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Abstract: A multiple-inflation Poisson (MIP) model is put forward for analyzing

count data that have multiple inflated values. Analogous to the zero-inflated Pois-

son model (ZIP; Lambert (1992)), MIP assumes a mixture distribution of Poisson

and degenerate distributions, where the probabilities for the inflated values are from

a cumulative logit model. We explore the properties of the proposed model, with a

detailed treatment given to its maximum likelihood estimation. Moreover, we ad-

dress variable selection by adopting an L1 regularization scheme. Both simulation

experiments and an analysis of a health care data set are provided to illustrate the

multiple-inflation Poisson model.
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1. Introduction

The zero-inflated Poisson model (ZIP; Lambert (1992)) and its variants have

become a popular tool in statistical applications for analyzing count data with

a preponderance of zeros. However, we have found ourselves confronted with

data displaying multiple inflated values. The illustration in Section 6 considers

a healthcare study on the frequency of medical visits which shows an excess of

zeros and ones. This data structure may be explained by the fact that a large

number of patients may not visit a doctor or a health professional over a given

period or require one, with perhaps a single follow-up, visit to diagnose and treat

a given ailment. We have confronted similar situations in modeling the number

of insurances that are of different types and of different policies and the number

of hospitalization days in healthcare applications. Multiple inflated values may

also occur when there is a natural “grouping” of the counts. For example, in

the National Health and Nutrition Examination Survey (NHANES) data, the

number of cigarettes smoked per day, according to self-reporting, is dominated

by zeros and twenties, since twenty cigarettes correspond to one pack. Of course

http://dx.doi.org/10.5705/ss.2012.187


1072 X. SU, J. FAN, R. A. LEVINE, X. TAN, AND A. TRIPATHI

these are anecdotal accounts, but nonetheless suggest that an extension of the

ZIP model for multiple inflated values is desired.

Our initial exposure to multiple inflated count data came in the analysis of

traffic data where, for example, the number of monthly car crashes on high speed

roadway segments is mostly zeros, ones, and twos. The transportation literature

has expressed serious concern with ZIP models (Lord, Washington, and Ivan

(2005, 2007)) stemming primarily from the assumption of a dual-state system

of safe and non-safe road zones. One recommended solution is a multiple state

crash process; however, as we discuss in more detail after our methodological

development, mixture Poisson models are not of practical use in such a setting.

Our proposed multiple-inflation Poisson model alleviates this difficulty. A second

recommendation is to include a strong set of explanatory variables and we present

an L1 regularization scheme for variable selection to this end.

The paper unfolds as follows. In Section 2 we propose a multiple-inflation

Poisson (MIP) model and discuss various issues related to model specifications,

mixture model representation, identifiability, and (over and under) dispersion. In

Section 3 we address maximum likelihood (ML) estimation under the MIP model

and associated computational machinery. In Section 4 we propose the variable

selection method for the multiple-inflation Poisson model. In Section 5 we report

on simulation experiments designed to evaluate the inferential performance of the

multiple-inflation Poisson model relative to competing models in the literature,

and the performance of the proposed variable selection routine. In Section 6

an illustration of the proposed model is presented for studying the distribution

of patient medical visits with, again, a comparison to competing models in the

literature.

2. Multiple-Inflation Poisson (MIP) Model

Consider data that consist of n i.i.d. observations {(yi,Xi) : i = 1, . . . , n},
where yi is the count of some event of interest and Xi is the associated predictor

vector. The count response yi contains a total of M inflated values and, while

these inflated values do not have to be consecutive in the model, for notational

convenience we denote them as {0, 1, . . . , (M − 1)}.

2.1. Model specification

The multiple-inflation Poisson model is specified as follows:

yi ∼

{
m with probability pim for m=0, . . . , (M−1),

Poisson(λi) with probability piM ,
(2.1)
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where
∑M

m=0 pim = 1, so that

yi=

m with probability pim + piM exp(−λi)
λm
i
m! for m=0, . . . , (M−1)

k with probability piM exp(−λi)
λk
i
k! for k ≥ M.

(2.2)

For regression purposes, we express the mean λi of the Poisson model as

log(λi) = BT
i β or λi = exp

(
BT

i β
)

(2.3)

and we formulate the pim’s with a cumulative logit or proportional odds model

(McCullagh (1980))

logit (Pr{yi ≤ m}) = log
Pr{yi ≤ m}
Pr{yi > m}

= GT
i γ1 + γm0 (2.4)

for m = 0, 1, . . . , (M − 1). Here, both Bi and Gi are associated covariate vec-

tors containing selected components from Xi; β and γ1 are vectors of regres-

sion parameters; the intercepts are separately denoted by γm0’s. Let γT =

(γ00, γ10, . . . , γ(M−1)0,γ
T
1 ). The cumulative logit model (2.4) implies that,

pi0 = expit
(
GT

i γ1+γ00
)
,

pim= expit
(
GT

i γ1+γm0

)
−expit

(
GT

i γ1+γ(m−1)0

)
for m=1, . . . , (M−1),

piM= 1−expit
(
GT

i γ1+γ(M−1)0

)
,

(2.5)

where expit(x) = ex/(1 + ex).

