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Abstract: We consider nonstationary spatial modeling using empirical orthogonal

functions (EOFs) under the consideration that data may be observed only at some

sparse, irregularly spaced locations with repeated measurements. Instead of obtain-

ing EOFs by principal component analysis based on a class of pre-specified basis

functions or a pre-smoothing step with data imputed on a regular grid, we propose a

regularization approach using penalized likelihood, which provides a new EOF-type

expansion in terms of a small number of functions with their degrees of smooth-

ness controlled by a tuning parameter. An expectation-conditional-maximization

algorithm is applied to obtain the penalized maximum likelihood estimates of the

mean and the covariance parameters simultaneously. Some simulation results show

that the proposed method performs well in both spatial prediction and covariance

function estimation, regardless of whether the underlying spatial process is station-

ary or nonstationary. In addition, the method is applied to analyze precipitation

in Colorado.

Key words and phrases: Empirical orthogonal function, Karhunen Loéve expansion,

smoothing splines, spatial prediction, thin-plate splines.

1. Introduction

The empirical orthogonal function (EOF) technique, termed by Lorenz (1956)

in meteorology, is an effective tool for nonstationary spatial modeling. It can be

regarded as an extension of the conventional principal component analysis (PCA)

to a continuous spatial domain in terms of some basis functions (Obukhov (1960);

Holmström (1963); Obled and Creutin (1986)). An early review of EOF analysis

can be found in Alishouse et al. (1967). Some more recent reviews on EOF analy-

sis are provided by Wilks (1995), Preisendorfer (1988), Jolliffe (2002), Hannachi,

Jolliffe, and Stephenson (2007), and Cressie and Wikle (2011).

The aim of EOF analysis is to achieve a low dimensional representation

of a continuous spatial (or spatial-temporal) process and its covariance func-

tion. Consider a sequence of zero-mean nonstationary Gaussian spatial processes

{Yt(s) : s ∈ D} defined on a compact region D ⊂ Rd, which have a common co-

variance function CY (s, s
′) ≡ cov(Yt(s), Yt(s

′)), s, s′ ∈ D, for t ∈ N ≡ {1, 2, . . .}.
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If CY (·, ·) is continuous, then Yt(s) is known to possess the following biorthogonal

decomposition:

Yt(s) =
∞∑
k=1

wt,kϕk(s), (1.1)

where wt,k ∼ N(0, λk), for k, t ∈ N, are uncorrelated variables with λ1 ≥ λ2 ≥
· · · ≥ 0, ϕk(·)’s are orthonormal functions in the sense that

∫
D ϕk(s)ϕk′(s)ds =

δk,k′ , and δk,k′ denotes the Kronecker delta. The decomposition (1.1) is called

the Karhunen-Loève expansion (Karhunen (1947); Loève (1978)). It follows that

wt,k =
∫
D Yt(s)ϕk(s)ds, k, t ∈ N, and the covariance function, CY (s, s

′), satisfies

CY (s, s
′) =

∑∞
k=1 λkϕk(s)ϕk(s

′). Thus ϕk(·)’s are the solutions of the Fredholm

integral equation:∫
D
CY (s, s

′)ϕk(s
′)ds′ = λkϕk(s), s ∈ D, k ∈ N, (1.2)

where ϕk(·) is the kth eigenfunction of CY (·, ·) and λk is the corresponding eigen-

value.

In practice, CY (·, ·) is unknown and the process Yt(·) is only observed at some

finite number of locations. Hence the ϕk(·)’s and λk’s have to be estimated from

data. There are basically two approaches when the data locations are irregularly

located. One approach is to restrict the ϕk(·)’s to a function space generated by

some pre-specified basis functions (e.g., Cohen and Jones (1969); Deville (1974);

Creutin and Obled (1982); Obled and Creutin (1986); Braud, Obled, and Phamd-

inhtuan (1993)). Then the conventional or a spatially weighted version of PCA

can be directly applied. Nevertheless, the resulting eigenfunction estimates may

be sensitive to the choice of the basis functions. The other approach utilizes

a two-step procedure by first imputing data at each t on a fine grid, and then

applying the conventional PCA to the processed data (e.g., Karl, Koscielny, and

Diaz (1982); Wikle and Cressie (1999)). However, this approach may be sensitive

to the choice of a smoothing method and is likely to underestimate the variances

at locations where there are few data nearby.

In this paper, we derive a likelihood-based approach for EOF analysis in-

corporating the possibility that the data locations may be sparse and irregularly

spaced. Instead of applying a two-step procedure, we propose a regularization ap-

proach under the penalized likelihood framework; this provides a new estimation

method of EOFs with degrees of smoothness controlled by a tuning parameter.

In addition, we incorporate a stationary process in the model similar to that

considered by Wikle and Cressie (1999), which allows us to reduce the model

dimension further.
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The article is outlined as follows. Section 2 introduces our model and the

proposed penalized likelihood method, as well as some formulae for spatial predic-

tion. Section 3 develops an expectation-conditional-maximization (ECM; Meng

and Rubin (1993)) algorithm for simultaneous estimation of the mean and the

covariance parameters. Some simulation results on one- and two-dimensional

spaces are given in Section 4, and an application of our method to precipitation

in Colorado is given in Section 5. Finally, Section 6 contains a brief discussion.

2. The Proposed Method

Consider a sequence of Gaussian (nonstationary) spatial processes {Yt(s) :

s ∈ D} of interest defined on a compact region D ⊂ Rd, which are independent

at time t ∈ N. Suppose that data Zt = (Zt(s1), . . . , Zt(sn))
′ are observed at

locations s1, . . . , sn and times t = 1, . . . , T , with added Gaussian white noise

according to

Zt(si) = Yt(si) + εt(si), with εt(si) ∼ N(0, σ2
ε), i = 1, . . . , n. (2.1)

Motivated by (1.1), we propose a model for {Yt(s) : s ∈ D} as

Yt(s) = xt(s)
′β +

K∑
k=1

wt,kϕk(s) + ξt(s), s ∈ D, t ∈ N, (2.2)

where xt(s) is the p-vector regressor at location s, β is the corresponding regres-

sion parameter vector, wt,k ∼ N(0, λk), k = 1, . . . ,K, are uncorrelated, ϕk(·)’s
are unknown functions, and ξt(·) is a zero-mean stationary spatial process with

its covariance function parameterized by θξ, and independent of the wt,k’s. We

can rewrite Zt in matrix form as

Zt = Xtβ +ΦKwt + ξt + εt, t = 1, . . . , T, (2.3)

where Xt ≡
(
xt(s1), . . . ,xt(sn)

)′
, ϕk ≡ (ϕk(s1), . . . , ϕk(sn))

′, k = 1, . . . ,K,

ΦK ≡ (ϕ1, . . . ,ϕK), wt ≡ (wt,1, . . . , wt,K)′, ξt ≡ (ξt(s1), . . . , ξt(sn))
′, and εt ≡

(εt(s1), . . . , εt(sn))
′. As in Wikle and Cressie (1999), we consider a stationary

component ξt for global behavior which, as to be shown in simulations, is effective

in further reducing the model dimension. Let Vξ(θξ) ≡ var(ξt)/σ
2
ε . Then the

covariance matrix of Zt can be written as

ΣZ(θ) ≡ var(Zt) =

K∑
k=1

λkϕkϕ
′
k + σ2

ε(Vξ(θξ) + In),

where θ ≡ (λ1, . . . , λK ,ϕ′
1, . . . ,ϕ

′
K , σ2

ε ,θ
′
ξ)

′ consists of all the covariance param-

eters.
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2.1. Penalized maximum likelihood

For simplicity, we take d = 1, 2. We consider a penalized maximum like-

lihood (PML) method for estimating β and θ with the roughness penalties

J(ϕ1), . . . , J(ϕK) imposed on the functions, ϕ1(·), . . . , ϕK(·), leading to the ob-

jective function

T log |ΣZ(θ)|+
T∑
t=1

(Zt−Xtβ)
′Σ−1

Z (θ)(Zt−Xtβ)+α(J(ϕ1)+· · ·+J(ϕK)), (2.4)

subject to an identifiability constraint, ϕ′
k(Vξ(θξ) + In)

−1ϕk = 1, k = 1, . . . ,K,

where α > 0 is a smoothing parameter and the roughness penalty has the form

J(ϕk) =



∫
D
(ϕ′′

k(s))
2ds, for d = 1,∫

s=(x,y)∈D

{(
∂2ϕk(x, y)

∂x2

)2

+ 2

(
∂2ϕk(x, y)

∂x∂y

)2

+

(
∂2ϕk(x, y)

∂y2

)2}
ds , for d = 2.

Note that the minimizers for ϕ1(·), . . . , ϕK(·) in (2.4) are natural cubic splines

and thin-plate splines with knots at {s1, . . . , sn} for d = 1 and d = 2, respectively

(see Green and Silverman (1994)). Also note that when Vξ(θξ) is assumed to

be 0, the cost function (2.4) is similar to those considered by Yao, Müller, and

Wang (2005) and Huang, Shen, and Buja (2008) in a least squares setting for

analyzing sparse longitudinal data.

