh

{
θ̃ − θ0 −

µ2h
2f(H(0))H(0)g′′(t)

2(J + 2f(H(0))H(0))
Λ−1
t E[(xT , 1, 0)T |T = t]

}
d→N

(
0,

1

4γ2fT (t)
[J + 2f(H(0))H(0)]−2Λ−1

t A diag{ν0Vt, ν2}Λ−1
t

)
.

This completes the proof.

Proof of Theorem 2. Let ρi = g̃(ti)− g(ti) and

Ln(β) =
n∑

i=1

{∣∣∣1− ε−1
i H{xTi (β − β0) + ρi}

∣∣∣+ ∣∣∣1− εiH
−1{xTi (β − β0) + ρi}

∣∣∣}.
Consider θ∗ =

√
n(β − β0). Let

δi = ε−1
i

{
H(

xTi θ
∗

√
n

+ ρi)−H(ρi)
}
, ηi = εi

{
H−1(

xTi θ
∗

√
n

+ ρi)−H−1(ρi)
}
.

Since the proof here is similar to that of Theorem 1, we only detail some differ-
ences.

Step 1: consistency
It suffices to show that for any given ϵ > 0, there exist a large constant r > 0

such that

P
(

inf
||θ∗||=r

Ln(β0 +
θ∗√
n
) > Ln(θ0)

)
≥ 1− ϵ. (A.11)

This implies that, with probability at least 1− ϵ, Ln(β) has a local minimizer β̂
satisfying β̂ − β0 = Op

(
n−1/2

)
.

Then by the identity in Knight (1998), we have

Ln(β0 +
θ∗√
n
)− Ln(β0)

= −
n∑
i

δisgn{1− ε−1
i H(ρi)} −

n∑
i

ηisgn{1− εiH
−1(ρi)}

+2
n∑
i

∫ δi

0

[
I{1− ε−1

i H(ρi) ≤ s} − I{1− ε−1
i H(ρi) ≤ 0}

]
ds

+2

n∑
i

∫ ηi

0

[
I{1− εiH

−1(ρi) ≤ s} − I{1− εiH
−1(ρi) ≤ 0}

]
ds

:= T1n + T2n + T3n + T4n. (A.12)

Here we calculate T2n in detail. Note that by a Taylor expansion, we have

H−1(
xTi θ

∗
√
n

+ ρi)−H−1(ρi)
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= −H ′(0)

H2(0)

xTi θ
∗

√
n

− H ′′(τ1)H(τi1)− 2H ′2(τi1)

H3(τi1)
ρi
xTi θ

∗
√
n

−H
′′(τi2)H(τi2)− 2H ′2(τi2)

H3(τi2)

θ∗Txix
T
i θ

∗

2n

= −H ′(0)

H2(0)

xTi θ
∗

√
n

− H ′′(0)H(0)− 2H ′2(0)

H3(0)
ρi
xTi θ

∗
√
n

−H
′′(0)H(0)− 2H ′2(0)

H3(0)

θ∗Txix
T
i θ

∗

2n

−
{H ′′(τi1)H(τi1)− 2H ′2(τi1)

H3(τi1)
− H ′′(0)H(0)− 2H ′2(0)

H3(0)

}
ρi
xTi θ

∗
√
n

−
{H ′′(τi2)H(τi2)− 2H ′2(τi2)

H3(τi2)
− H ′′(0)H(0)− 2H ′2(0)

H3(0)

}θ∗TxixTi θ∗
2n

=:Di21 +Di22 +Di23 +Di24 +Di25,

where τi1 lies between 0 and ρi while τi2 lies between X
T
i θ

∗/
√
n+ρi and ρi. From

the proof of Theorem 1, we have

sup
t∈Ω

∣∣∣g̃(t)− g(t)− 1

nQfT (t)

n∑
i=1

GiKh(ti − t)
∣∣∣ = op({nh}−1/2),

where Q = 2γ[J + 2f(H(0))H(0)] and Gi is the last element of the vector
−{εiH−1(0) + ε−1

i H(0)}sgn(1− εiH
−1(∆it))V

−1
t (xTi , 1)

T .
Write ι = (H ′′(0)H(0)− 2H ′2(0))/H3(0). Since H(·) is second-order contin-

uous differentiable and H ′′(·) is uniformly continuous on [−M,M ], we have

T2n =
{
−

n∑
i

εi{Di21 +Di22 +Di23}sgn{1− εiH
−1(0)}

}
(1 +Op(cn))