Another way of interpreting the multiple-inflation Poisson model is to view

equations in (2.1) as describing a process with (M+1) states; starting with state

0, yi = 0; at state 1, yi = 1, and so on; at state (M − 1), yi = M − 1; at

state M , yi follows Poisson(λi). With a slight abuse of notation, we have used

yi to denote both the random variable and the observed value for the i-th count.

Introduce dummy variables zim such that zim = 1 if yi is from the m-th state

and 0 otherwise, for m = 0, 1, . . . ,M and i = 1, . . . , n. Thus
∑

m zim = 1 and

zim zim′ = 0 for any m ̸= m′. The conditional distribution of (yi|zi0, . . . , ziM ) is

thus given by 

Pr(yi = 0 | zi0 = 1) = 1,

...

Pr(yi = M − 1 | zi(M−1) = 1) = 1,

yi | (ziM = 1) ∼ Poisson(λi).

(2.6)
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2.2. More on the MIP model specification

The multiple-inflation Poisson model specified in (2.1)−(2.3) is essentially a

finite mixture model (FMM) of Poisson and degenerate distributions. A slightly

different model formulation can be obtained via a mixture of a discrete distribu-

tion over all inflated values {0, 1, . . . , (M − 1)} and a Poisson distribution, where

the mixture probability is supplied by a Bernoulli model. Specifically,

yi∼

Discrete
{
(0, . . . , (M−1)) ;

(
p′i0, . . . , p

′
i(M−1)

)}
w/ prob. 1− piM ,

Poisson(λi) w/ prob. piM ,
(2.7)

subject to
∑M−1

m=0 p′im = 1. Model (2.7) is equivalent to Model (2.1), since the con-

straint on p′im can be accounted for by p′im = pim/(1−piM ) form = 0, . . . , (M−1).

To incorporate covariates into (2.7), three regression models are needed:
log

Pr{yi ≤ m}
Pr{M − 1 ≥ yi > m} = G̃T

i γ̃1 + γ̃m0 for m = 0, 1, . . . , (M − 2),

log(λi) = B̃T
i β̃,

logit(piM ) = H̃T
i γ̃2 + γ̃M0.

(2.8)

This reduces to the model in (2.1)−(2.2) if some additional constrains are placed.

For example, if G̃i = H̃i = Gi, B̃i = Bi, and γ̃1 = γ̃2, then the parameters in

(2.8) have a one-to-one correspondence with those in (2.3)−(2.4), determined by

a number of identities as follows:

β = β̃,
GT

i γ̃1 + γ̃m0

GT
i γ̃1 + γ̃00

=
GT

i γ1 + γm0

GT
i γ1 + γ00

for m = 1, . . . , (M − 2),

1− expit(GT
i γ1 + γ(M−1)0) = expit(GT

i γ̃1 + γ̃M0).

We have assumed that the number of inflations, M , is fixed, together with

the choices of the inflated values. When M = 1, the multiple-inflation Poisson

model reduces to the zero-inflated Poisson (ZIP) model (Lambert (1992)). In

practice, M can be manifested by inspecting the histogram of the count response

or examining the residuals of a loglinear model fit, since the inflated values are

typically those that do not fit well. On the other hand, how to determine the

inflated values more precisely could be a future research topic that we do not pur-

sue here. It is important to note that the inflated count values do not have to be

consecutive. For example, they could be 0’s and 10’s, instead of 0’s and 1’s. The

multiple-inflation Poisson model specification generalizes well to nonconsecutive

scenarios, since the cumulative logit model generally works for ordinal responses
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following its latent variable justification. In addition, multinomial logistic regres-

sion and other models for categorical or ordinal responses can be used instead,

but may incur more parameters than the cumulative logit model.

Previous work similar to MIP includes the Poisson mixture model, a general

framework where multiple Poisson processes are used to model several states.

The multiple-inflation Poisson model can be viewed as a special case of the mix-

ture of Poisson models as discussed in Cameron and Trivedi (1998, Sec. 4.8). In

particular, it can be connected to the multinomial-Poisson homogeneous model

studied by Baker (1994), Wang et al. (1996), and Lang (2004), where a multi-

nomial distribution models the mixing probabilities for Poisson mixtures. MIP

is a simplified version of this multinomial-Poisson model, where all but one of

the Poisson distributions are replaced by degenerate distributions. Following

the arguments in Lang (2004), both maximum likelihood estimation theory and

maximum likelihood fitting techniques can be straightforwardly applied to the

multiple-inflation Poisson model. With that being said, the general multinomial-

Poisson models are often difficult to fit (Baker (1994)) and their use is not com-

mon in applications (Lord, Washington, and Ivan (2005)). Comparatively, the

simpler multiple-inflation Poisson model provides a flexible modeling tool ready

for practical usage.