For d = 1, Green and Silverman (1994) showed that J(ϕk) can be written

in the form of ϕ′
kΩϕk, k = 1, . . . ,K. Specifically, Ω can be expressed in terms

of hi ≡ si+1 − si, i = 1, . . . , n − 1, as Ω = QP−1Q′, where Q is an n × (n − 2)

banded matrix with entries

qj,k =



h−1
k , if j = k = 1, . . . , n− 2,

−h−1
k − h−1

k+1, if j = k + 1 = 2, . . . , n− 1,

h−1
k+1, if j = k + 2 = 3, . . . , n,

0, otherwise,

and P is an (n− 2)× (n− 2) banded symmetric matrix with entries

pj,k =


hk+hk+1

3 , if j = k = 1, . . . , n− 2,

hk+1

6 , if |j − k| = 1, k = 1, . . . , n− 3,

0, otherwise.
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Similarly for d = 2, it follows from Green and Silverman (1994) that J(ϕk) =

ϕ′
kΩϕk, k = 1, . . . ,K, where

Ω = E−1 −E−1T ′(TE−1T ′)−1TE−1,

T is a 3 × n matrix with the ith column (1, s′i)
′, E is an n × n symmetric

matrix with the (i, j)th entry Eij = η(∥si − sj∥), and η(r) = (1/8π)r2 log r.

Consequently, the penalized log-likelihood of (2.4) can be rewritten in matrix

form as

ℓZ(β,θ) ≡ T log |ΣZ(θ)|+
T∑
t=1

(Zt −Xtβ)
′Σ−1

Z (θ)(Zt −Xtβ) + α tr(Φ′
KΩΦK) ,

(2.5)

subject to ϕ′
k(Vξ(θξ) + In)

−1ϕk = 1, k = 1, . . . ,K. We estimate both β and θ

simultaneously by minimizing (2.5) using an ECM algorithm (Meng and Rubin

(1993)) with details given in Section 3. The smoothness parameter α can be

selected using cross-validation (CV, see examples in Sections 4 and 5).

2.2. Spatial prediction

When both β and θ are known, the minimum mean squared error predictor

of Yt(s) is

Ŷt(s) ≡ E(Yt(s)|Zt) = xt(s)
′β + σY (s)

′Σ−1
Z (θ)(Zt −Xtβ), s ∈ D, (2.6)

where

σY (s) ≡ cov(Yt, Yt(s)) =

K∑
k=1

λkϕk(s)ϕk + σ2
εvξ(s)

and

vξ(s) ≡
1

σ2
ε

cov(ξt, ξt(s)).

The corresponding mean squared prediction error (MSPE) of Ŷt(s) is

MSPE(s) ≡ E
(
Ŷt(s)− Yt(s)

)2
= CY (s, s)− σY (s)

′Σ−1
Z (θ)σY (s), (2.7)

where

CY (s, s
′) ≡

K∑
k=1

λkϕk(s)ϕk(s
′) + Cξ(s, s

′)

and

Cξ(s, s
′) ≡ cov(ξt(s), ξt(s

′)).
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Alternatively, for s ∈ D, Ŷt(s) and E
(
Ŷt(s)− Yt(s)

)2
can be written as:

Ŷt(s) = E
(
E(Yt(s)|Zt,wt)

∣∣Zt

)
= xt(s)

′β + ϕ(s)′E(wt|Zt)

+vξ(s)
′(Vξ + In)

−1
(
Zt −Xtβ −ΦKE(wt|Zt)

)
, (2.8)

MSPE(s) = var(Yt(s)|Zt)

= E
(
var(Yt(s)|Zt,wt)

∣∣Zt

)
+ var

(
E(Yt(s)|Zt,wt)

∣∣Zt

)
= E

(
var(ξt(s)|Zt,wt)

∣∣Zt

)
+var

(
ϕ(s)′wt + vξ(s)

′(Vξ + In)
−1

(
Zt −Xtβ −ΦKwt

)∣∣Zt

)
= E

(
var(ξt(s)|Zt,wt)

∣∣Zt

)
+var

((
ϕ(s)′ − vξ(s)

′(Vξ + In)
−1ΦK

)
wt

∣∣Zt

)
= var(ξt(s))− σ2

εvξ(s)
′(Vξ + In)

−1vξ(s)

+
(
ϕ(s)−Φ′

K(Vξ + In)
−1vξ(s)

)′
×var(wt|Zt)

(
ϕ(s)−Φ′

K(Vξ + In)
−1vξ(s)

)
, (2.9)

where ϕ(s) ≡ (ϕ1(s), . . . , ϕK(s))′ and, for simplicity, Vξ(θξ) is written as Vξ.

Equations (2.8) and (2.9) allow us to compute Ŷt(s) more efficiently than those

given by (2.6) and (2.7), because E(wt|Zt), var(wt|Zt) and (Vξ + In)
−1 are

byproducts of the proposed ECM algorithm (see Section 3).

When β is unknown, we can plug-in the generalized least squares estimate

β̂gls =

( T∑
t=1

X ′
tΣ

−1
Z (θ)Xt

)−1( T∑
t=1

X ′
tΣ

−1
Z (θ)Zt

)
,

for β in (2.8), resulting in the universal kriging predictor (see Cressie (1993)) of

Yt(s) given by

Ŷt(s) = xt(s)
′β̂gls + ϕ(s)′E(wt|Zt)

+vξ(s)
′(Vξ + In)

−1
(
Zt −Xtβ̂gls −ΦKE(wt|Zt)

)
. (2.10)

The corresponding MSPE can be written as

MSPEuk(s) = MSPE(s) + (xt(s)
′ − σY (s)

′Σ−1
Z (θ)Xt)

( T∑
t=1

X ′
tΣ

−1
Z (θ)Xt

)−1

×(xt(s)
′ − σY (s)

′Σ−1
Z (θ)Xt)

′. (2.11)
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3. Multicycle ECM Algorithm

The penalized log-likelihood function of (2.5) is difficult to minimize directly.
We instead apply the ECM algorithm (Meng and Rubin (1993)) by treating wt’s
as missing data. The full negative penalized log-likelihood of Z1, . . . ,ZT and
w1, . . . ,wT , up to an additive constant, can be written as

ℓZ,w(β,θ) = Tn log σ2
ε + T

(
log |Vξ(θξ) + In|+ log |ΛK |

)
+

1

σ2
ε

T∑
t=1

(Zt −Xtβ −ΦKwt)
′(Vξ(θξ) + In)

−1(Zt −Xtβ −ΦKwt)

+

T∑
t=1

w′
tΛ

−1
K wt + α tr(Φ′

KΩΦK) , (3.1)

where ΛK is a diagonal matrix with diagonal elements λ1, . . . , λK . Basically,
the ECM algorithm approaches the problem of minimizing (2.5) by iteratively
performing an expectation (E) step that computes the expectation of ℓZ,w(β,θ)
conditioned on Z1, . . . ,ZT based on the current fits of β and θ, followed by a
sequence of conditional maximization (CM) steps, which successively maximize
the conditional penalized log-likelihood obtained in the E-step with respect to
each component of β and θ.

In the E-step, we calculate ŵt ≡ E(wt|Zt), t = 1, . . . , T , and Σw|Z ≡
var(wt|Zt) based on the current fits, β̃ and θ̃ of β and θ as

ŵt =
(
σ̃2
εΛ̃

−1
K +Φ̃′

K

(
Vξ(θ̃ξ)+In

)−1
Φ̃K

)−1
Φ̃′

K

(
Vξ(θ̃ξ)+In

)−1(
Zt−Xtβ̃

)
, (3.2)

Σw|Z =
(
Λ̃−1

K +
1

σ̃2
ε

Φ̃′
K

(
Vξ(θ̃ξ) + In

)−1
Φ̃K

)−1
, (3.3)

from which we obtain

E(ℓZ,w(β,θ)|Z1, . . . ,ZT )

= Tn log σ2
ε + T

(
log |Vξ(θξ) + In|+ log |ΛK |

)
+

1

σ2
ε

T∑
t=1

(Zt −Xtβ −ΦKŵt)
′(Vξ(θξ) + In)

−1(Zt −Xtβ −ΦKŵt)

+
T

σ2
ε

tr((Vξ(θξ) + In)
−1/2ΦKΣw|ZΦ

′
K(Vξ(θξ) + In)

−1/2)

+

T∑
t=1

ŵ′
tΛ

−1
K ŵt + T tr

(
Λ−1

K Σw|Z
)
+ α tr(Φ′

KΩΦK). (3.4)

We then successively update each component of β and θ by minimizing (3.4)
with the other components held fixed in a sequence of CM steps.
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Let R ≡
((
Z1 − X1β̃

)
, . . . ,

(
ZT − XT β̃

))
and Ŵ ≡ (ŵ1, . . . , ŵT )