=
{ 1√

n

n∑
i

εi
H ′(0)

H2(0)
sgn{1− εiH

−1(0)}xi
}T
θ∗

+ι
{ 1√

n

n∑
i

εisgn{1− εiH
−1(0)}

( 1

nQfT (ti)

n∑
j=1

GjKh(tj − ti)
)
xi

}T
θ∗

+ιθ∗T
{ 1

2n

n∑
i

εisgn{1− εiH
−1(0)}xixTi

}
θ∗ + op(1).

Denote the second term in the foregoing expression as ιZT
n θ

∗. Then Zn can be
expressed as

Zn =
1√
n

n∑
i

εisgn{1− εiH
−1(0)}

( 1

nQfT (ti)

n∑
j=1

GjKh(tj − ti)
)
xi
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= − 1√
nQ

n∑
j

{εjH−1(0) + ε−1
j H(0)}sgn{1− εjH

−1(0)}(0Tp , 1)

×
( 1

n

n∑
i=1

1

fT (ti)εi
sgn{1− εiH

−1(0)}Kh(ti − tj)V
−1
ti

(xTj , 1)
Txi

)
+ op(1)

=
JH(0)√
nQ

n∑
j

(
{εjH−1(0) + ε−1

j H(0)}sgn{1− εjH
−1(0)}

×(0Tp , 1)V
−1
tj

(xTj , 1)
TE[x|tj ]

)
+ op(1).

where the third equality holds by Lemma 1.
Therefore,

T2n =
{ γ√

n

n∑
i

εiH
−1(0)sgn{1− εiH

−1(0)}xi
}T
θ∗

+
J

Q

[H ′′(0)

H(0)
− 2γ2

]{ 1√
n

n∑
j

{εjH−1(0) + ε−1
j H(0)} (A.13)

×sgn{1− εjH
−1(0)}(0Tp , 1)V −1

tj
(xTj , 1)

TE[x|tj ]
}T
θ∗

+
[H ′′(0)

H(0)
− 2γ2

]
θ∗T

{ 1

2n

n∑
i

εiH
−1(0)sgn{1− εiH

−1(0)}xixTi
}
θ∗ + op(1).

Meanwhile, we find

T1n =
{
− 1√

n

n∑
i

ε−1
i H ′(0)sgn{1− ε−1

i H(0)}xi
}T
θ∗

− J

Q

H ′′(0)

H(0)

{ 1√
n

n∑
j

{ε−1
j H(0) + ε−1

j H(0)} (A.14)

×sgn{1− εjH
−1(0)}(0Tp , 1)V −1

tj
(xTj , 1)

TE[x|tj ]
}T
θ∗

+
H ′′(0)

H(0)
θ∗T

{
− 1

2n

n∑
i

ε−1
i H(0)sgn{1− ε−1

i H(0)}xixTi
}
θ∗ + op(1).

Let

η1(t, x) =
J

J + 2f(H(0))H(0)
E[x(0Tp , 1)|T = t]V −1

t (xT , 1)T .

Then (A.13) and (A.14) together give

T1n + T2n =
{ γ√

n

n∑
i

{
εiH

−1(0) + ε−1
i H(0)

}
sgn{1− εiH

−1(0)}xi
}T
θ∗
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− Jγ

J + 2f(H(0))H(0)

{ 1√
n

n∑
j

{ε−1
j H(0) + ε−1

j H(0)}

×sgn{1− εjH
−1(0)}(0Tp , 1)V −1

tj
(xTj , 1)

TE[x|tj ]
}T
θ∗

+θ∗T
{γ2
n

n∑
i

εiH
−1(0)sgn{εiH−1(0)− 1}xixTi

}
θ∗ + op(1)

= ST
n θ

∗ + θ∗Tγ2JCθ∗ + op(1),

where

Sn =
γ√
n

n∑
i

{
εiH

−1(0) + ε−1
i H(0)

}
sgn{1− εiH

−1(0)}[xi − η1(ti, xi)].