2.3. Dispersion

As noted by Greene (1994), the inflated zeros in ZIP models can masquerade

as over-dispersion. However, the multiple excess counts in MIP models may in-

duce either over-dispersion or under-dispersion. With the aid of zim’s introduced

earlier, it can be verified that

E(yi) = E{E(yi|zi0, zi1, . . . , ziM )} =

M−1∑
m=0

m · pim + λipiM , (2.9)

Var (yi) = E{Var (yi|zi0, zi1, . . . , ziM )}+Var {E(yi|zi0, zi1, . . . , ziM )}

=

M−1∑
m=0

m2pim(1− pim) + λ2
i piM (1− piM ) + piMλi.

Equation (2.9) is useful for prediction purpose. To gain insight, consider the

special case pim ≡ p for m = 0, 1, . . . , (M −1). Here p < 1/M and piM = 1−Mp,

so

Var (yi) = E(yi) +

{
M p (M − 1) (2M − 2Mp+ p− 4)

6
+ λiMp(1−Mp)

}
.

A more detailed look indicates that underdispersion occurs, Var (yi) < E(yi),

when and only when M = 2 and λi <
√

p/{2(1− 2p)}. With this flexibility, the
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multiple-inflation Poisson model potentially supplies a competitive method for

modeling count data with moderate over- or under-dispersion.

2.4. Identifiability

For finite mixture models, identifiability (see, e.g., Teicher (1961) and Wang

et al. (1996)) is an issue that must be addressed before estimation of the involved

parameters can be meaningfully discussed.

For the multiple-inflation Poisson model at (2.1)−(2.3), a formal definition is

given. LetGT
i andBT

i denote the i-th row vector in matrixG andB, respectively,

for i = 1, . . . , n. Let θ = (γT , βT )T be the vector containing all parameters.

Definition 1. For given covariate matrices (B,G), the MIP model is identifiable

if, for any two sets of parameters (θ,θ⋆), yi has the same distribution for each

i = 1, . . . , n implies that θ = θ⋆.

Here θ = θ⋆ should be understood up to a permutation in the sense that

exchanging the components in GT
i γ or BT

i β does not alter the model. The proof

of the following proposition is given in the Supplement.

Proposition 1. If the matrices G and B are both of full column rank, the

multiple-inflation Poisson model at (2.1)−(2.3) is identifiable.

3. Maximum Likelihood Estimation

With observed data, the likelihood function of MIP is

l(β,γ;y) =

n∏
i=1

{M−1∏
m=0

(
pim + piM · e

−λi · λm
i

m!

)δim}
·
(
piM ·

e−λi · λyi
i

yi!

)δiM
, (3.1)

where δim = 1{yi=m} for m = 0, 1, . . . , (M − 1), and δiM = 1{yi≥M}, the log-

likelihood

L(β,γ;y) =
n∑

i=1

{M−1∑
m=0

δim log
(
pim + piM

e−λi · λm
i

m!

)
+ δiM log

(
piM

e−λi · λyi
i

yi!

)}
(3.2)

where (β,γ) enters the log-likelihood function via (2.3) and (2.5).

In order to obtain the maximum likelihood estimates θ̂ = (γ̂T , β̂
T
), New-

ton’s method can be applied to maximize L. The gradient of L is provided in

Appendix B of the Supplement. Since the Hessian matrix of L(β,γ) is too com-

plex to be explicitly available, a quasi-Newton method is used. In particular, the

BFGS quasi-Newton method would be favored because the low-rank approxima-

tion to the Hessian matrix allows its inverse to be conveniently computed. When
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the number of parameters is very large, the limited-memory variant, L-BFGS
(Nocedal (1980), can be used.

For estimating mixture models, the expectation-maximization (EM) algo-
rithm (Dempster, Laird, and Rubin (1977)) is a popular alternative. Despite its
slow convergence, the EM algorithm breaks down the estimation problems into
familiar subcomponents for simpler statistical programming. The EM procedure
can be carried out as follows. With zim at (2.6), suppose that we observe both zim
and yi, referred to as the complete data (y, z). The corresponding log-likelihood
is

Lc(γ,β;y, z) =

n∑
i=1

M∑
m=0

log f(zim|γ) +
n∑

i=1

log f(yi|zi;β)

=
n∑

i=1

M∑
m=0

zim log pim+
n∑

i=1

ziM
{
yiB

T
i β − exp(BT

i β)
}

−
n∑

i=1

ziM log(y!)

= Lc(γ;y, z) + Lc(β;y, z)−
n∑

i=1

ziM log(y!). (3.3)

Note that γ only shows up in Lc(γ;y, z) through the pim’s while β is only present
in Lc(β;y, z), both objective functions being concave. Thus estimation of γ and
β can be done separately, here alternating between the E step, computing the
expected zim given current estimates of (γ,β), and the M step, maximizing
Lc(γ;y, z) and Lc(β;y, z) to update (γ̂, β̂) given current estimates of the ex-
pected values of zim.

