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1. Introduction

Suppose we are given a collection of increasing random points T1 < T2 <

. . . observed over time, and let Nt, for t ∈ I, denote the number of Ti that

fall below t. Point processes, equivalently counting processes, have become an

indispensable tool for analyzing the dynamic behavior of random phenomena over

time. For example, in a medical or engineering context, the focus is often on the

time T1 elapsed until the first breakdown (death, recidivism, technical default);

further events, if any, are then investigated within a so-called recurrent times-

to-event analysis. In applications the statistical analysis of such data should

allow for a maximum of flexibility when it comes to modeling the underlying

process. A crucial role is played by the cumulative intensity or hazard process

Λ = Λt, t ∈ I, the compensator in the Doob-Meyer decomposition Nt = Λt +

Mt of N . M is a (local) martingale w.r.t. a given filtration Ft, t ∈ I, and

therefore trend-free, while Λ compensates the monotonicity of N . Moreover,

Λ is predictable and thus may serve as a predictor of N in continuous time.

In practice, we observe N while Λ, though being predictable, may depend on

unknown parameters. For the homogeneous Poisson process dΛt = λdt, where

λ > 0 is a constant intensity. A simple extension that takes into account seasonal

effects is the so-called heterogeneous Poisson process in which λ = λt is (only) a

function of t. Another simple counting process is, with X ≡ T1,

Nt = 1{X≤t}, t ∈ I,
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the so-called Single Event process. Here X is a random variable with distribution

function F . The corresponding Λ is

Λt =

∫
(−∞,t]

1{X≥x}

1− F (x−)
F (dx),

with F (·−) denoting the left-continuous version of F . The hazard measure

Λ(dx) ≡
1{X≥x}

1− F (x−)
F (dx)

vanishes on x > X. This reflects the fact that for the Single Event process no

further events may be expected once X has been observed. If rather than one X

we observe an i.i.d. sample X1, . . . , Xn from the distribution function F , we can

take the empirical distribution function

Fn(t) = n−1
n∑

i=1

1{Xi≤t}.

The martingale is

Mn(t) = Fn(t)−
∫
(−∞,t]

1− Fn(x−)

1− F (x−)
F (dx).

As before the hazard measure vanishes right to the largest order statistic. In

these examples the intensity measure is random. When F admits a Lebesgue

density f , then

Λn(dx) = [1− Fn(x−)]λ(x)dx,

where

λ(x) =
f(x)

1− F (x)

is the hazard function of F . This is a special case of a multiplicative model, in

which the density of Λn is a product of an unknown deterministic function and

an observable predictable process.

In a parametric framework the functions f, F , and hence λ, may depend

on an unknown parameter ϑ, so that the Radon-Nikodym derivative of dΛn

w.r.t. Lebesgue measure can be written as a product of a deterministic parametric

function and an observable predictable random process not depending on ϑ.

This example has motivated many researchers to model also point processes

much more general than Single Event processes in a similar way. Let N1, . . . , Nn

be a sample of i.i.d. point processes with the same distribution as N . As before,

we can aggregate all Ni to come up with an extension of Fn that aggregates
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the Single Event processes. A popular assumption for the cumulative intensity

process of Ni is the parametric multiplicative intensity model

dΛi
ϑ = αi(x, ϑ)Yi(x)dx.

In many cases it is assumed that αi is the same for all i. Fundamental contri-

butions to the statistical inference on the true parameter ϑ0 may be found in

Borgan (1984) and Jacobsen (1982, 1984). The monograph of Andersen et al.

(1993), in its chapter VI, is based on Borgan (1984). Another relevant reference is

Karr (1986). He remarks (p.175) that multiplicative intensity models provide the

broadest setting in which good asymptotic theory based on i.i.d. copies of point

processes is available. At the same time he admits (p. 170) that precise results

may be obtained when αi is not very – or not at all – random. The statistical

inference about the “true parameter” ϑ0 is usually performed through maximum

likelihood. This presumes that the model under study is dominated. The tech-

nical justification may come from Theorem 2.31 in Karr (1986), which describes

densities of point processes obtained from exponential martingale transforma-

tions of the Poisson process.

An important role in the context of point processes, intensities and martin-

gales is the choice of the filtration Ft, t ∈ I. To make the process (Nt)t adapted,

Ft must include σ(Ns : s ≤ t). Very often, one assumes

Ft = σ(Ns : s ≤ t) for all t ∈ I, (1.1)

the left-hand side sometimes being enriched by some events known at t = 0. An-

dersen et al. (1993) call any point process satisfying (1.1) self-exciting irrespective

of whether (Nt)t has special features or not.

Historically, this notion was, however, first coined by Hawkes (1971a,b). He

studied a point process with

Λ(t) = ν +

∫
(−∞,t]

g(t− u)N(du), (1.2)

where N is a stationary process. By this, Λ captures the information given by the

past values of N as transferred through g. For example, if g decreases exponen-

tially fast, the process with cumulative hazard function Λ features so-called shot

noise effects. Hawkes and Oakes (1974) studied the connection of these processes

with immigration-birth processes. Ogata and Akaike (1982) modified the right-

hand side of (1.2) to also incorporate convolution integrals w.r.t. other processes.

Moller and Rasmussen (2005, 2006) studied algorithms to simulate Hawkes pro-

cesses. To the best of our knowledge, Snyder (1975) was the first monograph

discussing point processes featuring such special dynamics. A somewhat differ-

ent model was proposed by Engle and Russell (1997, 1998). They introduced and
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studied so-called autoregressive conditional duration models, which constitute an

adaptation of ARCH-time series to the point process context.

The following question motivated the present work and is discussed as an

example in Section 3. In market research it is important to understand the pur-

chase behavior of customers. Clearly, each customer gives rise to a point process

in which each point denotes the time of a purchase of a certain pre-specified fast-

moving consumer good. Very often, just after a purchase, we observe saturation

effects leading to a downward jump of λt where, for the moment, we assume that

the cumulative intensity process Λ admits a Lebesgue-density λt:

Λ(dt) = λtdt.

Hence, in general, λt is a stochastic process admitting jumps. This fact does not

mean that our model has been designed to incorporate structural changes (change

points). In our situation, discontinuities of λt do not constitute structural changes

but are systemic parts of the model. In addition, λt often contains components

being in charge of seasonal effects that only depend on time and not on individual

customer issues. Finally, we might also include external random components such

as promotional activities that are not yet part of the internal purchase history of

the customer.

One such component, discussed in detail in Section 3, is the impact of TV-

advertising. From the company’s point of view, advertising hopefully creates an

impulse leading to an upward jump in the intensity process. As is well known, in

practice, such effects are followed by certain adstock phenomena, namely, that

customers tend to forget about advertising when time passes by. It is then of in-

terest to know how these partial effects enter into the overall Λ and how repeated

advertising may overcome the adstock effect. From our experience in market re-

search, any kind of proportionality of λt across individuals is too restrictive to

explain the behavior of different customers.

In a medical context λt is considered the relevant statistical parameter, de-

scribing the risk status of a patient at time t. Hence most models and technical

approaches in survival analysis are based on hazard terms. It is only understand-

able that every patient undergoing a treatment expects some relief. In statistical

terms this means that the after-treatment effect results in a downward jump of

λt, possibly delayed.