Write ϑi = H−1(xTi θ
∗/
√
n+ ρi)−H−1(ρi). With some calculation, we have

T4n = 2H(0)

n∑
i

∫ ϑi

0
Eεi|x,T

[
I{1− εiH

−1(ρi) ≤ εiδ}

−I{1− εiH
−1(ρi) ≤ 0}

]
dδ + op(1)

= 2H(0)
n∑
i

∫ ϑi

0

[
f(H(ρi))

H2(ρi)δ

H(ρi)δ + 1
{1 + o(1)}

]
dδ

= θ∗Tγ2f(H(0))H(0)Cθ∗ + op(1).

Similarly, we obtain T3n = θ∗Tγ2f(H(0))H(0)Cθ∗ + op(1). Therefore, Ln(β0 +
θ∗/

√
n)− Ln(β0) can be represented as

ST
n θ

∗ + θ∗Tγ2[J + 2f(H(0))H(0)]Cθ∗ + op(1).

Since the quadratic term dominates the linear term uniformly in ||θ∗|| = r for
sufficient large r, (A.11) holds for sufficient large r, which completes the proof of
consistency.

Step 2: asymptotic normality
Lemma 2 implies that Ln(β) is a strictly convex function of β. Thus the

local minimizer β̂ in Step 2 is also the global minimizer. Moreover, it is easy to
see that

Sn →d S with S ∼ N
(
0, γ2AE[{x− η(t,x)}{x− η(t,x)}T ]

)
.

By the epi-convergence results of Knight and Fu (2000), we have

√
n
{
β̂ − β0

}
→d −1

2

{
γ2[J + 2f(H(0))H(0)]

}−1
C−1S. (A.15)

The proof is then complete.
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Proof of Theorem 4. Let β = β0 + ξ/
√
n and

Ψn(ξ) =

n∑
i=1

(ui − xTi (β0 +
ξ√
n
))2 + λn

p∑
j=1

ωj |β0 +
ξ√
n
|.

If ξ̂ = argminξ Ψn(ξ), then by (4.2) we have β̂λn = β0 + ξ̂/
√
n. Consider Vn(ξ) =

Ψn(ξ)−Ψn(0), where

Vn(ξ) = ξTCnξ−2ξTCn{
√
n(β̂−β0)}+

λn√
n

p∑
j=1

ωj

√
n
{
|β0+

ξ√
n
|−|β0|

}
. (A.16)

Indeed, we have that Cn → C and Cn
√
n(β̂ − β0) →d W with

W ∼ N
(
0,

1

4

{
γ[J + 2f(H(0))H(0)]

}−2
AΞ

)
by Theorem 2 and Slutsky’s Lemma. Now we consider the asymptotic behavior

of the third term of the right hand side of (A.16). If βj0 = 0, then

√
n
(
|βj0 +

ξj√
n
| − |βj0|

)
= sgn(ξj)ξj ,

λn√
n
ωj = λnn

(τ−1)/2(|
√
nβ̂j |)−τ .

By Theorem 2 we have
√
nβ̂j = Op(1). This together with the condition that

λnn
(τ−1)/2 → ∞ gives

λn√
n
ωj

√
n
{
|β0 +

ξ√
n
| − |β0|

}
→p

{
0, if ξj = 0;

∞, if ξj ̸= 0.

If βj0 ̸= 0, then ωj →p |βj0|−τ and

√
n
(
|βj0 +

ξj√
n
| − |βj0|

)
= sgn(βj0)ξj .

By Slutsky’s theorem, it can be shown that Vn(ξ) →d V (ξ), where

V (ξ) =

{
ξTℵCℵℵξℵ − 2ξℵWℵ, if ξj = 0 for all j /∈ ℵ,

∞, otherwise.
.

Obviously, V (ξ) is convex. Applying the epi-convergence results of Geyer (1994)

and Knight and Fu (2000), we have

ξ̂ℵ →d C
−1
ℵℵWℵ and ξ̂ℵc →d 0 (A.17)
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The asymptotic normality is then established.
The consistency of variable selection can be seen as follows. Since the asymp-

totic property result indicates that β̂λn
j →d β0j , P (j ∈ ℵ̂) → 1 for ∀j ∈ ℵ.