Let Zim = E(zim| yi,γ,β). A detailed description at the k-th iteration is as
follows.

⋄ E Step. Estimate Zim given the current estimates γ̂(k−1) and β̂
(k−1)

. We
have 

Z
(k)
im =

δim pim
pim + piM e−λiλm

i /m!
for m = 0, 1, . . . , (M − 1),

Z
(k)
iM = 1−

∑M−1
m=0 Z

(k)
im ,

(3.4)

where pim and λi are updated via (2.3) and (2.5).

Replace zim in (3.3) with Z
(k)
im and let Z(k) = (Z

(k)
im ).

⋄ M Step for β. Update β̂
(k)

by maximizing Lc(β;y,Z
(k)), equivalent to

fitting a weighted Poisson regression model with responses y and weights
Z

(k)
iM .
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⋄ M Step for γ. Update γ̂(k) by maximizing Lc(γ;y,Z
(k)). Note that

Lc(γ;y,Z
(k)) has a form similar to the log-likelihood obtained from a multi-

nomial logistic model with responses Z
(k)
im ’s, except that Z

(k)
im is not binary.

It can be rewritten into a weighted log-likelihood form of a multinomial lo-

gistic model. Maximization of Lc(γ;y,Z
(k)) is straightforward by calling a

Newton-Raphson routine.

The initial values for β can be supplied by the MLE from fitting a truncated

Poisson model to data with yi ≥ M. Omitting irrelevant terms, the corresponding

log-likelihood is

L1(β;y) ∝
n∑

i=1

δiM

{
yi log λi − λi − log

(
1−

M−1∑
m=0

e−λiλm
i

m!

)}
, (3.5)

The score functions are given by BTd = 0, where d is an n × 1 vector with

elements

di =

n∑
i=1

δiM

{
(yi − λi)−

e−λiλM
i /(M − 1)!

1−
∑M−1

m=0 e−λiλm
i /m!

}
.

As noted by Lambert (1992), starting values for γ are unimportant for ZIP. We

suggest using the MLE from fitting a cumulative logit model with ordinal data

in which every yi ≥ M is revalued as the M -th ordered category.

The variance-covariance matrix of θ̂, Σ = cov(θ̂), can be estimated via the

observed Fisher’s information matrix Σ̂ = {−H}−1, where H = ∂2L/∂θ∂θT is

the Hessian matrix of the loglikelihood L. Note that the low-rank approximating

matrix in BFGS may not converge to the real Hessian matrix when the algorithm

stops. R function optim() offers a finite difference method for approximating

the Hessian.

To sum up, we suggest a three-step procedure to fit the multiple-inflation

Poisson (MIP) model: (i) obtain initial estimates of (β,γ) by fitting a truncated

Poisson model and a cumulative logit model, respectively; (ii) take a few runs

(2 ≤ nrun ≤ 5) of the EM algorithm to update the estimates; (iii) run the BFGS

quasi-Newton to convergence. Unless otherwise modified, the EM algorithm is

slow but it helps, with only a few runs, for quickly locating a good neighborhood

of θ in search of a local optimum of L.

With the slightly more general MIP model in (2.7) and (2.8), the likelihood

function is

l(β̃, γ̃;y) =

n∏
i=1

[M−1∏
m=0

{
(1−piM )p′im+piM

e−λi · λm
i

m!

}δim
·
(e−λi · λyi

i

yi!

)δiM
]
, (3.6)
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where γ̃ = (γ̃00, . . . , γ̃M0, γ̃1, γ̃2)
T and parameters (β̃, γ̃) enter through specifi-

cations at (2.8). Optimization of the log-transformed l(β̃, γ̃;y) in (3.6) can be

done via the BFGS quasi-Newton without added difficulties.

4. Variable Selection via Regularization

Another major obstacle for using ZIP models is the problem of variable se-

lection, since there are two separate model components whose contributions to

the count response affect each other. Existing methods such as all-subset selec-

tion or stepwise procedures are computationally prohibitive, especially when the

number of covariates is large. The same difficulty exists in fitting MIP models.

To tackle the problem, Buu et al. (2011) recently introduced the L1 regulariza-

tion (Tibshirani (1996)) to ZIP. In this section, we consider a more flexible L1

regularization method for fitting MIP.

To proceed, assume that each variable Xj has been standardized to have

mean 0 and standard deviation 1. Unlike in linear regression, this standardiza-

tion step does not eliminate the intercepts in MIP model. Here we distinguish

intercepts from slopes in θ by exchanging the positions of its components so

that θ = (θT
0 ,θ

T
1 )

T , where θ0 = (γ00, γ10, . . . , γ(M−1)0, β0)
T contains all intercept

terms and θ1 = (θ1j) all slopes.