′. First,

ΦK is updated by minimizing

T∑
t=1

∥∥(Vξ(θ̃ξ) + In
)−1/2(

Zt −Xtβ̃ −ΦKŵt

)∥∥2
+T tr

(
(Vξ(θ̃ξ) + In)

−1/2ΦKΣw|ZΦ
′
K(Vξ(θ̃ξ) + In)

−1/2
)
+ α σ̃2

ε tr
(
Φ′

KΩΦK

)
,

which is equivalent to minimizing

−2vec(R)′(Ŵ ⊗ (Vξ(θξ) + In)
−1)vec(ΦK)

+vec(ΦK)′
(
(Ŵ ′Ŵ + TΣw|Z)⊗

(
Vξ(θ̃ξ) + In

)−1
+ α σ̃2

ε IK ⊗Ω
)
vec(ΦK),

resulting in

vec(Φ̃K) =
((

Ŵ ′Ŵ + TΣw|Z
)
⊗

(
Vξ(θ̃ξ) + In

)−1
+ α σ̃2

ε IK ⊗Ω
)−1

×
(
Ŵ ⊗

(
Vξ(θ̃ξ) + In

)−1
)′
vec(R), (3.5)

where Φ̃K = (ϕ̃1, . . . , ϕ̃K). We then rescale ϕ̃k for k = 1, . . . ,K, by dividing it

by
(
ϕ̃′
k

(
Vξ(θ̃ξ) + In

)−1
ϕ̃k

)1/2
so that ϕ̃′

k

(
Vξ(θ̃ξ) + In

)−1
ϕ̃k = 1. Notice that we

update Φ̃K in this CM step only if the value of (3.4) decreases after rescaling.

The CM updating formulae for β, σ2
ε , and the λk’s have simple closed forms

given by

β̃=

( T∑
t=1

X ′
t

(
Vξ(θ̃ξ)+In

)−1
Xt

)−1( T∑
t=1

X ′
t

(
Vξ(θ̃ξ)+In

)−1(
Zt−Φ̃Kŵt

))
, (3.6)

σ̃2
ε=

1

Tn

T∑
t=1

(
Zt −Xtβ̃ − Φ̃Kŵt

)′(
Vξ(θ̃ξ) + In

)−1(
Zt −Xtβ̃ − Φ̃Kŵt

)
+
1

n
tr
((
Vξ(θ̃ξ) + In

)−1/2
Φ̃KΣw|ZΦ̃

′
K

(
Vξ(θ̃ξ) + In

)−1/2)
, (3.7)

λ̃k=
1

T

T∑
t=1

ŵ2
t,k + σ2

w|Z,k, k = 1, . . . ,K, (3.8)

where ŵt,k is the kth entry of ŵt, and σ2
w|Z,k is the kth diagonal element of Σw|Z .

Finally, the updating formula for θξ in the CM step is

θ̃ξ = argmin
θξ

{
T log

∣∣Vξ(θξ) + In
∣∣

+
1

σ̃2
ε

T∑
t=1

(
Zt −Xtβ̃ − Φ̃Kŵt

)′(
Vξ(θξ) + In

)−1(
Zt −Xtβ̃ − Φ̃Kŵt

)
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+
T

σ̃2
ε

tr
(
(Vξ(θξ) + In

)−1/2
Φ̃KΣw|ZΦ̃

′
K

(
Vξ(θξ) + In

)−1/2
)}

. (3.9)

Unfortunately, θ̃ξ in (3.9) does not have a closed-form expression, and hence

has to be computed using some optimization routine. Therefore, it appears

computationally more efficient to apply a multicycle ECM algorithm by updating

θξ only after all the other parameters converge. Detailed steps of our multicycle

ECM algorithm are given below.

1. Start with some initial estimates of β and θ.

2. E-step: Compute ŵt, t = 1, . . . , T , and Σw|Z based on the current values of

β and θ.

3. Inner CM-step: Update ΦK , β, σ2
ε , and λk, k = 1, . . . ,K according to (3.5)-

(3.8).

4. Repeat Steps 2 and 3 until convergence.

5. Outer CM-step: Update θξ according to (3.9).

6. Repeat Steps 2-5 until convergence.

Throughout the paper, the initial estimates of β, θξ, λ1, . . . , λK′−1, and σ2
ε for

K = K ′ ≥ 1 are given by the corresponding PML estimates for K = K ′ − 1.

The initial estimate of λK′ is set to be λK′/2, and the initial estimate of ΦK is

given by
(
Vξ(θ̃ξ) + In

)1/2
M , where M is an n ×K matrix formed by the first

K left singular vectors of
(
Vξ(θ̃ξ)+In

)−1/2
R and θ̃ξ denotes the initial estimate

of θξ. Note that the PML estimates of β and θ for K = 0 are nothing but the

maximum likelihood (ML) estimates β̂0 and θ̂0 for the stationary model given

by (2.3) without the ΦKwt term, where

β̂0 =

( T∑
t=1

X ′
t

(
Vξ(θ̂ξ,0) + In

)−1
Xt

)−1( T∑
t=1

X ′
t

(
Vξ(θ̂ξ,0) + In

)−1
Zt

)
,

σ̂2
ε,0 =

1

Tn

T∑
t=1

(
Zt −Xtβ̂0

)′(
Vξ(θ̂ξ,0) + In

)−1(
Zt −Xtβ̂0

)
,

and θ̂ξ,0 can be obtained by maximizing the profile likelihood of θξ using some

optimization algorithm. According to Meng and Rubin (1993), the cost function

value of our multicycle ECM algorithm is guaranteed to decrease at each itera-

tion. In addition, they also show that a multicycle ECM algorithm shares the

same theoretical properties as the corresponding ECM algorithm. Some exam-

ples regarding the rates of convergence of EM, ECM, and multicycle ECM can

be found in Meng (1994).
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With σ̂2
ε , θ̂ξ, Λ̂K , and Φ̂K estimated by the proposed PML method, the

estimated spatial covariance function of CY (·, ·) can be written as

ĈY (s, s
′) ≡

K∑
k=1

λ̂kϕ̂k(s)ϕ̂k(s
′) + Ĉξ(s, s

′), s, s′ ∈ D,

where Ĉξ(s, s
′) is the estimate of Cξ(s, s

′) by plugging θ̂ξ in for θξ in Cξ(s, s
′).

When β is either known or zero, an estimate of E
(
Ŷt(s)−Yt(s)

)2
can be obtained

by plugging θ̂ in for θ in (2.9)

M̂SPE(s) = Ĉξ(s, s)− σ̂2
ε v̂ξ(s)

′(V̂ξ + In)
−1v̂ξ(s)

+
(
ϕ̂(s)− Φ̂′

K(V̂ξ + In)
−1v̂ξ(s)

)′
×Σ̂w|Z

(
ϕ̂(s)− Φ̂′

K(V̂ξ + In)
−1v̂ξ(s)

)
, (3.10)

where

v̂ξ(s) =
1

σ̂2
ε

(Ĉξ(s1, s), . . . , Ĉξ(sn, s))
′,

V̂ξ = (v̂ξ(s1), . . . , v̂ξ(sn)),

Σ̂w|Z =
(
Λ̂−1

K +
1

σ̂2
ε

Φ̂′
K(V̂ξ + In)

−1Φ̂K

)−1
.

Similarly from (2.11), an estimate of E
(
Ŷt(s)− Yt(s)

)2
for the universal kriging

predictor is

M̂SPEuk(s) = M̂SPE(s) + (xt(s)
′ − σ̂Y (s)

′Σ−1
Z (θ̂)Xt)

( T∑
t=1

X ′
tΣ

−1
Z (θ̂)Xt

)−1

×(xt(s)
′ − σ̂Y (s)

′Σ−1
Z (θ̂)Xt)

′.

4. Simulation Studies

To assess the performance of the proposed model, we conducted four sim-

ulation experiments in one- and two-dimensional spatial domains. Here we fo-

cus on covariance function estimation, and hence we consider no regressor with

Xt(s) = 0, t = 1, . . . , T, s ∈ D for the first three experiments.

The prediction performance of various methods is compared using the aver-

aged MSPE criterion

AMSPE ≡ 1

T |D|

T∑
t=1

∫
s∈D

E
(
Ŷ ∗
t (s)− Yt(s)

)2
ds,

where |D| =
∫
s∈D ds, and Ŷ ∗

t (s) denotes a generic predictor of Yt(s), for t =

1, . . . , T , s ∈ D. Similar to the plug-in estimate M̂SPE(s) of E
(
Ŷt(s) − Yt(s)

)2
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in (3.10), the plug-in estimate of the averaged MSPE is

ÂMSPE ≡ 1

T |D|

T∑
t=1

∫
s∈D

M̂SPE
∗
(s)ds,

where M̂SPE
∗
(s) denotes a generic plug-in estimate of E(Ŷ ∗

t (s) − Yt(s))
2. In

addition, the performance of various methods in covariance function estimation

can be compared using the averaged mean squared error criterion

AMSE ≡ 1

|D|2

∫ ∫
s,s′∈D

E(Ĉ∗
Y (s, s

′)− CY (s, s
′))2dsds′,

where Ĉ∗
Y (s, s

′) denotes a generic estimate of CY (s, s
′) for s, s′ ∈ D.