Since our Theorems 1 and 2 are of a general nature, they can be applied

whenever modeling takes place through hazards. Of course, the model-building

process described in Section 3 needs adjustment in a new context, after consulting

experts in the relevant area.

In such a complicated situation there is little reason to assume that λt is

multiplicative or that the driving processes are stationary. Worse than that, Λ is
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not predictable (or even adapted) w.r.t. the filtration σ(Ns : s ≤ t), but should

respect external effects. Generally, the model is not dominated so that likelihood

methods are difficult to apply.

Summarizing, to obtain acceptable models for practical point processes, one

often needs to accept intensity processes that combine the internal history of the

process with external shocks or impulses to the effect that the model is no longer

dominated and straightforward likelihood methods don’t exist; allow for jumps

which typically are followed by special patterns as, e.g., shot noise effects; have

relevant filtration strictly larger than the internal history of the process.

Let Ft, t ∈ I, denote the filtration containing the information up to time

t. The notion of “self-exciting” is used in a general way to describe any filtered

adapted point process N . In particular, in most cases of interest, Ft strictly

includes σ(Ns : s ≤ t). Also, no (local) stationarity, Markov-property, or in-

dependence of increments is assumed. Of course, all this comes with a price,

since the required information now comes from independent replications of N .

In market research there are different households, while in a medical context

this requires several patients in the panel. In modern statistical language, our

approach constitutes a functional data analysis where each (random) function

comes from a point process with a possibly complicated dynamics.

As a final comment, the notation λt only expresses the dependence on time.

In our approach, λt may also depend on previous values N(s), s < t, or ex-

ternal measurements taken before t. Typically, this part has a nonparametric

flavor when one wants to avoid restrictive distributional assumptions. In ad-

dition, there may be unknown parameters connecting the nonparametric input

processes. As a result the parameters should be accessible to the practitioner to

aid the understanding of the effects of and the interplay between the individual

components.

Here λt resp. Λt constitutes a flexible semi-parametric model containing

an unknown multivariate parameter ϑ. It is our aim to provide a methodology

for estimating the parameter of interest when complicated input processes are

present. Since dominance cannot be guaranteed, we do not dwell on likelihood

but hold to the fact that Nt − Λt is a (local) martingale.

Remark 1. The main focus is on statistical inference of the parametric part

in i.i.d. copies of a point process with complicated dynamics. There is a rich

literature on estimating parameters when only one point process is available. If

I = [0, T ] is the observation period, increasing information comes in from let-

ting T go to infinity. Proposition 3.23 in Karr (1986) is a prototype of such

results. It yields asymptotic normality for the intensity in a simple Poisson Pro-

cess, as T → ∞. Important extensions are, e.g., due to Ogata (1978), Rathbun

(1996), Schoenberg (2005) and Waagepetersen and Guan (2009), who extended
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the Poisson case to spatio-temporal processes satisfying some stationarity and

mixing conditions. For many applications T is fixed so that i.i.d. copies of N

need to be sampled. The advantage here is that complicated dynamics can be

handled without requiring strong distributional assumptions.

2. Main Results

Let N = N(t), t ∈ I, be a counting process over a compact interval I = [t, t̄].

For each t ∈ I, let Ft be the σ-field of events observable prior to t. Since we

assume that N is observable we have σ(N(s) : s ≤ t) ⊂ Ft. In most cases the

inclusion is strict.

Set Mt = Nt − Λt, t ∈ I.

The process Λt serves as a predictor process for Nt. In particular, if Nt is in-

tegrable, ENt = EΛt. From time to time, we assume that dΛt = λtdt. Here

λt, t ∈ I, is a predictable stochastic process, the hazard or intensity process, with

possible jumps. The λ-process takes its values in the space of left-hand continu-

ous functions with right hand limits. This is the predictable analog of the better

known Skorokhod space D(I). See Billingsley (1968).

Let ϑ ∈ Θ ⊂ Rd denote the parameter of interest, and let

M = {Λϑ : ϑ ∈ Θ}

be the associated model for the cumulative hazard process, the dependence on the

nonparametric part being suppressed throughout this section. We let ϑ0 be the

true parameter, Λ = Λϑ0 for some ϑ0 ∈ Θ. Hence the associated innovation mar-

tingale is M = N − Λϑ0 . We provide some methodology on how to estimate ϑ0.

This estimate takes into account n independent replicates of N , say N1, . . . , Nn.

If each Ni is a simple Single Event process, our results take on a special form for

empirical distributions. For general self-exciting processes our approach yields a

contribution to the analysis of dynamic functional (point process) data.

For further motivation, let Λϑ,i, for 1 ≤ i ≤ n and ϑ ∈ Θ, be the individual

cumulative hazard processes. The unknown parameter ϑ0 ∈ Θ is the same for

all 1 ≤ i ≤ n and hence is intended to describe effects that are equal among

the group. The remaining components are individual, usually random, but their

distributional properties remain unspecified and perhaps complicated. To exploit

the martingale structure, we apply a minimum distance procedure that yields

robust consistent estimates of ϑ0 and does not require additional distributional

assumptions.

We formulate our main result. Let N1, . . . , Nn be i.i.d. copies of N observed

over I. For each 1 ≤ i ≤ n, let Fi(t), t ∈ I, be an increasing filtration comprising
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the relevant information about Ni. Let Λϑ,i with ϑ ∈ Θ ⊂ Rd be a given class

of semiparametric cumulative intensities such that the true Λi of Ni satisfies

Λi = Λϑ0,i for some ϑ0 ∈ Θ. Let µ be a finite measure on I. If f and g are

square integrable functions w.r.t. µ, we set

⟨f, g⟩µ =

∫
I
fgdµ

with corresponding semi-norm

∥f∥µ =

[∫
I
f2(t)µ(dt)

]1/2
.

Our first f is the difference between the aggregated point process and the aggre-

gated compensator:

N̄n =
1

n

n∑
i=1

Ni Λ̄ϑ,n =
1

n

n∑
i=1

Λϑ,i,

with nN̄n the point process obtained by pooling the points in the individual

processes. The associated innovation martingale M̄n is

dM̄n = dN̄n − dΛ̄ϑ0,n.

If, for µ, we take µ = N̄n, the quantity ∥N̄n − Λ̄ϑ,n∥N̄n
represents an overall

measure of fit of Λ̄ϑ,n to N̄n. Our final estimator of ϑ0 is

ϑn = arg inf
ϑ∈Θ

∥N̄n − Λ̄ϑ,n∥N̄n
.

Other measures and cumulative functions that appear later are Λϑ and EΛϑ.

Throughout, we assume that

EN(t̄) < ∞ and EΛϑ(t̄) < ∞ for each ϑ ∈ Θ.

Under weak identifiability and smoothness conditions, ϑn is a strongly consistent

estimator of ϑ0.

Theorem 1. Let Θ ⊂ Rd be a bounded open set and suppose that, for each ε > 0,

inf
∥ϑ−ϑ0∥≥ε

∥EΛϑ0 − EΛϑ∥EΛϑ0
> 0. (2.1)

The process (t, ϑ) → Λϑ(t) is continuous with probability one (2.2)

and admits a continuous extension to I×Θc, where Θc is the closure of Θ. Then

lim
n→∞

ϑn = ϑ0 with probability one.
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Remark 2. Condition (2.1) is a weak identifiability condition. Since ϑ → EΛϑ

admits a continuous extension to Θc, the infimum in (2.1) is attained, and (2.1)

is equivalent to EΛϑ0(t) ̸= EΛϑ(t) for all ϑ ̸= ϑ0 and t ∈ Iϑ, where Iϑ ⊂ I is a

set of t’s with µ(Iϑ) > 0. Here µ is the measure with cumulative function EΛϑ0 .