With MIP model either at (2.2)–(2.3) or at (2.8), L1 regularization solves

min
θ

− L(θ) +
∑
j

λj |θ1j | , (4.1)

where L(θ) is the log-likelihood function and λj ≥ 0 are the tuning parameters.

Note that the penalty is only applied to the slopes in θ1. The solution to (4.1)

can be conveniently obtained via a local quadratic approximation to L(θ). Given

some initial value θ̃ that is close to the minimizer of (4.1),

L(θ) ≈ Q(θ) = L(θ̃) + g̃T (θ − θ̃) +
1

2
· (θ − θ̃)T H̃(θ − θ̃), (4.2)

where

g̃ = L̇(θ̃) =
∂L(θ)

∂θ

∣∣∣∣
θ=θ̃

and H̃ = L̈(θ̃) =
∂2L(θ)

∂θ∂θT

∣∣∣∣
θ=θ̃

are the gradient and the Hessian matrix of L(θ) evaluated at θ̃. Replacing L(θ)

in (4.1) by the RHS of (4.2) yields a quadratic programming problem

min
θ

− g̃T (θ − θ̃)− 1

2
· (θ − θ̃)T H̃(θ − θ̃) +

∑
j

λj |θ1j | , (4.3)

where the irrelevant term L(θ̃) has been omitted. Optimization in (4.3) can be

done conveniently using the efficient LARS algorithm (Efron et al. (2004)). Since
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only the slopes in θ1 are penalized, some technical details for handling this issue

are given in Appendix C of the Supplement.

For the choices of λj , it is convenient to write λj = λaj for λ ≥ 0 and aj > 0.

Zou (2006)’s adaptive lasso sets aj = 1/
∣∣∣θ̃1j∣∣∣ ; we use this in our simulations and

data analyses. Another choice is to use aj = ρ̇j(|θ̃1j |), where ρj(·) is the smoothly

clipped absolute deviation (SCAD) penalty proposed by Fan and Li (2001). This

amounts to the one-step sparse estimator of Zou and Li (2008) where a local linear

approximation is applied to approximate the SCAD penalty. Yet another possibly

is to adopt Khalili and Chen (2007), who studied the L1 regulation for finite

mixture models (FMM) with constant mixing probabilities. With this approach,

an additional proportion factor, that corresponds to the mixing probability, can

be assigned to the penalties of β’s since they are present only in the Poisson model

component. The penalty function has the form
∑

j λj |γ1j | +
∑

j p·M λj |β1j |,
where p·M =

∑n
i=1 piM has to be estimated by plugging in an initial θ̃. Selection

of λ can be tuned via some model selection criterion such as AIC (Akaike (1974)),

BIC (Schwarz (1978)), or generalized cross-validation (GCV).

As for the initial estimator θ̃, one common choice is the MLE from the full

MIP model where all predictors are included in both the cumulative logit model

and the Poisson model. In this case, the gradient vector ĝ = 0. Thus (4.3) can

be further simplified as

min
θ

− 1

2
· (θ − θ̂)T Ĥ(θ − θ̂) +

∑
j

λj |θ1j | , (4.4)

With this approach, the so-called ‘oracle’ property, consisting of both consistency

in variable selection and consistent estimation of non-zero coefficients, can be

established, following arguments in either Wang and Leng (2007) or Zou and Li

(2008). On the other hand, this approach requires that MLE θ̂ be available for

the full model. This however is not the case when severe multi-collinearity exists

or the MIP dimension (2p +M + 1) is higher than n. A reasonable solution is

use an L2-regularized (ridge) estimator for θ̃ instead. In this case, the first-order

term in (4.3) remains. L2 regularization is easier to solve, often with closed-form

solutions available.

5. Simulation

This section reports on simulated experiments designed to evaluate MIP

model estimation, compare MIP with other count models, and assess the perfor-

mance of L1 regularization in selecting variables. The data were generated from
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the following MIP model with M = 2:

Model A:


Cumulative Logit: logit{Pr(Y ≤ 0)} = γ00 + γ1X1 + γ2X3,

logit{Pr(Y ≤ 1)} = γ01 + γ1X1 + γ2X3,

Loglinear: log(λ) = β0 + β1X2 + β2X3,

(5.1)

where γ=(γ00, γ01, γ1, γ2)
T =(−3,−1.5, 3, 2)T and β=(β0, β1, β2)

T =(−2, 3, 2)T .

Each data set includes five covariates (X1, X2, X3, X4, X5) that were indepen-

dently generated as uniform (0, 1). However, only X1 and X3 are effective in the

cumulative logit model component, while X2 and X3 are effective in the loglinear

model component. Two sample sizes n = 100 and n = 300 were considered, and,

for each model configuration, a total of 1, 000 runs were made.