4.1. Experiment I

In the first experiment, we consider an example brought up by Nott and Dun-

smuir (2002) in a one-dimensional spatial domain with D = [−4, 4]. The spatial

process Yt(·) was generated according to Yt(s)=
√

Ψ(s)Y1,t(s)+
√

1−Ψ(s)Y2,t(s),

where Ψ(·) is the cumulative distribution function of the standard normal distri-

bution, and Yj,t(·) is a zero-mean Gaussian process with the exponential covari-

ance function

CYj (s, s
′) = exp(−ρj∥s− s′∥), j = 1, 2. (4.1)

The data were generated on D = [−4, 4] according to (2.1) with n = 20 and σ2
ε =

0.04, where s1 = −4, s20 = 4, and s2, . . . , sn−1 were sampled on D using simple

random sampling, and then rearranged so that s1 < · · · < sn. The resulting spa-

tial covariance function of Yt(·) is given by CY (s, s
′) =

√
Ψ(s)

√
Ψ(s′)CY1(s, s

′)+√
1−Ψ(s)

√
1−Ψ(s′)CY2(s, s

′).

We considered time points T = 50, 100 in combination with (ρ1, ρ2) =

(2, 1/20), (2, 1/2), (2, 2), corresponding to high nonstationarity, mild nonstation-

arity, and near stationarity, respectively, for Yj,t(·)’s in (4.1). The corresponding

spatial covariance functions are shown in Figure 1.

We applied the proposed PML method and considered the exponential co-

variance family for ξt(·) in (2.2) parametrized by θξ = (τξ, ρξ)
′:

1

σ2
ε

cov(ξt(s), ξt(s
′)) = τξ exp(−ρξ∥s− s′∥). (4.2)

We chose K ∈ {0, 1, . . . , 3} and α ∈ A in (2.5) via 6-fold CV, where A =

{2−8, 2−7, . . . , 28}. Specifically, we randomly partitioned s2, . . . , s19 into six dis-

joint subsets, D1, . . . ,D6, each with size 3. For each Dj , we estimated the param-

eters using the proposed PML based on data {Zt(s) : s ∈ {s1, . . . , s20} \ Dj , t =
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Figure 1. True spatial covariance functions of CY (·, ·) in Experiment I with
three different pairs of parameters: (a) (ρ1, ρ2) = (2, 1/20); (b) (ρ1, ρ2) =
(2, 1/2); (c) (ρ1, ρ2) = (2, 2).

1, . . . , T} at the remaining locations, and predicted Yt(s) by Ŷ
(K,α)
t (s), for s ∈ Dj ,

K ∈ {0, 1, . . . , 3}, and α ∈ A. Notice that s1 and sn were always included as

data locations in each fitting sample of CV to avoid the boundary effect. We

then chose K and α in (2.5) simultaneously such that

CV(K,α) =

T∑
t=1

ν∑
j=1

∑
s∈Dj

∥∥Ŷ (K,α)
t (s)− Zt(s)

∥∥2, (4.3)

was minimized among K ∈ {0, 1, 2, 3} and α ∈ A, where ν = 6. Note that for

K = 0, the model reduces to a stationary model independent of α, where the

parameters are estimated by ML and Yt(s) is predicted using simple kriging.

The proposed method is compared with the following methods.

1. Method I: A reduced model similar to (2.1) and (2.2) was considered ex-

cept that there was no stationary process term ξt(·) in (2.2). The proposed

PML method was used for parameter estimation, and the parameters were

computed using the ECM algorithm introduced in Section 3 but with no θξ
term. The tuning parameters K and α were selected by CV, (4.3), but with

Ŷ
(K,α)
t (s) obtained from the reduced model. This method, avoiding taking

the inverse of Vξ(θξ)+In in the proposed multicycle ECM algorithm, has the

advantage of being computationally more efficient.

2. Method II: This method applied a pre-smoothing (or pre-gridding) step com-

monly used in EOF analysis (e.g., Karl, Koscielny, and Diaz (1982); Wikle

and Cressie (1999)) when data are sampled at irregularly spaced locations.

First, {Yt(s) : s ∈ D} were imputed based on data Zt using natural cubic

splines with the smoothing parameter chosen by generalized cross-validation
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(GCV) for each t = 1, . . . , T . Then we obtained the sample covariance func-

tion
{ T∑

t=1

Yt(s)Yt(s
′)/T : s, s′ ∈ D

}
, whose first K eigenfunctions were used

as estimates of ϕ1(·), . . . , ϕK(·) and the corresponding eigenvalues were used

as estimates of λ1, . . . , λK . With the parameters given by these estimates

being assumed known, the remaining parameters, σ2
ε and θξ, were estimated

by ML.

3. Method III: This method used the estimates of ϕ1(·), . . . , ϕK(·) from Method

II, but λ1, . . . , λK were further re-estimated along with σ2
ε and θξ using ML by

applying a multicycle ECM algorithm similar to the one described in Section

3.

The AMSPE performance of the four methods is shown in Table 1, where

“Ideal” refers to ideal selection for the number of basis functions, which corre-

sponds to the smallest AMSPE among those based on K ∈ {0, 1, 2, 3} for each

replicate. The performance of the four methods for covariance function esti-

mation in terms of AMSE is shown in Table 2. In general, the proposed PML

method performed significantly better than the other three methods for almost

all cases in terms of covariance function estimation. Regarding spatial prediction,

although the proposed method also outperformed Method III in all cases, the dif-

ferences were only significant for some highly nonstationary cases. For highly and

mildly nonstationary cases with ρ1 ̸= ρ2, the proposed PML method achieved

the smallest AMSPE at K = 1 for all cases, whereas the other three methods

all achieved the smallest AMSPE at K = 0 in all cases, indicating that the

nonstationary feature is not well captured. We found that the surfaces imputed

from the pre-smoothing step in Methods II and III tend to be under-smoothed,

causing instability in covariance function estimation. In particular, Method III

performed miserably due to poor estimation of ϕk(·)’s, which in turn caused high

variation in CV selection. In addition, the proposed PML method tended to have

a smaller bias in estimating AMSPE than the other three methods.

4.2. Experiment II

In this experiment, we consider a two-dimensional example of Chang, Hsu,

and Huang (2010):

Yt(s) =
√
xY1,t(s) +

√
1− xY2,t(s),

where (x, y) = s ∈ D = [0, 1] × [0, 1], and Y1,t(·) and Y2,t(·) are indepen-

dent Gaussian processes with zero means and covariance functions given by

(4.1). Then the covariance function of Yt depending on ρ1 and ρ2 in (4.1) is
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Table 1. AMSPEs of various methods for spatial prediction in Experiment
I based on 500 simulation replicates, where a boldface value indicates that
the corresponding method performs significantly better than the other three
methods, and the values given in parentheses are the corresponding standard
errors.

(ρ1, ρ2) T Method Ideal CV K=0 K=1 K=2 K=3
(2, 1/20) 50 PML 0.2292 0.2302 0.2369 0.2299 0.2364 0.2376

(0.0015) (0.0015) (0.0017) (0.0015) (0.0016) (0.0018)
Method I .2369 0.2372 0.2369 0.5299 0.4417 0.3834

(0.0017) (0.0017) (0.0017) (0.0017) (0.0014) (0.0014)
Method II .2348 0.2370 0.2369 0.2456 0.2484 0.2525

(0.0016) (0.0017) (0.0017) (0.0017) (0.0018) (0.0023)
Method III .2335 0.2694 0.2369 0.2648 0.3051 0.3532

(0.0016) (0.0054) (0.0017) (0.0055) (0.0061) (0.0072)
100 PML .2290 0.2295 0.2366 0.2292 0.2359 0.2387

(0.0014) (0.0015) (0.0016) (0.0014) (0.0015) (0.0017)
Method I .2366 0.2369 0.2366 0.5306 0.4463 0.3875

(0.0016) (0.0016) (0.0016) (0.0012) (0.0011) (0.0010)
Method II .2343 0.2363 0.2366 0.2453 0.2454 0.2472

(0.0016) (0.0016) (0.0016) (0.0016) (0.0017) (0.0020)
Method III .2332 0.2550 0.2366 0.2603 0.2865 0.3274

(0.0016) (0.0040) (0.0016) (0.0050) (0.0047) (0.0054)
(2, 1/2) 50 PML .2867 0.2885 0.2894 0.2882 0.2886 0.2886

(0.0016) (0.0016) (0.0017) (0.0016) (0.0016) (0.0016)
Method I .2894 0.2894 0.2894 0.7447 0.6247 0.5393