As to (2.2), in our applications Λϑ has a (random) Lebesgue density λϑ with

values in an appropriate Skorokhod space. This guarantees continuity (but not

differentiability) of Λϑ in t and allows for unexpected jumps in the intensity

function λϑ as well.

The boundedness of Θ is assumed only for convenience; Theorem 1 also holds

if Λ has a continuous extension to the compactification of Θ in the extended

Euclidean space.

Remark 3. In the context of Theorem 1, (2.1) is only a technical condition. We

can get an extension to the case in which the minimizer ϑ0 is not unique. In such

a situation let Θn be the set of estimators. With the Hausdorff distance d(Θ0,Θn)

of Θ0 and Θn, it can then be shown that with probability one, d(Θ0,Θn) → 0.

In the numerical examples of Section 3, ϑn was always unique.

For a second result, we assume that ϑ → Λϑ(t) is a twice continuously

differentiable function in a neighborhood of ϑ0; first and second order derivatives

explicitly appear in the distributional approximation of ϑn. Let

Φ0(ϑ) =
∂

∂ϑ

∫
I
(EΛϑ(t)− EΛϑ0(t))E

∂

∂ϑ
Λϑ(t)

TEΛϑ0(dt),

a matrix-valued function, where T denotes transposition. Under regularity con-

ditions (see (2.4)) we may interchange differentiation and integration to come up

with

Φ0(ϑ) =

∫
I
E

∂

∂ϑ
Λϑ(t)E

∂

∂ϑ
Λϑ(t)

TEΛϑ0(dt)

+

∫
I
(EΛϑ(t)− EΛϑ0(t))E

∂2

∂ϑ2
Λϑ(t)

TEΛϑ0(dt).

At ϑ = ϑ0, the second integral vanishes so that

Φ0(ϑ0) =

∫
I
E

∂

∂ϑ
Λϑ(t)E

∂

∂ϑ
Λϑ(t)

TEΛϑ0(dt)

∣∣∣∣
ϑ=ϑ0

. (2.3)

The integrand in (2.3) is nonnegative definite for each t. So, on a set of positive

EΛϑ0 measure, Φ0(ϑ0) is positive definite.
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Theorem 2. Suppose (2.1) and (2.2) hold, Furthermore, assume that∥∥∥∥ ∂

∂ϑ
(EΛϑ(t)− EΛϑ0(t))E

∂

∂ϑ
Λϑ(t)

T

∥∥∥∥ ≤ C(t) (2.4)

for all ϑ in a neighborhood of ϑ0, where the majorant function C is integrable

w.r.t. EΛϑ0, and

φ(x) =

∫
[x,t̄]

E
∂

∂ϑ
Λϑ(t)EΛϑ0(dt)

∣∣∣∣
ϑ=ϑ0

, t ≤ x ≤ t (2.5)

is square integrable w.r.t. EΛϑ0. Then

n1/2Φ0(ϑ0)(ϑn − ϑ0) = n1/2

∫
I

∫
[x,t̄]

E
∂

∂ϑ
Λϑ(t)EΛϑ0(dt)M̄n(dx)

∣∣∣∣
ϑ=ϑ0

+ oP(1)

≡ n1/2

∫
I
φ(x)M̄n(dx) + oP(1). (2.6)

Under (2.5), the integral in (2.6) is a sum of centered i.i.d. square-integrable

random vectors to which the Central Limit Theorem can be applied.

Corollary 1. Under the assumptions of Theorem 2, as n → ∞,

n1/2Φ0(ϑ0)(ϑn − ϑ0) → Nd(0, C(ϑ0)) in distribution,

where C(ϑ0) is a d× d matrix with entries

Cij(ϑ0) =

∫
I
φi(x)φj(x)EΛϑ0(dx)

and φ = (φ1, . . . , φd)
T .

The matrix Φ0(ϑ0) is nonnegative definite; if positive definite, as n → ∞,

n1/2(ϑn − ϑ0) → Nd(0,Σ) in distribution,

where Σ = Φ−1
0 (ϑ0)C(ϑ0)Φ

−1
0 (ϑ0).

Remark 4. The i.i.d. representation (2.6) is useful when we plan to derive some

goodness-of-fit tests of H0 : Λ0 ∈ M, where M is a semiparametric model

for the true Λ0. Since this is beyond the scope of the paper, we only sketch

the arguments. The basic test process is t → n1/2[N̄t − Λ̂t], where Λ̂ is taken

from M with estimated parameter ϑn. N̄ − Λ̂ is often called the martingale

residual process though estimation of parameters usually destroys the martingale

property. Under H0, this process has the expansion

n1/2[N̄ − Λ0]− n1/2[Λ̂− Λ0]. (2.7)
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The first part of (2.7) is M̄ (standardized), under H0, while under the smooth-

ness assumptions of Theorem 2 and because of (2.6), Taylor-expansion yields

an i.i.d. representation of the second part of (2.7). For aggregated Single Event

processes, this decomposition was studied by Durbin (1973), and for regression

by Stute (1997). Estimation of unknown parameters typically changes the dis-

tributional character of the test process. Stute, Thies, and Zhu (1998) discusses

how in the regression case a martingale transformation can be applied to come

up with some asymptotically distribution-free tests. For model checks of time

series, see Koul and Stute (1999). In principle, this may be also done in the

context of this paper; this will be studied in detail in future work.

3. A Data Example

In this section we apply our methodology to analyze the dynamic behavior of

customers over time. We are interested in the impact of TV-advertising and so-

called “Adstock-effects”. In Kopperschmidt and Stute (2009) we gave a review of

the most prominent timing models in market research. These models are unable

to provide a satisfactory dynamic framework for advertising effects.

We start with the modeling of λt in a seasonal market. The product of

interest was a premium brand of packaged ice cream on the German market.

Our λt acknowledges seasonality effects, the internal purchase history including

adstock effects, and advertising effects. The seasonality effect is assumed to be

the same for all households. It serves as a baseline and depends on parameters

α, β, γ, and δ through

λ1(t) = α sin(βt+ γ) + δ.

Here δ is a basic consumption rate which is the same throughout the year. The

rest is a properly shifted sinus curve assumed to have a peak in the months June-

September. We expect that, due to seasonal effects, δ > α > 0, β ∼ 2π/365 and

γ ∼ π/2.

For household i, we denote with Yi1 < · · · < Yiki the ordered purchase

times. For some households ki = 0. The quantity YiNi(t−) is the time of the

last purchase before t, hence t− YiNi(t−) is the “age” of the system. We suppose

that the intensity increases as time passes and the consumer’s stock of ice cream

diminishes. The “speed” for recovery of the purchase inclination is controlled by

a parameter ε > 0 that enters into some λi
2(t) as

λi
2(t) =

(
1− e−ε(t−YiNi(t−))1{t>Yi1}

)
.