To evaluate the ML estimation, we fit the true MIP model in (5.1) to each

simulated data set and obtained the estimated parameters and their standard

errors. Table 1(a) reports the sample mean and sample standard deviation (SD)

of the parameter estimates as well as the sample mean of the standard error

estimates over 1,000 simulation runs. Here, the finite difference approximation

implemented in the R (R Development Core Team (2012)) function optim() was

used to compute the Hessian matrix and hence the variance-covariance matrix of

θ̂. Note that the standard error is essentially an asymptotic approximation to the

standard deviation of the sampling distribution of the MLE. Thus a comparison

of the SD column with the standard error column in Table 1(a) allows us to

evaluate the performance of the asymptotic results. In addition, we computed

the coverage rate of the 95% Wald confidence interval (CI) that is presented in

the last column.

From the results, the maximum likelihood procedure seems to work very

well in estimating the true parameter and providing confidence interval coverage

within the nominal levels. The average estimates are reasonably close to their true

values. The average standard errors are also close to the sample SDs obtained

from the simulation runs. It is interesting to see that the standard errors for β

(in the loglinear model component) are generally smaller than those of γ in the

cumulative logit model component. This is because relatively more observations

in each category are needed in order to achieve high accuracy and high precision in

estimating the cumulative logit model. It is not surprising that the performance

improves with the increased sample size.

Next, we compared MIP with four other choices of count models: loglinear,

negative binomial (NB), zero-inflated Poisson (ZIP), and zero-inflated negative

binomial (ZINB) regression models. To do so, we generated an independent

test sample beforehand, which consisted of n1 = 500 observations. With each
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Table 1. Fitting MIP Based on 1,000 Runs: (a) Maximum likelihood esti-
mation; (b) Comparison with other models. In each simulation run, data
were generated according to (5.1). The Average and SD columns give the
sample mean and standard deviation of estimates over 1,000 runs for each
parameter. The Averaged SE column gives the standard errors averaged over
simulations runs. The 95% CI coverage rate is supplied in the last column.

(a) ML Estimation

Sample True Estimates Averaged 95% CI
Size Parameter Value Average SD SE Coverage

n = 100 γ00 −3.0 −3.335 1.131 1.078 0.938
γ01 −1.5 −1.743 1.073 1.029 0.950
γ1 3.0 3.249 1.137 1.083 0.950
γ2 2.0 2.224 1.221 1.153 0.940
β0 −2.0 −2.100 0.606 0.611 0.969
β1 3.0 3.060 0.680 0.663 0.956
β2 2.0 2.042 0.606 0.576 0.940

n = 300 γ00 −3.0 −3.115 0.609 0.582 0.948
γ01 −1.5 −1.587 0.638 0.559 0.946
γ1 3.0 3.114 0.628 0.588 0.936
γ2 2.0 2.064 0.644 0.621 0.945
β0 −2.0 −2.031 0.327 0.326 0.948
β1 3.0 3.022 0.354 0.354 0.948
β2 2.0 2.012 0.310 0.300 0.942

(b) Averaged Squared Loss (ASL)

Sample Models
Size (n) MIP Loglinear NB ZIP ZINB
100 0.142 0.204 0.179 0.230 0.235
300 0.053 0.092 0.091 0.109 0.129

simulation data set, we fit all four count models and then applied the fitted model

to predict the counts in the test sample. The average squared loss (ASL)

ASL =

n1∑
i=1

{E(yi)− ŷi}2 (5.2)

was recorded. Equation (2.9) is used for prediction with an MIP model; thus

ASL provides a direct assessment. To make it fair, {X1, X2, X3} were used in

fitting the three comparison model. Table 1(b) presents the averaged ASL over

1,000 runs, together with the associated standard deviation. As expected, MIP

has the smallest ASL.

Finally, we investigated the L1 regularization in variable selection with MIP.

In this simulation, the MLE from fitting the full MIP model was used in the
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Table 2. Variable Selection via L1 Regularization Based on 1,000 Runs. Five
covariates {X1, X2, X3, X4, X5} were independently uniform (0,1). Model
A corresponds to the confounded case where X1 and X3 are involved in
the cumulative logit model, while X2 and X3 are present in the log-linear
model. Model B corresponds to the unconfounded case where X1 and X3

are involved in the cumulative logit model, while X2 and X4 are present in
the log-linear model.

Sample Selection Correct Selections % mean ASL
Model Size (n) Criterion γ’s β’s both selected true
A 100 AIC 0.379 0.485 0.201 0.260 0.157

BIC 0.340 0.698 0.247 0.401
200 AIC 0.607 0.571 0.371 0.134 0.146

BIC 0.577 0.868 0.488 0.194
300 AIC 0.569 0.593 0.387 0.108 0.055

BIC 0.668 0.854 0.593 0.150
B 100 AIC 0.424 0.552 0.266 0.429 0.203

BIC 0.423 0.800 0.342 0.565
200 AIC 0.587 0.605 0.397 0.145 0.100

BIC 0.694 0.890 0.613 0.149
300 AIC 0.635 0.657 0.477 0.088 0.064

BIC 0.848 0.906 0.784 0.150

quadratic approximation and the adaptive lasso penalty was used. We took sam-

ple sizes n = 100, 200, and 300, and two model selection criteria, AIC and BIC.