(0.0017) (0.0017) (0.0017) (0.0024) (0.0020) (0.0017)
Method II .2875 0.2896 0.2894 0.2921 0.2946 0.2955

(0.0016) (0.0017) (0.0017) (0.0017) (0.0017) (0.0018)
Method III .2888 0.3444 0.2894 0.3296 0.3473 0.3711

(0.0017) (0.0056) (0.0017) (0.0052) (0.0053) (0.0055)
100 PML .2864 0.2874 0.2889 0.2872 0.2881 0.2881

(0.0015) (0.0015) (0.0016) (0.0015) (0.0015) (0.0015)
Method I .2889 0.2889 0.2889 0.7445 0.6310 0.5480

(0.0016) (0.0016) (0.0016) (0.0019) (0.0015) (0.0013)
Method II .2873 0.2888 0.2889 0.2919 0.2940 0.2955

(0.0015) (0.0016) (0.0016) (0.0016) (0.0016) (0.0017)
Method III .2881 0.3167 0.2889 0.3132 0.3239 0.3389

(0.0016) (0.0036) (0.0016) (0.0036) (0.0037) (0.0036)
(2, 2) 50 PML .4162 0.4177 0.4167 0.4186 0.4185 0.4189

(0.0017) (0.0018) (0.0017) (0.0018) (0.0018) (0.0018)
Method I .4167 0.4167 0.4167 0.8898 0.8041 0.7314

(0.0017) (0.0017) (0.0017) (0.0020) (0.0020) (0.0019)
Method II .4161 0.4169 0.4167 0.4181 0.4207 0.4225

(0.0017) (0.0017) (0.0017) (0.0017) (0.0017) (0.0018)
Method III .4166 0.5088 0.4167 0.4797 0.5021 0.5204

(0.0017) (0.0064) (0.0017) (0.0054) (0.0062) (0.0063)
100 PML .4153 0.4163 0.4155 0.4168 0.4169 0.4170

(0.0016) (0.0016) (0.0016) (0.0016) (0.0017) (0.0017)
Method I .4155 0.4155 0.4155 0.8974 0.8141 0.7446

(0.0016) (0.0016) (0.0016) (0.0014) (0.0013) (0.0013)
Method II .4152 0.4157 0.4155 0.4169 0.4189 0.4208

(0.0016) (0.0016) (0.0016) (0.0016) (0.0016) (0.0016)
Method III .4155 0.4585 0.4155 0.4470 0.4555 0.4625

(0.0016) (0.0039) (0.0016) (0.0038) (0.0039) (0.0038)
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Table 2. AMSEs of various methods for covariance function estimation in
Experiment I based on 500 simulation replicates, where a boldface value
indicates that the corresponding method performs significantly better than
the other three methods, and the values given in parentheses are the corre-
sponding standard errors.

(ρ1, ρ2) Method T = 50 T = 100

K = 0 K = 1 K = 2 K = 3 K = 0 K = 1 K = 2 K = 3

(2, 1
20

) PML 0.0817 0.0245 0.0278 0.0281 0.0789 0.0154 0.0191 0.0200

(0.0006) (0.0008) (0.0008) (0.0010) (0.0005) (0.0004) (0.0004) (0.0005)

Method I 0.0817 0.0482 0.0408 0.0593 0.0789 0.0373 0.0281 0.0325

(0.0006) (0.0009) (0.0012) (0.0034) (0.0005) (0.0004) (0.0004) (0.0012)

Method II 0.0817 1.1627 1.3613 1.4558 0.0789 1.0551 1.2948 1.3925

(0.0006) (0.0599) (0.0656) (0.0690) (0.0005) (0.0548) (0.0658) (0.0691)

Method III 0.0817 0.1097 0.1084 0.1257 0.0789 0.1118 0.0845 0.0995

(0.0006) (0.0189) (0.0142) (0.0175) (0.0005) (0.0368) (0.0151) (0.0195)

(2, 1
2
) PML 0.0168 0.0116 0.0111 0.0104 0.0159 0.0078 0.0091 0.0089

(0.0002) (0.0004) (0.0003) (0.0003) (0.0001) (0.0002) (0.0006) (0.0006)

Method I 0.0168 0.0637 0.0467 0.0389 0.0159 0.0570 0.0403 0.0303

(0.0002) (0.0007) (0.0005) (0.0007) (0.0001) (0.0006) (0.0003) (0.0003)

Method II 0.0168 0.3478 0.5179 0.6255 0.0159 0.3712 0.5467 0.6667

(0.0002) (0.0203) (0.0258) (0.0292) (0.0001) (0.0397) (0.0418) (0.0434)

Method III 0.0168 0.0884 0.0928 0.1015 0.0159 0.0547 0.0571 0.0613

(0.0002) (0.0119) (0.0112) (0.0114) (0.0001) (0.0065) (0.0067) (0.0071)

(2, 2) PML 0.0006 0.0048 0.0060 0.0073 .0003 0.0031 0.0031 0.0034

(0.0000) (0.0002) (0.0006) (0.0008) (0.0000) (0.0001) (0.0002) (0.0002)

Method I 0.0006 0.0511 0.0432 0.0379 0.0003 0.0498 0.0407 0.0337

(0.0000) (0.0002) (0.0002) (0.0003) (0.0000) (0.0001) (0.0001) (0.0002)

Method II 0.0006 0.2603 0.3565 0.4356 0.0003 0.3042 0.3844 0.4539

(0.0000) (0.0256) (0.0268) (0.0285) (0.0000) (0.0969) (0.0956) (0.0951)

Method III 0.0006 0.0990 0.1187 0.1269 0.0003 0.0608 0.0658 0.0672

(0.0000) (0.0141) (0.0157) (0.0148) (0.0000) (0.0177) (0.0159) (0.0158)

CY (s, s
′) =

√
xx′CY1(s, s

′) +
√

(1− x)(1− x′)CY2(s, s
′). The data were gener-

ated on D according to (2.1) with n = 25 and σ2
ε = 0.04, where s1 = (0, 0),

s2 = (0, 1), s3 = (1, 0), s4 = (1, 1), and the remaining 21 points, s5, . . . , s25,

were sampled on D using simple random sampling.

Similar to Experiment I, we considered time points T = 50, 100 in combina-

tion with (ρ1, ρ2) = (10, 1), (4, 1), (1, 1), corresponding to high nonstationarity,

mild nonstationarity, and near stationarity, respectively, for Yj,t(·)’s in (4.1). The

contour plots of CY (s0, s) at s0 = (1/2, 1/2) and (1/4, 1/4) for the three models

are provided in Figure 2.

We applied the proposed PML method and considered the exponential co-

variance family of (4.2) for ξt(·) in (2.2). Similar to Experiment I, we chose

K ∈ {0, 1, 2, 3} and α ∈ A simultaneously via 7-fold CV, where {s1, s2, s3, s4}
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Figure 2. True spatial covariance functions of {CY (s0, s) : s ∈ D}
in Experiment II with three different pairs of parameters, (ρ1, ρ2) =
(10, 1), (4, 1) (1, 1) (corresponding to the three columns), and two locations,
s0 = (1/2, 1/2), (1/4, 1/4) (corresponding to the two rows).

were always included as data locations in each fitting sample of CV to avoid the

boundary effect, and the remaining 21 locations were randomly partitioned into

seven disjoint subsets for computing CV as described in Experiment I.

The proposed method was compared with the same methods as in Experi-

ment I. For Methods II and III, {Yt(s) : s ∈ D} were imputed based on data

Zt using thin-plate splines (Duchon (1977); Wahba (1990)) with the smoothing

parameter chosen by GCV, for t = 1, . . . , T . The AMSPE performance of the

four methods for spatial prediction is summarized in Table 3, and the AMSE

performance for covariance function estimation is shown in Table 4. Overall, the

results are similar to those in Experiment I except that Method III outperformed

Methods I and II in covariance function estimation. In fact, it even performed

better than the proposed PML method in some nearly stationary cases because,

unlike Experiment I, the surfaces were well imputed by the pre-smoothing step

for Methods II and III. A randomly selected example of the estimated spatial

covariance function, ĈY (s0, s), at s0 = (1/2, 1/2), (1/4, 1/4) based on the pro-

posed PML method for T = 50 is shown in Figure 3. Our method appears to

catch nonstationary features quite well.
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Figure 3. Estimated spatial covariance function {ĈY (s0, s) : s ∈ D} using
the proposed PML method with K = 1 in Experiment II with three differ-
ent pairs of parameters, (ρ1, ρ2) = (10, 1), (4, 1) (1, 1) (corresponding to the
three columns), and two locations, s0 = (1/2, 1/2), (1/4, 1/4) (correspond-
ing to the two rows).