Our final component is

λi
3(t) = ξ

Wi(t)∑
h=1

eη(t−Xih).
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Here Wi(t) is the number of advertising contacts observed by household i up to

time t. The advertising times are Xi1 < Xi2 < . . . hence t − Xih is the time

elapsed between t and the h th advertising contact (before t). The parameter η

is the so-called adstock parameter; if η < 0 is small, the impact of advertising

rapidly decreases as time passes by. The parameter ξ measures the mean impulse

of an advertising contact at the moment the message is received. At each Xih

there is a jump of size ξ followed by a decay. Hence λi
3(t) is a superposition of

Wi(t) of these effects, and

λϑ,i = λ1λ
i
2 + λi

3.

We used a multiplicative-additive version for λϑ,i so that the advertising effect

could be better isolated from the rest. For the parameter ϑ, we of course have

ϑ = (α, β, γ, δ, ε, η, ξ).

The data set stems from a “Single Source Panel” of AC Nielsen, Germany.

Until December 2006, AC Nielsen equipped several thousand households of the

panel with technical devices that allowed for the capture of their purchase and

TV behavior. Each household provided information on purchases of arbitrary

fast-moving consumer goods on a daily basis. This was achieved by scanning

the barcodes at home. In our analysis the amount of money spent was ne-

glected. Each panel household was also provided with a device by which one

knew whether and when an advertising spot was watched. This gave us the in-

formation contained in Wi and hence in λi
3. The statistical analysis was based

on 1,660 households, 1375 of which purchased at least once. The households

were observed over a period of 546 days, I = [0, 546]. Only 27 households did

not watch a single TV advertisement for packaged ice cream throughout the 18

months. The whole sample was divided into 11 subgroups of size 100-200 accord-

ing to sociodemographic factors “income” and “size of household”. We present

the results of our analysis for two of these 11 subgroups that differ in household

size and monthly income.

Group 1 2
HH Size 4 2

Income (Euro) < 2,000 ≥ 3,000
n 118 180
αn 0.0017 0.0021
βn 0.0210 0.0146
γn 1.5700 1.5700
δn 0.0113 0.0062
εn 0.1000 0.6580
ξn 0.0039 0.0846
ηn -0.5000 -0.4999



1284 KAI KOPPERSCHMIDT AND WINFRIED STUTE

We see that the plausibility check β ∼ 2π/365 ∼ 0.017 was fulfilled for both

groups. The model also “recognized” the annual seasonality with a seasonal peak

in the summer. The δn’s being in charge of an off-seasonal demand are small.

The most important parameters for the producer of the product were ξ and η.

Interestingly enough, the adstock parameter ηn was always close to −0.5. The

parameter ξn describing the strength of the advertising act differed among the

groups. Typically households with children had a smaller reaction parameter ξ

(ξn = 0.0039) compared with small but richer households (ξn = 0.0846). This

may be due to the fact that the product of interest was a premium brand so that

families with children, though attracted by the advertisement, showed a tendency

to buy cheaper products from a discounter.

We show a typical graph of the purchase-intensity of a household who is sub-

ject to manipulation. We see four larger downward jumps indicating purchases

which result, on the short run, in saturation effects. Smaller downward jumps are

adstock effects appearing after several upward jumps occurring after advertising.

-

6
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4. Proofs

For ε > 0 we let

Bε(ϑ0) = {ϑ : ∥ϑ− ϑ0∥ < ε}

be the open ε-ball with center ϑ0; for ε > 0 and r > 0, let

Bε
r(ϑ) =

{
ϑ′ ∈ Θc \ Bε(ϑ0) : ∥ϑ′ − ϑ∥ < r

}
be the part of the r-ball with center ϑ, that does not belong to Bε(ϑ0). Let ϑ ∈ Θ

be a given, fixed parameter.



SELF EXCITING POINT PROCESSES 1285

Lemma 1. Under the assumptions of Theorem 1, with probability one,

lim
n→∞

1

n

n∑
i=1

sup
ϑ′∈Bε

r(ϑ)
∥Ni − Λϑ′,i∥2Ni

= E
{

sup
ϑ′∈Bε

r(ϑ)
∥N − Λϑ′∥2N

}
, (4.1)

lim
n→∞

1

n(n− 1)

∑
i̸=j

sup
ϑ′∈Bε

r(ϑ)
∥Ni − Λϑ′,i∥2Nj

= E
{

sup
ϑ′∈Bε

r(ϑ)
∥N1 − Λϑ′,1∥2N2

}
, (4.2)

lim
n→∞

1

n(n− 1)

∑
i ̸=j

sup
ϑ′∈Bε

r(ϑ)
⟨Ni − Λϑ′,i, Nj − Λϑ′,j⟩Ni

= E
{

sup
ϑ′∈Bε

r(ϑ)
⟨N1 − Λϑ′,1, N2 − Λϑ′,2⟩N1

}
, (4.3)

lim
n→∞

1

n(n− 1)(n− 2)

∑
i̸=j ̸=k

sup
ϑ′∈Bε

r(ϑ)
⟨Ni − Λϑ′,i, Nj − Λϑ′,j⟩Nk

= E
{

sup
ϑ′∈Bε

r(ϑ)
⟨N1 − Λϑ′,1, N2 − Λϑ′,2⟩N3

}
. (4.4)

Proof. The four statements are immediate consequences of (5.1), our strong law

for U -statistics of point processes.

If, in Lemma 1, we replace the sup over ϑ′ ∈ Bε
r(ϑ) by ϑ, we obtain the limit

results as follows. Proofs again are based on (5.1).

Lemma 2. With probability one,

lim
n→∞

1

n

n∑
i=1

∥Ni − Λϑ,i∥2Ni
= E

{
∥N − Λϑ∥2N

}
, (4.5)

lim
n→∞

1

n(n− 1)

∑
i̸=j

∥Ni − Λϑ,i∥2Nj
= E

{
∥N1 − Λϑ,1∥2N2

}
, (4.6)

lim
n→∞

1

n(n−1)

∑
i ̸=j

⟨Ni − Λϑ,i, Nj − Λϑ,j⟩Ni = E {⟨N1−Λϑ,1, N2−Λϑ,2⟩N1} , (4.7)

lim
n→∞

1

n(n−1)(n−2)

∑
i̸=j ̸=k

⟨Ni−Λϑ,i, Nj−Λϑ,j⟩Nk

= E {⟨N1−Λϑ,1, N2−Λϑ,2⟩N3} . (4.8)

Lemma 3. We have

E {⟨N1 − Λϑ,1, N2 − Λϑ,2⟩N3} = ∥EΛϑ0 − EΛϑ∥2EΛϑ0
. (4.9)

Proof. The expectation of the left-hand side is

E
[∫

I
(N1(t)− Λϑ,1(t)) (N2(t)− Λϑ,2(t))N3(dt)

]
.
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Conditionally on N3, the expectation is, by independence of N1 −Λϑ,1 and N2 −
Λϑ,2, and by Fubini’s Theorem,∫

I
E2 [N1(t)− Λϑ,1(t)]N3(dt) =

∫
I
[EΛϑ0(t)− EΛϑ(t)]

2N3(dt).

Integrate out to get the result.