Therefore, it suffices to show that ∀j′ ∈ ℵc, P (j′ ∈ ℵ̂) → 0.
Suppose j′ ∈ ℵ̂. Then

0 =
1√
n

∂Hn(β)

∂βj′
= −2

1

n

n∑
i=1

xij′x
T
i {

√
n(β̂ − β̂λn)}+ λn√

n
ωj′sgn(β̂

λn
j′ )

= −2C(j′)
n {

√
n(β̂ − β̂λn)}+ λn√

n
ωj′sgn(β̂

λn
j′ )

where C
(j′)
n stands for the j′th row of Cn. Note that

λnωj′√
n

= λnn
(τ−1)/2(|

√
nβ̂j′ |)−τ →p ∞,

C
(j′)
n → C(j′), and

√
n(β̂ − β̂λn) = Op(1), by Theorem 2 and (A.17). Therefore,

the right hand of (1/
√
n)∂Hn(β)

∂βj′
goes to infinity for n sufficiently large. This

contradiction proves the consistency of variable selection.

Proof of Theorem 5. Let β=β0+η/
√
n. Then Tn(β) at (4.3) can be rewritten as

Φn(η) =

n∑
i=1

{∣∣∣1− ε−1
i H{xTi

η√
n
+ ρi}

∣∣∣+ ∣∣∣1− εiH
−1{xTi

η√
n
+ ρi}

∣∣∣}
+λn

p∑
j=1

ωj |β0 +
η√
n
|.

Consider Vn(η) = Φn(η)− Φn(0). By Theorem 2 we have

Vn(η) = ST
n η + η⊤γ2[J + 2f(H(0))H(0)]Cη + op(1)

+
λn√
n

p∑
j=1

ωj

√
n
{
|β0 +

η√
n
| − |β0|

}
, (A.18)

where Sn →d S ∼ N
(
0, γ2AΞ

)
. Similar to the proof of Theorem 4, Vn(η) →d

V (η), where

V (η) =

{
S⊤
ℵ ηℵ + η⊤ℵ γ

2[J + 2f(H(0))H(0)]Cℵℵηℵ, if ηj = 0 for all j /∈ ℵ

∞, otherwise.

Obviously, V (η) is convex. Applying the epi-convergence results of Geyer (1994)
and Knight and Fu (2000), we have

η̂ℵ →d
1

2

{
γ2[J + 2f(H(0))H(0)]

}−1
C−1
ℵℵSℵ and η̂ℵc →d 0 (A.19)
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To prove sparsity, we only need to show that β̂j = 0, j ∈ ℵc, with probability

tending to 1. Then it suffices to show that ∀j′ ∈ ℵc, P (j′ ∈ ℵ̂∗) → 0.

Suppose η̌ is the minimizer of Φn(η) with η̂κ ̸= 0, where κ ⊂ ℵc. Define η̄

with η̄ℵ = η̌ℵ, η̄ℵc = 0. Then,

Φn(η̌)− Φn(η̄) = (Φn(η̌)− Φn(0))− (Φn(η̄)− Φn(0))

= ST
n η̌ + η̌⊤γ2[J + 2f(H(0))H(0)]Cη̌ − ST

n η̄ − η̄⊤γ2[J + 2f(H(0))H(0)]Cη̄

+
λn√
n

p∑
j=1

ωj

√
n
{
|β0+

η̌√
n
|−|β0|

}
− λn√

n

p∑
j=1

ωj

√
n
{
|β0+

η̄√
n
|−|β0|

}
+op(1)

= S⊤
nℵc η̌ℵc + γ2[J + 2f(H(0))H(0)]{2η̌⊤ℵCℵℵc η̌ℵc + η̌⊤ℵcCℵcℵc η̌ℵc}

+
λn√
n

∑
j′∈κ

ωj′ |η̌j′ |+ op(1)

→p +∞

Here the second equality is due to (A.18) and the third equality follows because

of the definition of η̄, η̌. Since Sn →d S ∼ N
(
0, γ2AΞ

)
and a positive definite C,

we have

S⊤
nℵc η̌ℵc + γ2[J + 2f(H(0))H(0)]{2η̌⊤ℵCℵℵc η̌ℵc + η̌⊤ℵcCℵcℵc η̌ℵc} = Op(1).

Together with the fact that λnωj′/
√
n →p ∞(Theorem 4), the last →p result

holds. This contradicts the fact that η̌ is the minimizer of Φn(η). Thus, we claim

that for all j′ ∈ ℵc, P (j′ ∈ ℵ̂∗) → 0. The proof is complete.
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