4.3. Experiment III

For the third simulation experiment, we generated data {Z1, . . . ,ZT } di-

rectly from (2.3) with ϕ1(s) =
√
3x, ϕ2(s) =

√
3(2y − 1), where s = (x, y) ∈

D = [0, 1] × [0, 1], wt ∼ N(0,diag(0.25, 0.16)), ξt(·) is a Gaussian process with

zero mean and covariance function, cov(ξt(s), ξt(s
′)) = 0.16 exp{−∥s−s′∥}, and

σ2
ε = 0.04. We took n = 25 and selected the data locations as in Experiment II.

We considered time points T = 50, 100. The contour plots of {CY (s0, s) : s ∈ D}
at s0 = (1/2, 1/2) and (1/4, 1/4) are shown in Figure 4.

We applied the proposed PML method as in Experiment II. Here we com-

pared our method only with Method III, because Method I contains no stationary

process term, ξt(·), found to be important in the previous two experiments, and

Method II had performed worse than Method III in Experiment II. The AMSPE

performance of the two methods for spatial prediction is summarized in Table 5,

and the AMSE performance of the methods for covariance function estimation

is displayed in Table 6. Clearly, our method outperformed Method III in most

situations. Notice that both methods achieved the smallest AMSPE value at

K = 2, which agrees with the true number of components. A randomly selected
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Table 3. AMSPEs of various methods for spatial prediction in Experiment
II based on 500 simulation replicates, where a boldface value indicates that
the corresponding method performs significantly better than the other three
methods, and the values given in parentheses are the corresponding standard
errors.

(ρ1, ρ2) T Method Ideal CV K = 0 K = 1 K = 2 K = 3
(10, 1) 50 PML 0.4975 0.4996 0.5040 0.4991 0.5055 0.5132

(0.0008) (0.0008) (0.0009) (0.0008) (0.0009) (0.0013)
Method I 0.5040 0.5040 0.5040 0.6855 0.6409 0.6113

(0.0009) (0.0009) (0.0009) (0.0011) (0.0010) (0.0009)
Method II 0.5026 0.5044 0.5040 0.5359 0.5546 0.5798

(0.0008) (0.0009) (0.0009) (0.0039) (0.0056) (0.0077)
Method III 0.4990 0.5058 0.5040 0.5010 0.5226 0.5607

(0.0008) (0.0010) (0.0009) (0.0008) (0.0011) (0.0015)
100 PML 0.4981 0.4989 0.5047 0.4988 0.5034 0.5136

(0.0006) (0.0006) (0.0007) (0.0006) (0.0007) (0.0011)
Method I 0.5047 0.5049 0.5047 0.6882 0.6455 0.6154

(0.0007) (0.0008) (0.0007) (0.0008) (0.0008) (0.0008)
Method II 0.5034 0.5049 0.5047 0.5332 0.5424 0.5632

(0.0007) (0.0007) (0.0007) (0.0036) (0.0048) (0.0068)
Method III 0.4994 0.5010 0.5047 0.5006 0.5153 0.5545

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0014)
(4, 1) 50 PML 0.3195 0.3203 0.3205 0.3202 0.3225 0.3256

(0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0010)
Method I 0.3205 0.3205 0.3205 0.6331 0.5448 0.4826

(0.0009) (0.0009) (0.0009) (0.0015) (0.0012) (0.0011)
Method II 0.3202 0.3208 0.3205 0.3254 0.3316 0.3587

(0.0009) (0.0009) (0.0009) (0.0009) (0.0018) (0.0062)
Method III 0.3198 0.3229 0.3205 0.3213 0.3310 0.3686

(0.0009) (0.0009) (0.0009) (0.0009) (0.0009) (0.0016)
100 PML 0.3200 0.3204 0.3210 0.3203 0.3216 0.3248

(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0009)
Method I 0.3210 0.3210 0.3210 0.6380 0.5534 0.4902

(0.0008) (0.0008) (0.0008) (0.0012) (0.0010) (0.0010)
Method II 0.3208 0.3212 0.3210 0.3255 0.3292 0.3474

(0.0008) (0.0008) (0.0008) (0.0008) (0.0011) (0.0048)
Method III 0.3203 0.3209 0.3210 0.3211 0.3278 0.3637

(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0014)
(1, 1) 50 PML 0.1534 0.1538 0.1537 0.1537 0.1550 0.1613

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0008)
Method I 0.1537 0.1537 0.1537 0.4614 0.3336 0.2621

(0.0005) (0.0005) (0.0005) (0.0016) (0.0010) (0.0007)
Method II 0.1536 0.1538 0.1537 0.1548 0.1590 0.1653

(0.0005) (0.0005) (0.0005) (0.0005) (0.0007) (0.0014)
Method III 0.1536 0.1546 0.1537 0.1539 0.1582 0.1845

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0008)
100 PML 0.1542 0.1544 0.1544 0.1543 0.1553 0.1616

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0006)
Method I 0.1544 0.1544 0.1544 0.4666 0.3391 0.2666

(0.0004) (0.0004) (0.0004) (0.0012) (0.0008) (0.0006)
Method II 0.1543 0.1544 0.1544 0.1551 0.1598 0.1710

(0.0004) (0.0004) (0.0004) (0.0004) (0.0007) (0.0029)
Method III 0.1543 0.1546 0.1544 0.1544 0.1584 0.1849

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0007)
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Table 4. AMSEs of various methods for covariance function estimation in
Experiment II based on 500 simulation replicates, where a boldface value
indicates that the corresponding method performs significantly better than
the other three methods, and the values given in parentheses are the corre-
sponding standard errors.

(ρ1, ρ2) Method T = 50 T = 100

K = 0 K = 1 K = 2 K = 3 K = 0 K = 1 K = 2 K = 3

(10, 1) PML 0.0266 0.0104 0.0112 0.0123 0.0249 0.0069 0.0076 0.0083

(0.0003) (0.0003) (0.0003) (0.0005) (0.0002) (0.0002) (0.0002) (0.0002)

Method I 0.0266 0.0225 0.0205 0.0257 0.0249 0.0174 0.0146 0.0140

(0.0003) (0.0004) (0.0004) (0.0010) (0.0002) (0.0002) (0.0002) (0.0003)

Method II 0.0266 0.5094 0.5891 0.6427 0.0249 0.5276 0.6163 0.6980

(0.0003) (0.0270) (0.0302) (0.0325) (0.0002) (0.0246) (0.0287) (0.0320)

Method III 0.0266 0.0125 0.0153 0.0165 0.0249 0.0074 0.0088 0.0097

(0.0003) (0.0004) (0.0004) (0.0004) (0.0002) (0.0002) (0.0002) (0.0002)

(4, 1) PML 0.0144 0.0115 0.0143 0.0166 0.0129 0.0070 0.0113 0.0144

(0.0002) (0.0004) (0.0006) (0.0012) (0.0001) (0.0002) (0.0019) (0.0033)

Method I 0.0144 0.0405 0.0317 0.0297 0.0129 0.0331 0.0240 0.0178

(0.0002) (0.0005) (0.0005) (0.0010) (0.0001) (0.0003) (0.0003) (0.0003)

Method II 0.0144 0.5813 0.7469 0.8893 0.0129 0.5902 0.7666 0.8998

(0.0002) (0.0292) (0.0367) (0.0435) (0.0001) (0.0264) (0.0350) (0.0411)

Method III 0.0144 0.0196 0.0193 0.0191 0.0129 0.0119 0.0109 0.0106

(0.0002) (0.0008) (0.0006) (0.0005) (0.0001) (0.0004) (0.0003) (0.0002)

(1, 1) PML 0.0107 0.0248 0.0270 0.0288 0.0083 0.0172 0.0207 0.0250

(0.0005) (0.0009) (0.0008) (0.0008) (0.0003) (0.0005) (0.0012) (0.0029)

Method I 0.0107 0.0550 0.0362 0.0305 0.0083 0.0422 0.0236 0.0162

(0.0005) (0.0009) (0.0008) (0.0010) (0.0003) (0.0005) (0.0004) (0.0004)

Method II 0.0107 1.0131 1.7709 2.0795 0.0083 0.9867 1.7504 2.0841

(0.0005) (0.0513) (0.0904) (0.1020) (0.0003) (0.0465) (0.0870) (0.1019)

Method III 0.0107 0.0513 0.0245 0.0249 0.0083 0.0322 0.0124 0.0124

(0.0005) (0.0023) (0.0009) (0.0008) (0.0003) (0.0013) (0.0004) (0.0004)

Figure 4. True spatial covariance functions in Experiment III: (a) {CY (s, s) :
s ∈ D}; (b) {CY (s0, s) : s ∈ D} for s0 = (1/2, 1/2); (c) {CY (s0, s) : s ∈ D}
for s0 = (1/4, 1/4).
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Table 5. AMSPEs of various methods for spatial prediction in Experiment III
based on 500 simulation replicates, where a boldface value indicates that the
corresponding method performs significantly better than the other method,
and the values given in parentheses are the corresponding standard errors.