We next study local fluctuations of the process

ϑ →
∫
I
(N1(t)− Λϑ,1(t)) (N2(t)− Λϑ,2(t))N3(dt). (4.10)

Lemma 4. For given ε > 0 and δ > 0, and for each ϑ ∈ Θc, there is a small but
positive r > 0 such that∣∣∣∣∣E

{
sup

ϑ′∈Bε
r(ϑ)

⟨N1−Λϑ′,1, N2−Λϑ′,2⟩N3

}
− inf

ϑ′∈Bε
r(ϑ)

∥EΛϑ0−EΛϑ′∥2EΛϑ0

∣∣∣∣∣ ≤ δ, (4.11)

∣∣∣∣E{
inf

ϑ′∈Bε
r(ϑ)

⟨N1−Λϑ′,1, N2−Λϑ′,2⟩N3

}
−∥EΛϑ0−EΛϑ∥2EΛϑ0

∣∣∣∣ ≤ δ. (4.12)

Proof. By assumption, the process (4.10) is continuous in ϑ. Hence

sup
ϑ′∈Bε

r(ϑ)
⟨N1 − Λϑ′,1, N2 − Λϑ′,2⟩N3 ↓ ⟨N1 − Λϑ,1, N2 − Λϑ,2⟩N3

as r ↓ 0. By monotone convergence, the expectation of the left-hand side con-
verges to

E {⟨N1 − Λϑ,1, N2 − Λϑ,2⟩N3} = ∥EΛϑ0 − EΛϑ∥2Λϑ0
,

by Lemma 3. Similarly,

inf
ϑ′∈Bε

r(ϑ)
∥EΛϑ0 − EΛϑ′∥2EΛϑ0

↑ ∥EΛϑ0 − EΛϑ′∥2EΛϑ0

as r ↓ 0. This proves the first part of the lemma. The second part is shown in a
similar way.

Lemma 5. For each fixed ϑ ∈ Θ, we have

∥N̄n − Λ̄ϑ,n∥2N̄n
→ ∥EΛϑ0 − EΛϑ∥2EΛϑ0

with probability one.

In particular, for ϑ = ϑ0, the limit equals zero.

Proof. We have

∥N̄n − Λ̄ϑ,n∥2N̄n
=

∫
I

[
N̄n(t)− Λ̄ϑ,n(t)

]2
N̄n(dt)

= n−3
n∑

i,j,k=1

⟨Ni − Λϑ,i, Nj − Λϑ,j⟩Nk
.
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By (4.5) – (4.7), the last triple sum is dominated by the sum restricted to i ̸=
j ̸= k ̸= i. The limit follows from (5.1), (4.8), and Lemma 3.

Lemma 6. For each ε > 0 with probability one,

inf
ϑ:∥ϑ−ϑ0∥≥ε

∥N̄n − Λ̄ϑ,n∥N̄n
→ inf

ϑ:∥ϑ−ϑ0∥≥ε
∥EΛϑ0 − EΛϑ∥EΛϑ0

.

Proof. For a given ε > 0, let δ > 0 be an arbitrary positive number. According

to Lemma 4, there exists, for each ϑ ∈ Θc, a positive radius r = r(ϑ) > 0 such

that (4.11) and (4.12) are satisfied. Then∪
ϑ∈Θc\Bε(ϑ0)

Bε
r(ϑ)(ϑ) = Θc \ Bε(ϑ0)

is an open covering of the compact set Θc \ Bε(ϑ0). We can select finitely many

ϑ1, . . . , ϑq so that Θc \Bε(ϑ0) is already covered by the Bε
rl
(ϑl), where rl = r(ϑl).

Conclude that∣∣∣∣ inf
ϑ:∥ϑ−ϑ0∥≥ε

∥N̄n − Λ̄ϑ,n∥2N̄n
− inf

ϑ:∥ϑ−ϑ0∥≥ε
∥EΛϑ0 − EΛϑ∥2EΛϑ0

∣∣∣∣
=

∣∣∣∣∣ min
1≤l≤q

inf
ϑ∈Bε

rl
(ϑl)

∥N̄n − Λ̄ϑ,n∥2N̄n
− min

1≤l≤q
inf

ϑ∈Bε
rl
(ϑl)

∥EΛϑ0 − EΛϑ∥2EΛϑ0

∣∣∣∣∣
≤ max

1≤l≤q

∣∣∣∣∣ inf
ϑ∈Bε

rl
(ϑl)

∥N̄n − Λ̄ϑ,n∥2N̄n
− inf

ϑ∈Bε
rl
(ϑl)

∥EΛϑ0 − EΛϑ∥2EΛϑ0

∣∣∣∣∣ .
It suffices to prove that for each 1 ≤ l ≤ q, with probability one, the limsup of

the term in brackets is less than or equal to δ in absolute value. But

inf
ϑ∈Bε

rl
(ϑl)

∥N̄n − Λ̄ϑ,n∥2N̄n
≤ n−3

∑
i,j,k

sup
ϑ∈Bε

rl
(ϑl)

⟨Ni − Λϑ,i, Nj − Λϑ,j⟩Nk
,

which again is dominated by the sub-sum pertaining to i ̸= j ̸= k ̸= i. With

Lemma 1 this converges to

E
{

sup
ϑ∈Bε

rl
(ϑl)

⟨N1 − Λϑ,1, N2 − Λϑ,2⟩N3

}
.

By Lemma 4 and the choice of rl, this term is within δ-distance of infϑ∈Bε
rl
(ϑl)

∥EΛϑ0 −EΛϑ∥2EΛϑ0
. The corresponding lower bound may be obtained in a similar

way. This concludes the proof of the lemma.

Proof of Theorem 1. Let ε > 0 be given. We need to show that

P
(
lim sup
n→∞

{∥ϑn − ϑ0∥ ≥ ε}
)

= 0.
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But

{∥ϑn − ϑ0∥ ≥ ε} ⊂
{

inf
ϑ:∥ϑ−ϑ0∥≥ε

∥N̄n − Λ̄ϑ,n∥N̄n
< inf

ϑ:∥ϑ−ϑ0∥<ε
∥N̄n − Λ̄ϑ,n∥N̄n

}
⊂

{
inf

ϑ:∥ϑ−ϑ0∥≥ε
∥N̄n − Λ̄ϑ,n∥N̄n

< ∥N̄n − Λ̄ϑ0,n∥N̄n

}
.

From Lemma 6, the left-hand side goes to

inf
ϑ:∥ϑ−ϑ0∥≥ε

∥EΛϑ0 − EΛϑ∥EΛϑ0
,

which is positive by (2.1). At the same time, the right-hand side tends to ∥EΛϑ0−
EΛϑ0∥EΛϑ0

= 0. This proves Theorem 1.

The following lemma expresses certain point process integrals in terms of the

associated innovation martingale M̄n.

Lemma 7. We have∫
I

[
Λ̄ϑ,n(t)− Λ̄ϑ0,n(t)

] ∂

∂ϑ
Λ̄ϑ,n(t)N̄n(dt)

∣∣∣
ϑ=ϑn

=

∫
I
M̄n(t)

∂

∂ϑ
Λ̄ϑ,n(t)M̄n(dt)

∣∣∣
ϑ=ϑn

+

∫
I
M̄n(t)

∂

∂ϑ
Λ̄ϑ,n(t)Λ̄ϑ0,n(dt)

∣∣∣
ϑ=ϑn

. (4.13)

Proof. This is an immediate consequence of the identity

dN̄n = dM̄n + dΛ̄ϑ0,n, (4.14)

and the fact that ϑn minimizes ∥N̄n − Λ̄ϑ,n∥2N̄n
in ϑ and is in the inner open set

of Θ, whence ∫
I

[
N̄n(t)− Λ̄ϑ,n(t)

] ∂

∂ϑ
Λ̄ϑ,n(t)N̄n(dt) = 0 at ϑ = ϑn.