In addition to Model A, we considered model B which has the same cumulative

logit model as Model A in (5.1), but X3 in the loglinear model is replaced with

X4. Model B is a scenario in which the covariates in the two model components

are not confounded. Table 2 reports the proportions of correct selections in the

cumulative logit model component, the loglinear model components, and both.

This helps with the consistency assessment in model selection. At the same time,

we recorded the average squared loss (ASL) given in (5.2), commonly used for

assessing model selection criterions in terms of efficiency (see, e.g., Shao (1997)).

For comparison, we also computed the ASL from the true model.

Several observations are in order. First of all, variable selection is more

difficult with MIP, compared to e.g., simulation results reported on linear re-

gression in the literature (McQuarrie and Tsai (1998)). However, the results are

generally consistent with the L1 regularized ZIP as recently reported by Buu

et al. (2011). Secondly, variable selection is more difficult for the cumulative

logit model component than for the loglinear model component. The selection

performance improves when the covariates in the two model components are not

confounded. Thirdly, the performance improves with increased sample sizes as

expected. In general, both AIC and BIC work better with the unconfounded
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Table 3. Variable Description for Health Visit Data.

Var Name Description
1 SEX 1 if female and 0 if male
2 AGE Age in years divided by 100
3 INCOME Annual income in Australian dollars divided by 1,000
4 HSCORE General health questionnaire score using Goldberg’s method,

with high score indicating bad health.
5 CHCOND1 1 if chronic condition(s) but not limited in activity,

0 otherwise
6 CHCOND2 1 if chronic condition(s) and limited in activity,

0 otherwise
7 PREVIATE.INS 1 if covered by private insurance company,

0 covered by government
8 HVISITS Number of visits to doctors or health professionals

in the past two weeks.

Model B in terms of variable selection, but show mixed results with the average

squared loss. Fourthly, BIC considerably outperforms AIC in terms of correct

variable selection. This can be explained by the moderately large sample sizes

and the relatively strong signals in the models we considered and the consistent

selection criterion BIC. On the other hand, AIC compares favorably to BIC in

terms of average squared loss, since AIC is an efficient model selection criterion.

6. Data Analysis Example

To illustrate, we compiled a data set from Racd3.asc of Cameron and Trivedi

(1998), available at http://cameron.econ.ucdavis.edu/racd/racddata.html.

The data set contains 5,190 observations and eight variables extracted from the

ABS (Australian Bureau of Statistics) 1977-78 Health survey and restricted to

single people over 18 years of age. Table 3 provides a brief description of these

variables. More details about the data set can be found in Cameron and Trivedi

(1998) and references listed there. The objective is to establish a predictive model

for HVISITS, the frequency of visits to doctors and/or health professionals in the

past two weeks.

Figure 1 plots the histogram of HVISITS, which shows excess zeros and ones.

Also superimposed on the histogram are frequency distributions from a fitted

Poisson, zero-inflated Poisson, and Poisson model with two inflations at 0 and

1. These fitted distributions are obtained in the spirit of goodness-of-fit involved

in, e.g., normality tests, without taking covariates into account. Specifically, the

Poisson distribution component is obtained by setting its mean as the sample

average of counts after excluding the pre-specified inflated values. Then we sim-

ulate counts, of the same number as the sample size, from each fitted model

http://cameron.econ.ucdavis.edu/racd/racddata.html
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(a) Poisson

(b) ZIP

(c) MIP

Figure 1. Frequency Distribution of Health Visits to Medical Doctors and
Health Professionals, Superimposed with Frequency Distributions from Dif-
ferent Good-of-Fit Models: (a) Poisson Model; (b) Zero-Inflated Poisson
(ZIP); (c) Multiple-Inflation Poisson (MIP) with M = 2.

distribution. It can be seen that the Poisson model does not fit well to data.

ZIP would miss out considerably on the prediction of ones. Comparatively, the

multiple-inflation Poisson model with M = 2 is a better choice.

Table 4(a) provides the fitting results of the full MIP model. Next, this

full model was refit with standardized covariates. The estimated parameters, to-

gether with the estimated variance-covariance matrix, were then used for quadratic

approximation in L1 regularization. The resultant regularization path is plotted
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Table 4. Fitting the MIP Model (M = 2) with the Health Visit Data: (a)
The fitted full MIP model and the best model selected via L1 regularization;
(b) Mean Squared Errors (MSE) computed via 3-fold cross validation (CV)
for competitive models.