T Method Ideal CV K = 0 K = 1 K = 2 K = 3

50 PML 0.0327 0.0330 0.0351 0.0336 0.0330 0.0389

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Method III 0.0332 0.0335 0.0351 0.0345 0.0334 0.0385

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

100 PML 0.0327 0.0328 0.0352 0.0336 0.0328 0.0389

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Method III 0.0331 0.0332 0.0352 0.0347 0.0332 0.0380

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Table 6. AMSEs of various methods for covariance function estimation in
Experiment III based on 500 simulation replicates, where a boldface value
indicates that the corresponding method performs significantly better than
the other method, and the values given in parentheses are the corresponding
standard errors.

Method T = 50 T = 100

K = 0 K = 1 K = 2 K = 3 K = 0 K = 1 K = 2 K = 3

PML 0.6705 0.0613 0.0096 0.0092 0.6533 0.0582 0.0053 0.0048

(0.0132) (0.0016) (0.0003) (0.0004) (0.0093) (0.0011) (0.0002) (0.0002)

Method III 0.6705 0.3407 0.0104 0.0094 0.6533 0.3609 0.0057 0.0049

(0.0132) (0.0084) (0.0004) (0.0004) (0.0093) (0.0061) (0.0002) (0.0002)

example of the estimated spatial covariance function,
{
ĈY (s0, s) : s ∈ D

}
, at

s0 = (1/2, 1/2), (1/4, 1/4), based on the proposed PML method for T = 50,

is shown in Figure 5. Again, our method can be seen to catch nonstationary

features quite well.

4.4. Experiment IV

Here we generated data using the model fitted by our PML method to the

monthly precipitation dataset in Section 5, in order to more closely reflect a real-

world situation. Specifically, we considered the model of (2.1) and (2.2) with

mean function given by (5.1), and with the parameters of β and θ estimated by

our PML method (see Table 10) based on the data observed at 79 stations with

complete records. We further investigated how the proposed method is affected

by the temporal correlation of {wt : t ∈ N} by assuming a multivariate stationary

autoregressive time series of order 1:

wt = awt−1 + vt, (4.4)
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Figure 5. Estimated spatial covariance functions using the proposed PML
method with K = 2 in Experiment III: (a) {ĈY (s, s) : s ∈ D}; (b)

{ĈY (s0, s) : s ∈ D} for s0 = (1/2, 1/2); (c) {ĈY (s0, s) : s ∈ D} for
s0 = (1/4, 1/4).

where vt ∼ N(0, (1− a2)ΛK). We considered a ∈ {0, 0.1, 0.5, 0.9} corresponding

to different strengths of temporal dependence, and generated data according to

(2.3) and (4.4) at the same 79 locations and the same number of time points.

For locations at which xt,13(s), . . . , xt,15(s) were not observed, we estimated the

surface xt,j(·) for j = 13, 14, 15, at each time t separately, using thin plate splines

with the tuning parameter chosen by GCV.

We applied the proposed PML method in the same way as in Experiments II

and III, and choseK ∈ {0, 1, 2, 3} and α ∈ {2−10, 2−9, . . . , 210} using 5-fold CV by

randomly partitioning the sampling locations into five disjoint subsets of sizes 16,

16, 16, 16 and 15. The AMSPE performance of our method for spatial prediction

and the AMSE performance of our method for covariance function estimation are

displayed in Tables 7 and 8, respectively. We note that our covariance function

estimate deteriorated only slightly when the temporal dependence parameter a

increased from 0 to 0.5. However, it deteriorated more severely when a = 0.9

with a significantly higher variance for λ̂1. This is not much of a surprise since

the effective sample size (i.e., the equivalent number of independent repeated

measurements) is smaller when a is larger. Similar behavior can also be seen in

spatial prediction but with less significant differences. As expected, the model

based on K = 1 performed the best in both spatial prediction and covariance

function estimation. On the other hand, it is interesting to see that the model

based on either K = 2 or K = 3 performed almost as well, because λ̂2 and λ̂3

were nearly negligible. Additionally, Table 9 reports the means and the standard

deviations for the estimated parameters based on the model selected by CV.

All the estimates can be seen to perform reasonably well with relatively small

biases regardless of values of a. Note that except for λ̂1, which is more directly

influenced by a, the standard errors of the other parameter estimates increase

only slightly with a. This is not much a surprise, because the variance contributed
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Table 7. AMSPEs (×100) of the proposed method for spatial prediction
in Experiment IV for data with different strengths of temporal dependence
based on 500 simulation replicates, where the values given in parentheses are
the corresponding standard errors.

a Ideal CV K = 0 K = 1 K = 2 K = 3

0.0 6.239 6.243 6.299 6.241 6.243 6.243

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

0.1 6.239 6.243 6.299 6.241 6.243 6.243

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

0.5 6.239 6.244 6.302 6.241 6.244 6.244

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

0.9 6.241 6.245 6.310 6.243 6.245 6.245

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Table 8. AMSEs (×100) of the proposed method for covariance function
estimation in Experiment IV for data with different strengths of temporal
dependence based on 500 simulation replicates, where the values given in
parentheses are the corresponding standard errors.

a CV K = 0 K = 1 K = 2 K = 3

0.0 0.049 0.379 0.043 0.045 0.045

(0.002) (0.005) (0.002) (0.002) (0.002)

0.1 0.050 0.379 0.043 0.045 0.045

(0.002) (0.005) (0.002) (0.002) (0.002)

0.5 0.055 0.384 0.048 0.050 0.051

(0.003) (0.006) (0.002) (0.002) (0.002)

0.9 0.146 0.496 0.136 0.139 0.141

(0.014) (0.032) (0.014) (0.014) (0.014)

by the (temporally independent) stationary component (3.137× 0.056) is about

three times larger than that contributed by the (autoregressive) nonstationary

component (0.057), and hence the effective sample size is not too much smaller

than T even when a = 0.9.

Although our method ignores temporal dependence, the performance is not

much affected as long as that is not strong. This is consistent with the theoretical

result of Hörmann and Kokoszka (2010) for weakly dependent functional data.

In addition, CV appears to be effective in selecting K for spatial prediction and

covariance function estimation.

5. Application

We applied the proposed method to a precipitation dataset obtained from the

National Climatic Data Center (available at http://www.cgd.ucar.edu/stats/

Data/US.monthly.met/). The data consist of monthly total precipitation at 376

stations, mostly located in Colorado, from November 1993 to December 1997

http://www.cgd.ucar.edu/stats/Data/US.monthly.met/
http://www.cgd.ucar.edu/stats/Data/US.monthly.met/
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Table 9. Means and the standard deviations (in parentheses) of the estimated
parameters for the PML method in Experiment IV based on 500 simulation
replicates.

True a = 0.0 a = 0.1 a = 0.5 a = 0.9

τξ 3.137 3.006(0.220) 3.009(0.228) 3.008(0.237) 3.014(0.228)

ρξ 39.050 43.428(4.219) 43.397(4.329) 43.436(4.397) 43.284(4.431)

σ2
ε 0.056 0.055(0.002) 0.055(0.002) 0.055(0.002) 0.055(0.002)

λ1

∫
D ϕ2

1(s)ds/|D| 0.057 0.054(0.018) 0.054(0.018) 0.054(0.019) 0.053(0.035)

λ2

∫
D ϕ2

2(s)ds/|D| 0.000 0.004(0.007) 0.004(0.008) 0.004(0.008) 0.004(0.008)

λ3

∫
D ϕ2

3(s)ds/|D| 0.000 0.001(0.003) 0.001(0.003) 0.001(0.003) 0.001(0.003)

β1 1.485 1.478(0.117) 1.477(0.117) 1.476(0.117) 1.473(0.126)

β2 0.139 0.144(0.129) 0.144(0.128) 0.143(0.128) 0.143(0.129)

β3 0.458 0.461(0.133) 0.461(0.133) 0.460(0.133) 0.458(0.134)

β4 1.271 1.272(0.144) 1.272(0.144) 1.271(0.143) 1.269(0.145)

β5 1.863 1.873(0.153) 1.873(0.153) 1.872(0.154) 1.868(0.161)

β6 2.119 2.115(0.172) 2.115(0.172) 2.114(0.173) 2.110(0.183)

β7 2.230 2.224(0.178) 2.224(0.178) 2.222(0.180) 2.217(0.190)

β8 2.444 2.448(0.174) 2.448(0.174) 2.446(0.176) 2.441(0.186)

β9 1.980 1.982(0.160) 1.982(0.160) 1.981(0.161) 1.978(0.168)

β10 1.257 1.258(0.145) 1.258(0.145) 1.258(0.145) 1.255(0.151)

β11 0.404 0.405(0.130) 0.405(0.129) 0.405(0.129) 0.403(0.128)

β12 -0.151 -0.153(0.125) -0.153(0.125) -0.152(0.124) -0.153(0.123)

β13 -0.139 -0.136(0.038) -0.136(0.038) -0.136(0.040) -0.133(0.048)

β14 -0.065 -0.065(0.005) -0.065(0.005) -0.065(0.005) -0.065(0.005)