If we multiply (4.13) by n1/2 and replace N̄n by M̄n, we have with the

parametric process

αn(ϑ) = n1/2

∫
I

[
Λ̄ϑ,n(t)− Λ̄ϑ0,n(t)

] ∂

∂ϑ
Λ̄ϑ,n(t)M̄n(dt),

where αn(ϑ0) = 0. With

βn(ϑ) = n1/2

∫
I
M̄n(t)

∂

∂ϑ
Λ̄ϑ,n(t)M̄n(dt),

γn(ϑ) = n1/2

∫
I
M̄n(t)

∂

∂ϑ
Λ̄ϑ,n(t)Λ̄ϑ0,n(dt),
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then, after multiplication with n1/2, the assertion of Lemma 7 is

αn(ϑn) + n1/2

∫
I

[
Λ̄ϑ,n(t)− Λ̄ϑ0,n(t)

] ∂

∂ϑ
Λ̄ϑ,n(t)Λ̄ϑ0,n(dt)

∣∣
ϑ=ϑn

= βn(ϑn) + γn(ϑn). (4.15)

Since, by Theorem 1, ϑn → ϑ0 with probability one, we have αn(ϑn) = αn(ϑ0)+

oP(1) = oP(1), once it has been proved that {αn} is uniformly tight in the space

C(Θ), say uniformly C-tight, of all bounded continuous functions on Θ.

For processes depending on univariate parameters, Billingsley (1968) presents

a detailed analysis of tightness tools and techniques. Bickel and Wichura (1971)

is an important reference for multiparameter processes. Their work is mainly

focussed on stochastic processes with paths in Skorokhod spaces, requiring the

incorporation of multidimensional increments. Here the processes αn (and sim-

ilarly βn and γn) are continuous processes in the parameter ϑ, and simple in-

crements suffice to guarantee tightness. We first study the local behavior of the

processes αn.

Lemma 8. The process αn admits the representation

αn(ϑ) = n1/2

∫
I
[EΛϑ(t)− EΛϑ0(t)]E

∂

∂ϑ
Λϑ(t)M̄n(dt) + oP(1),

where the remainder converges to zero uniformly on compact subsets of Θ. Fur-

thermore, the leading term is C-tight.

Proof. To prove the lemma, note that[
Λ̄ϑ,n − Λ̄ϑ0,n

] ∂

∂ϑ
Λ̄ϑ,n

=
[
Λ̄ϑ,n − Λ̄ϑ0,n

]
E

∂

∂ϑ
Λϑ +

[
Λ̄ϑ,n − Λ̄ϑ0,n

] [ ∂

∂ϑ
Λ̄ϑ,n − E

∂

∂ϑ
Λϑ

]
= [EΛϑ − EΛϑ0 ]E

∂

∂ϑ
Λϑ −

[
Λ̄ϑ0,n − EΛϑ0

]
E

∂

∂ϑ
Λϑ

+
[
Λ̄ϑ,n − EΛϑ

]
E

∂

∂ϑ
Λϑ +

[
Λ̄ϑ,n − Λ̄ϑ0,n

] [ ∂

∂ϑ
Λ̄ϑ,n − E

∂

∂ϑ
Λϑ

]
≡ [EΛϑ − EΛϑ0 ]E

∂

∂ϑ
Λϑ − r1n + r2n + r3n.

Integration w.r.t. M̄n therefore leads to

αn(ϑ) = α̃n(ϑ)− α1
n(ϑ) + α2

n(ϑ) + α3
n(ϑ),

where
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αi
n(ϑ) = n1/2

∫
I
rin(t, ϑ)M̄n(dt), i = 1, 2, 3,

α̃n(ϑ) = n1/2

∫
I
[EΛϑ − EΛϑ0 ]E

∂

∂ϑ
ΛϑM̄n(dt).

Therefore, the lemma can be proved by showing that α̃n, α
1
n, α

2
n and α3

n are
uniformly C-tight, and that α1

n, α
2
n and α3

n go to zero for each fixed ϑ.

Lemma 9. The processes {α̃n} are uniformly C-tight on compact subsets of Θ
containing ϑ0.

Proof. Obviously, α̃n(ϑ0) = 0. In particular, there exists at least one point
where α̃n is bounded. See Billingsley (1968), Theorem 12.3, for a discussion of
processes on the unit interval. Next we show that

E∥α̃n(ϑ)− α̃n(ϑ
′)∥2 ≤ const∥ϑ− ϑ′∥2

to complete the proof of the lemma. Now,

α̃n(ϑ)− α̃n(ϑ
′) = n1/2

∫
I
[EΛϑ − EΛϑ′ ]E

∂

∂ϑ
ΛϑdM̄n (4.16)

+n1/2

∫
I
[EΛϑ′ − EΛϑ0 ]

[
E

∂

∂ϑ
Λϑ − E

∂

∂ϑ
Λϑ′

]
dM̄n. (4.17)

Since for any two vectors a and b we have ∥a+ b∥2 ≤ 2(∥a∥2+∥b∥2), it suffices to
study the terms separately. In each case the integrand is a deterministic function
in t. Since for functions f the integrals

∫
fdMi are independent and centered,

we have

E∥n1/2

∫
I
fdM̄n∥2 = E∥

∫
I
f(dN − dΛϑ0)∥2.

Furthermore, Λϑ0 is the compensator of N so the last expectation becomes

E
{∥∥∥∫

I
fdN

∥∥∥2 − ∥∥∥∫
I
fdΛϑ0

∥∥∥2} ≤ E
{∥∥∥∫

I
fdN

∥∥∥2} =

∫
I
fT fdEΛϑ0 .

When we apply this to (4.16) and (4.17), the conclusion follows from assumptions
(2.4) - (2.5). This concludes the proof of the lemma.

Lemma 10. For all i = 1, 2, 3 and each ϑ ∈ Θ we have αi
n(ϑ) = oP(1).

Proof. We have to show that, in probability,

n1/2

∫
I

[
Λ̄ϑ0,n − EΛϑ0

]
E

∂

∂ϑ
ΛϑdM̄n → 0,

n1/2

∫
I

[
Λ̄ϑ,n − EΛϑ

]
E

∂

∂ϑ
ΛϑdM̄n → 0,

n1/2

∫
I

[
Λ̄ϑ,n − Λ̄ϑ0,n

] [ ∂

∂ϑ
Λ̄ϑ,n − E

∂

∂ϑ
Λϑ

]
dM̄n → 0.
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The two first assertions follow from

n1/2

∫
I

[
Λ̄ϑ,n − EΛϑ

]
E

∂

∂ϑ
Λϑ′dM̄n → 0 (4.18)

for all ϑ, ϑ′ ∈ Θ. The integral in (4.18), however, is

n−3/2
n∑

i,k=1

∫
I
[Λϑ,k − EΛϑ]E

∂

∂ϑ
Λϑ′dMi ≡ n−3/2

n∑
i,k=1

Uki.

The sum over i = k consists of i.i.d. centered random variables with expectation

zero, since each Mi is a martingale and every Λϑ,i is continuous in t and hence

predictable. The SLLN guarantees convergence to zero. As to the sum over

i ̸= k, we can apply Lemma 16 to get

n−3E
∥∥∥∑

k ̸=i

Uki

∥∥∥2 ≤ 2n−3
∑
k ̸=i

E∥Uki∥2.