(a) The Full and best MIP Model

Full Model L1-Regularized Model
Variable Estimate S.E. P-Value Estimate S.E. P-Value

Cumulative INTERCEPT γ00 2.393 0.146 0.0000 2.323 0.088 0.0000
Logit γ01 3.452 0.155 0.0000 3.382 0.103 0.0000

SEX γ1 −0.338 0.073 0.0000 −0.341 0.070 0.0000
AGE γ2 −1.431 0.198 0.0000 −1.361 0.176 0.0000
INCOME γ3 0.011 0.109 0.9203 — — —
HSCORE γ4 −0.158 0.014 0.0000 −0.157 0.014 0.0000
CHCOND1 γ5 −0.471 0.079 0.0000 −0.477 0.078 0.0000
CHCOND2 γ6 −1.006 0.105 0.0000 −1.002 0.104 0.0000
PRIVATE.INS γ7 −0.066 0.090 0.4664 — — —

Log-Linear INTERCEPT β0 0.936 0.129 0.0000 0.884 0.104 0.0000
SEX β1 0.024 0.062 0.7005 — — —
AGE β2 0.280 0.165 0.0902 0.388 0.145 0.0074
INCOME β3 −0.215 0.098 0.0287 −0.256 0.090 0.0044
HSCORE β4 0.031 0.009 0.0010 0.032 0.009 0.0008
CHCOND1 β5 0.033 0.079 0.6784 — — —
CHCOND2 β6 0.291 0.085 0.0007 0.282 0.062 0.0000
PRIVATE.INS β7 −0.086 0.070 0.2221 — — —

(b) MSE via 3-fold CV

MIP Loglinear NB ZIP ZINB
1.638 1.648 1.674 1.646 1.694

in Figure 2. The best MIP model, selected by minimum BIC, is also presented in

the right panel of Table 4 (a). SEX, AGE, HSCORE, CHCOND1, and CHCOND2 shows

up significantly in the cumulative logit model while AGE, INCOME, HSCORE, and

CHCOND2 are selected in the loglinear Poisson model component.

The final model selected via L1 regularization seems very interpretable. In

the cumulative logit model, the regression coefficient corresponds to the amount

of change in the ordered logit scale of the dependent variable level, log{P (Y ≤
m)/P (Y > m)}, with a one-unit increase in the predictor while holding constant

the other variables in the model. This explains why the signs of γ̂4 and β̂4
for HSCORE are opposite in the two model components. It is worth noting that

the two binary variables CHCOND1 and CHCOND2 correspond to prevalence and

severity of chronic conditions. It is interesting to see that both variables show

up in the cumulative logit model while only CHCOND2 shows up in the log-linear

model. This might be interpreted as the fact that both prevalence and severity
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Figure 2. Regularization Path of Adaptive LASSO with Quadratic Approxi-
mation: Variable Selection for Fitting MIP with the Health Care Data. The
dotted line highlights the best model choice via minimum BIC.

of chronic conditions are important predictors of whether or not a person would

have a health visit in the past two weeks and severer chronic conditions are more

likely to induce multiple health visits.

For comparison purposes, we also fit the loglinear, NB, ZIP, and ZINB mod-

els. The stepwise procedure was used for selecting variables. For brevity, the fit-

ted model are omitted from the presentation. Among these four model choices,

Vuong’s test (1989), performed in a pairwise manner, strongly indicates that

ZIP is the best. In order to make comparison with the multiple-inflation Poisson

model, a V−fold cross-validation method was employed. In this approach, the

sample was randomly divided into V = 3 folds. Observations in each fold were

predicted via the model fitted with the remaining data. Figure 3 plots the density

curve of the fitted values from each best-fit model, as opposed to the histogram

of the original data. The overall model performance is summarized by a mean

squared error (MSE) quantity, MSE =
∑n

i=1{yi − ŷ
(cv)
i }2, where ŷ

(cv)
i denotes

the cross-validated prediction for yi. The results, as given in Table 4(b), clearly

suggest preference for the MIP model in this predictive task.

7. Discussion

The L1 regularized MIP model offers enhanced flexibility and feasibility for
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(a) Poisson and ZIP

(b) NB and ZINB

(c) MIP

Figure 3. Density distribution of Health Visits to Medical Doctors and
Health Professionals, Superimposed with the smoothed densities of fitted
values obtained from the best-fit Poisson, ZIP, NB, ZINB, and MIP models.

modeling count data with multiple inflations and selecting variables efficiently.

The multiple-inflation Poisson model is essentially a finite mixture model of

multinomial and Poisson distributions. The likelihood function associated with

finite mixture models is typically not log-concave, which implies that the fitting

algorithm may be trapped into some local maximum. Thus trying out multiple

starting points or resorting to global optimization techniques could be helpful.

The R codes for fitting L1 regularized MIP models are provided as part of the
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online supplemental material, available in Statistica Sinica website.

The multiple-inflation Poisson model supplies several immediate interesting

avenues for future research. First, determination of M and the inflated values

may be more strictly calibrated. Vuong’s test (1989) can be extended to compare

multiple-inflation Poisson models with other model choices. Also, the Poisson

model component in MIP can be replaced with a negative binomial model for

data with over-dispersion. Extensions of MIP to dependent data can be studied

as well.
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