β15 -0.003 -0.003(0.003) -0.003(0.003) -0.003(0.003) -0.003(0.003)

between latitudes 101 degrees and 109.5 degrees west and between longitudes
36.5 degrees and 41.5 degrees north. Among 376 stations, 79 of them have
complete data, which were used as training data. The remaining data at 297
stations were used for validation purpose. Figure 6(a) displays the locations of
all 376 stations and the elevations for the 79 sampling (training) locations on a
rectangular region D based on the polyconic projection. Because monthly total
rainfalls take only positive values and tend to have a distribution that is skewed
to the right, they were first transformed using the log transformation

Yt(s) = log
(
yt(s) + 1

)
, s ∈ D, t = 1, . . . , 50,

where yt(s) denotes the monthly total precipitation (in millimeters) at location
s and time t. We applied the propose PML method with ξt(·) in (2.2) modeled
by the exponential covariance family of (4.2). In addition, the mean function in
(2.2) was modeled as

xt(s)
′β = β1 +

12∑
j=2

βjxt,j(s) + β13xt,13(s) + β14xt,14(s) + β15xt,15(s),

s ∈ D, t = 1, . . . , 50, (5.1)
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Figure 6. (a) Elevations (in kilometers) of 79 sample stations (denoted as
“◦”) and the locations of the 297 validation stations (denoted as “×”) for the
precipitation dataset in Colorado. (b) The first eigenfunction ϕ1(·) estimated
by PML based on K = 1.

where xt,2(s), . . . , xt,12(s) are dummy variables for February, . . . , December, in-

dependent of s, such that xt,2(s) = 1 if t falls in February and 0 otherwise, and so

on, xt,13(s) denotes the elevation (in kilometers) at location s independent of t,

xt,14(s) denotes the average daily maximum temperature (in degrees Celsius) at

location s and time t, and xt,15(s) denotes the extent of the average daily temper-

atures (in degrees Celsius) at location s and time t. We chose K ∈ {0, 1, 2, 3} and

α ∈ [2−10, 25] using 5-fold CV by randomly partitioning the sampling locations

into five disjoint subsets of sizes 16, 16, 16, 16 and 15.

For known θ, an unbiased predictor of yt(s) obtained from the universal

kriging predictor Ŷt(s) of (2.10) is (Journel (1980))

ŷt(s) ≡ exp
{
Ŷt(s) +MSPEuk(s)/2 + x(s)′m(s)

}
− 1, (5.2)

where m(s) ≡ (X ′Σ−1
Z X)−1(X ′Σ−1

Z σY (s) − x(s)). The corresponding condi-

tional MSPE is (Journel (1980); Chilès and Delfiner (1999, p.191))

E
(
ŷt(s)− yt(s)

)2
= exp

{
2x(s)′β + 2CY (s, s)

}
×
[
1 + exp

{
−MSPEuk(s)− 2x(s)′m(s)

}
×

{
exp

(
− 2x(s)′m(s)

)
− 2

}]
. (5.3)

Our final predictor of ŷt(s) and the corresponding conditional MSPE were ob-

tained by plugging the PML estimates of β and θ into (5.2) and (5.3).

For the proposed PML method, CV selected K = 1 with the estimated

eigenfunction shown in Figure 6(b). Evidently, a nearly linear pattern from west
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Figure 7. The predicted scores {ŵt,1 : t = 1, . . . , 50} for ϕ1(·) obtained from
PML with K = 1 for the precipitation dataset in Colorado.

to east can be seen. As shown by the predicted scores, {ŵt,1 : t = 1, . . . , 50}, in
Figure 7, the precipitation tends to be higher in the west (east) during winter

(summer). Note that in Colorado the mountains and ranges extend north and

south approximately through the middle of the state and, hence, stop much of

moisture from the Pacific Ocean and the Gulf of Mexico, particularly in winter

when the prevailing winds come from the west with much of rain or snow falling on

the mountaintops and westward-facing slopes, causing lighter precipitation in the

eastern plain. On the other hand, the eastern plain tends to have more showers

and thunderstorms in spring and summer due to warm and moist air from the

south. In addition to the seasonal pattern, the ŵt,1’s also showed some temporal

dependence structure with the lag 1 sample autocorrelation 0.529, which could

be modeled further but that is beyond the scope of this paper.

The data were also analyzed by recursively applying Method III to the resid-

uals obtained from generalized least squares fit of β for estimating θ until conver-

gence, where the initial estimate of β was obtained using ordinary least squares.

Different from the PML method, Method III chooses K = 2 eigenfunctions from

CV. Table 10 displays the estimated parameters for both methods, where the

estimated standard deviations for the elements of β̂gls shown in parentheses

were obtained from the square roots of the diagonal of
(∑T

t=1X
′
tΣ̂

−1
Z Xt

)−1
and

Σ̂Z ≡ Φ̂KΛ̂KΦ̂′
K + σ̂2

ε

(
V̂ξ(θ̂ξ) + In

)
since var(β̂gls) ≈

(∑T
t=1X

′
tΣ̂

−1
Z Xt

)−1
.

The results show that the amounts of rainfall are affected by elevation, average

maximum daily temperature, and some monthly effects. As we expect, higher

temperatures tend to produce larger amounts of rainfall. Although the estimated

coefficient for elevation is negative, higher elevations tend to have lower temper-

atures and hence smaller amounts of rainfall. Consequently, the overall effect of

elevation on rainfall is not clear. Comparing these two methods, we notice that
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Table 10. Estimated parameters based on PML and Method III for the Col-
orado precipitation data, where values in parentheses are the corresponding
estimated standard deviations.

PML Method III
τξ 3.137 1.349
ρξ 39.050 47.614
σ2
ε 0.056 0.059

λ1

∫
D
ϕ2
1(s)ds/|D| 0.057 4.575

λ2

∫
D
ϕ2
2(s)ds/|D| - 0.080

λ3

∫
D
ϕ2
3(s)ds/|D| - -
β1 1.485 (0.117) -0.458 (0.211)
β2 0.139 (0.126) 0.770 (0.295)
β3 0.458 (0.130) 1.524 (0.299)
β4 1.271 (0.134) 3.074 (0.303)
β5 1.863 (0.147) 4.522 (0.310)
β6 2.119 (0.164) 5.123 (0.322)
β7 2.230 (0.172) 4.578 (0.328)
β8 2.444 (0.171) 5.050 (0.327)
β9 1.980 (0.155) 4.357 (0.315)
β10 1.257 (0.139) 3.556 (0.303)
β11 0.404 (0.121) 0.737 (0.281)
β12 -0.151 (0.119) 0.225 (0.280)
β13 -0.139 (0.037) -0.643 (0.035)
β14 -0.065 (0.005) -0.111 (0.004)
β15 -0.003 (0.003) -0.000 (0.003)

the variation of our method was contributed mainly by the stationary component,

whereas that of Method III is contributed mainly by nonstationary components.

We used the validation data to compare the performance between the two

methods based on the averaged squared prediction errors

ASPE ≡ 1∑50
t=1 nt

50∑
t=1

nt∑
j=1

(
zt(st,j)− ŷt(st,j)

)2
,

where zt(st,j) denotes the observed precipitation at time t and site st,j , and nt

is the total number of observed stations for the validation data at time t. The

proposed method (based on K = 1) achieved an ASPE value of 9.815, smaller

than the 11.751 obtained from Method III (based on K = 2).

6. Discussion

In this paper, we consider nonstationary spatial modeling and develop a

new EOF-type estimation method in the penalized likelihood framework. The
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proposed method is applicable to sparse data and is shown to perform well in

spatial prediction and covariance function estimation. Although the methodology

is developed for complete data, the same PML formulation can be extended to

allow for different missing observations at different time points, leading to more

complicated formulae by having both missing observations and latent variables

as missing data in the ECM framework.

Specifically, and without loss of generality, we can assume that for each

t = 1, . . . , T , we observe data at a subset of {s1, . . . , sn} with size nt ≤ n. In

other words, we can decompose Zt into the observed data Z
(obs)
t and the missing

data Z
(mis)
t , t = 1, . . . , T . We also consider the same full negative penalized

log-likelihood of (3.1), but treat both wt’s and Z
(mis)
t ’s as missing data. Then

the PML estimates for β and θ can be obtained by applying a similar ECM

algorithm while conditioning only on Z
(obs)
1 , . . . ,Z

(obs)
T in the E-step.

Note that the proposed method is designed for small to moderately large

n (number of data locations) since it requires taking the inverse of Vξ(θξ) + In
for various values of θξ; that is difficult to handle if n is larger than a few

thousands. Further research is needed to accommodate very large n using, for

example, the tapering technique (Furrer, Genton, and Nychka (2006)), and to

incorporate temporal dependence structure, say in terms of (4.4). Although CV

appears to work well in selecting the number of eigenfunctions, we might further

adopt some regularization method such as Lasso (Tibshirani (1996)) by adding

a specific penalty to the proposed PML; this would allow simultaneous selection

of K and parameter estimation.
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