To verify condition (5.3) there, again the martingale property and the fact that

the integrands are centered is needed. The number of (identical) summands is

O(n2), proving (4.18)

To bound α3
n, note that

α3
n(ϑ) = n−5/2

n∑
p,k,i=1

∫
I
[Λϑ,p − Λϑ0,p]

[
∂

∂ϑ
Λϑ,k − E

∂

∂ϑ
Λϑ

]
dMi ≡ n−5/2

∑
p,k,i

Upki.

Again it is easy to see that the subsum over p ̸= k ̸= i dominates the sum. For

these index combinations the assumptions of Lemma 17 are satisfied. Conclude

that

n−5E
[∥∥∥ ∑

p̸=k ̸=i

Upki

∥∥∥2] = o(1).

This completes the proof.

Lemma 11. On compact subsets Θ0 of Θ we have for all ϑ, ϑ′ ∈ Θ0

E
[
∥αi

n(ϑ)− αi
n(ϑ

′)∥2
]
≤ const∥ϑ− ϑ′∥2.

Proof. The proof is similar to that of Lemma 10. Again the inequalities of

Lemmas 15−17 are used. Details are omitted.

Next we study the process βn(ϑ).

Lemma 12. The processes βn are uniformly tight on compacta, and

βn(ϑ) = oP(1) for each ϑ. (4.19)

Hence βn → 0 uniformly on compacta.
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Proof. For pointwise convergence, note that

βn(ϑ) = n−5/2
n∑

p,k,i=1

∫
I
Mk(t)

∂

∂ϑ
Λϑ,p(t)Mi(dt).

Again we split the sum into terms where all indices are equal up to terms where

all are distinct. Since within each group the second moments of the stochastic

integrals are finite it suffices to consider the group for which p ̸= k ̸= i. Set

Upki =

∫
I
Mk

∂

∂ϑ
Λϑ,pdMi.

According to Lemma 17,

n−5E
{∥∥∥ ∑

p̸=k ̸=i

Upki

∥∥∥2}
≤ 64n−5

∑
E
∫
I

∫
I
Mk(t)Mk(s)

∂

∂ϑ
ΛT
ϑ,p(t)

∂

∂ϑ
Λϑ,q(s)Mi(dt)Mi(ds),

where the number of summands is of the order n4. This proves (4.19).

For the increment we get

βn(ϑ)− βn(ϑ
′) = n−5/2

n∑
p,k,i=1

∫
I
Mk(t)

[
∂

∂ϑ
Λϑ,p(t)−

∂

∂ϑ
Λϑ′,p(t)

]
Mi(dt).

The moment bounds are obtained as before. The required factor ∥ϑ − ϑ′∥2 is

obtained from the differentiability of E∥ ∂
∂ϑΛϑ,1 − ∂

∂ϑΛϑ′,1∥2.

Finally, we study the process γn(ϑ).

Lemma 13. We have

γn(ϑ) = n1/2

∫
I
M̄n(t)E

∂

∂ϑ
Λϑ(t)EΛϑ0(dt) + oP(1)

uniformly on compacta. Moreover, the leading term is uniformly C-tight in ϑ.

Proof. Set

γ̃n(ϑ) = n1/2

∫
I
M̄n(t)E

∂

∂ϑ
Λϑ(t)EΛϑ0(dt),

γ1n(ϑ) = n1/2

∫
I
M̄n(t)

(
∂

∂ϑ
Λ̄ϑ,n(t)− E

∂

∂ϑ
Λϑ(t)

)
EΛϑ0(dt),

γ2n(ϑ) = n1/2

∫
I
M̄n(t)

∂

∂ϑ
Λ̄ϑ,n(t)

[
Λ̄ϑ0,n(dt)− EΛϑ0(dt)

]
.
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Then γn(ϑ) = γ̃n(ϑ) + γ1n(ϑ) + γ2n(ϑ). Since

γ̃n(ϑ) = n−1/2
n∑

k=1

∫
I
Mk(t)E

∂

∂ϑ
Λϑ(t)EΛϑ0(dt)

is a sum of centered i.i.d. random variables, the CLT can be applied directly.

Also the oscillation bound E∥γ̃n(ϑ)− γ̃n(ϑ
′)∥ ≤ const∥ϑ−ϑ′∥2 is immediate from

the smoothness of E ∂
∂ϑΛϑ. The uniform convergence of γ1n and γ2n to zero follows,

as in previous cases, from the pointwise convergence to zero and the oscillation

bound, by applying inequalities in the Appendix.

For the next lemma recall Φ0 and define

Φn(ϑ) =
∂

∂ϑ

∫
I

[
Λ̄ϑ,n(t)− Λ̄ϑ0,n(t)

] ∂

∂ϑ
Λ̄ϑ,n(t)

T Λ̄ϑ0,n(dt).

Lemma 14. The matrix Φn(ϑ) admits the expansion Φn(ϑ) = Φ0(ϑ) + oP(1).

The representation is uniform on compacta.

Proof. We have

Φn(ϑ) =

∫
I

[
Λ̄ϑ,n(t)− Λ̄ϑ0,n(t)

] ∂2

∂ϑ2
Λ̄ϑ,n(t)

T Λ̄ϑ0,n(dt) (4.20)

+

∫
I

∂

∂ϑ
Λ̄ϑ,n(t)

∂

∂ϑ
Λ̄ϑ,n(t)

T Λ̄ϑ0,n(dt). (4.21)

Unlike αn, βn, and γn, the processes here are not standardized. Hence almost

sure convergence results related to the Strong Law of Large Numbers apply.

Actually, all Λ̄ϑ,n are sample means of i.i.d. nondecreasing processes. A Glivenko-

Cantelli argument yields, with probability one, uniform convergence of Λ̄ϑ,n(t)

to EΛϑ(t) uniformly in t on compact subsets of Θ. Similarly, for averages of

derivative processes.

Remark 5. Lemma 14 guarantees that in a finite sample situation, we can

replace the unknown standardizing matrix Φ0(ϑ0) by Φn(ϑn) without destroying

the distributional approximation through Nd(0, C(ϑ0)). Similarly, C(ϑ0) can be

replaced by Cn(ϑn), where Cn is the sample analog of C.

Proofs of Theorem 2 and Corollary 1. It follows from (4.15) and the pre-

ceding lemmas that, at ϑ = ϑn,

n1/2

∫
I

[
Λ̄ϑ,n(t)− Λ̄ϑ0,n(t)

] ∂

∂ϑ
Λ̄ϑ,n(dt)Λ̄ϑ0,n(dt)

= n1/2

∫
I
M̄n(t)E

∂

∂ϑ
Λϑ(t)EΛϑ0(dt)

∣∣
ϑ=ϑ0

+ oP(1). (4.22)
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Recall I = [t, t]. By Fubini’s theorem, the last integral is

n1/2

∫
I

∫
[x,t̄]

E
∂

∂ϑ
Λϑ(t)EΛϑ0(dt)M̄n(dx)

∣∣
ϑ=ϑ0

.

The left-hand side of (4.22) is n1/2Φn(ϑ̃n)(ϑn − ϑ0) for some appropriate ϑ̃n

between ϑn and ϑ0.From Lemma 14 and Theorem 1 it follows that

n1/2Φn(ϑ0)(ϑn − ϑ0)

= n1/2

∫
I

∫
[x,t̄]

E
∂

∂ϑ
Λϑ(t)EΛϑ0(dt)M̄n(dx)

∣∣
ϑ=ϑ0

+ oP(1).

Since M̄n is a sum of centered independent martingales and the integrand is a

deterministic function, the CLT can be applied to achieve asymptotic normality of

the right-hand side. The covariance matrix of the leading term is easily computed

to be (Cij)1≤i,j≤d. As to the left-hand side, apply Lemma 14 and a Slutsky-type

argument. This completes the proofs of Theorem 2 and Corollary 1.

5. Appendix

In the context of point processes or, more generally, functional data analysis,

it is important to have access to a methodology that has proved successful for

real-valued and multivariate data. One particular class of such statistics are U -

statistics, see Serfling (1980) for details. There, if Z1, . . . , denotes a sequence of

i.i.d. random vectors and, for a fixed m ∈ N, h is an integrable function of m

variates (the “kernel”), the associated U -statistic for sample size n is

Rn =
(n−m)!

n!

∑
h (Zi1 , . . . , Zim) ,

where the summation takes place over all distinct i1 ̸= . . . ̸= im from 1, . . . , n. A

crucial result in this context is the strong consistency of Rn as n → ∞:

lim
n→∞

Rn = Eh(Z1, . . . , Zm) almost surely and in the mean. (5.1)

The proof shows that, for a proper decreasing filtration G1 ⊃ G2 ⊃ . . . , (Rn,Gn) is

a reverse martingale. Then, by the Hewitt-Savage 0-1 law, the limit is constant

and has the required expectation. From Hewitt and Savage (1955), it is clear

that this also holds for random elements in more general sample spaces. In our

case, when we use U -statistics for point processes on a compact interval I, Zi

take values in the Skorokhod space D(I), which is known to be a Polish space.

See Billingsley (1968). In such situations, the arguments known for real-valued

quantities may be applied as well. With this, we may apply (5.1) when Z1, . . .

are point processes on I.
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Lemma 15. Let, for p, k = 1, . . . , n, Upk be d-variate random vectors with
E∥Upk∥2 < ∞. If

EUT
pkUql = 0 for k ̸= p, q, l or l ̸= p, q, k, (5.2)

then E
∥∥∥∑

p̸=k

Upk

∥∥∥2 ≤ 2
∑
k≶p,q

E(UT
pkUqk).

Proof. We have

E
∥∥∥ n∑

k,p=1
k ̸=p

Upk

∥∥∥2 = E
∥∥∥∑

k<p

Upk +
∑
p<k

Upk

∥∥∥2

≤ E
{∥∥∥∑

k<p

Upk

∥∥∥+
∥∥∥∑

p<k

Upk

∥∥∥}2

≤ 2E
∥∥∥∑

k<p

Upk

∥∥∥2 + 2E
∥∥∥∑

p<k

Upk

∥∥∥2.
As to the first expectation we obtain

E
∥∥∥∑

k<p

Upk

∥∥∥2 = E
{(∑

k<p

Upk

)T(∑
l<q

Uql

)}
=

∑
k<p

∑
l<q

E
(
UT
pkUql

)
=

∑
k<p,q

E
(
UT
pkUqk

)
,

in view of (5.2). Similarly,

E
∥∥∥∑

k>p

Upk

∥∥∥2 = ∑
k>p,q

E
(
UT
pkUqk

)
.

This completes the proof of the lemma.

Lemma 16. Let, for k, i = 1, . . . , n, Uki be d-variate random vectors such that
E∥Uki∥2 < ∞, and

E(UT
kiUlj) = 0 whenever one index differs from the rest. (5.3)

Then E
∥∥∥∑

k ̸=i

Uki

∥∥∥2 ≤ 2
∑
k ̸=i

E∥Uki∥2.

Proof. As in the previous proof,

E∥
∑
k ̸=i

Uki∥2 = 2E∥
∑
k<i

Uki∥2 + 2E∥
∑
k>i

Uki∥2. (5.4)

The first expectation on the right-hand side can be expanded as

E
∥∥∥∑

k<i

Uki

∥∥∥2 = ∑
k<i,l<j

E
(
UT
kiUlj

)
=

∑
k<i,j

E
(
UT
kiUkj

)
=

∑
k<i

E∥Uki∥2.
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The second expectation in (5.4) is dealt with similarly.

Our final inequality deals with triple-indexed vectors.

Lemma 17. Let Upki, for 1 ≤ p, k, i ≤ n, be d-variate random vectors satisfying

E
[
UT
pkiUqlj

]
= 0 whenever k, i, l or j differ from the rest. Then

E
∥∥∥ ∑
p̸=k ̸=i

Upki

∥∥∥2 ≤ 64
∑

E
[
UT
pkiUqki

]
,

where the summation takes place over all p, q < k < i; p, q < i < k; k < p, q <

i; i < p, q < k; k < i < p, q; or i < k < p, q.

Proof. We need the inequality

∥∥∥ l∑
j=1

aj

∥∥∥2 ≤ 2l−1
l∑

j=1

∥aj∥2,

which is valid for all vectors a1, . . . , al in Rd. It follows that

E
∥∥∥ ∑
p̸=k ̸=i

Upki

∥∥∥2
= E

∥∥∥ ∑
p<k<i

Upki+
∑

p<i<k

Upki+
∑

k<p<i

Upki+
∑

i<p<k

Upki+
∑

k<i<p

Upki+
∑

i<k<p

Upki

∥∥∥2
≤ 64

{
E
∥∥∥ ∑
p<k<i

Upki

∥∥∥2 + . . .+ E
∥∥∥ ∑
i<k<p

Upki

∥∥∥2}.
We only bound the first expectation, the others being dealt with similarly. Now,

E
∥∥∥ ∑
p<k<i

Upki

∥∥∥2 = E
{( ∑

p<k<i

Upki

)T( ∑
p<k<i

Upki

)}
=

∑
p<k<i
q<l<j

EUT
pkiUqlj .

Whenever i ̸= j, the expectation vanishes. Hence we can restrict summation to

i = j. In this case the expectations also vanish for k ̸= l. Conclude that

E
∥∥∥ ∑
p<k<i

Upki

∥∥∥2 = ∑
p,q<k<i

E
[
UT
pkiUqki

]
.
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Similarly

E
∥∥∥ ∑
p<i<k

Upki

∥∥∥2 = ∑
p,q<i<k

E
[
UT
pkiUqki

]
E
∥∥∥ ∑
k<p<i

Upki

∥∥∥2 = ∑
k<p,q<i

E
[
UT
pkiUqki

]
...

E
∥∥∥ ∑
i<k<p

Upki

∥∥∥2 = ∑
i<k<p,q

E
[
UT
pkiUqki

]
.

This completes the proof.

6. Conclusion

The paper provides a methodology to statistically study self-exciting point

processes in the context of a functional data analysis. Processes of this type

appear in such areas as market research, survival analysis, reliability, and credit

risk. The method is applied to a “Single Source Panel” of AC Nielsen, Germany

aimed at estimating the impact of TV-advertising and “Adstock-effects” on an

individual level, taking account of socio-demographic parameters. We show how

professional expertise in marketing can lead to a dynamic model, and present

results.
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