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1. Introduction

Probability and moment inequalities play an important role in the study

of properties of sums of random variables. A number of inequalities have been

derived for independent random variables; see the recent collection by Lin and

Bai (2010). The celebrated Nagaev and Rosenthal inequalities are two useful

ones. We first start with the Nagaev inequality. Let X1, . . . , Xn be mean 0

independent random variables and Sn =
∑n

i=1Xi. Further assume that for all

i, ∥Xi∥p := (E|Xi|p)1/p < ∞, p > 2. By Corollary 1.7 in Nagaev (1979), for a

positive number x, one has

P(Sn ≥ x) ≤
n∑

i=1

P(Xi ≥ yi) + exp

{
− apx

2∑n
i=1 E(X2

i 1Xi≤yi)

}
+

(∑n
i=1 E(X

p
i 10≤Xi≤yi)

βxyp−1

)βx/y

, (1.1)

where y1, . . . , yn > 0, y = maxi{yi, 1 ≤ i ≤ n}, β = p/(p+ 2) and ap = 2e−p(p+

2)−2. With

µn,p =

n∑
i=1

E(|Xi|p)
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and yi = xβ for all 1 ≤ i ≤ n, one obtains from (1.1) that

P(|Sn| ≥ x) ≤
(
1 +

2

p

)pµn,p

xp
+ 2 exp

(
−apx

2

µn,2

)
; (1.2)

see Corollary 1.8 in Nagaev (1979). If the random variables Xi, i ∈ , are inde-

pendent and identically distributed (i.i.d.), then (1.1) implies

P(|Sn| ≥ x) ≤
(
1 +

2

p

)pn∥X0∥pp
xp

+ 2 exp

(
− apx

2

n∥X0∥22

)
. (1.3)

Inequalities of this type have applications in insurance and risk management.

For example, for a small level α ∈ (0, 1), if x = xα is such that the right hand

side of (1.2) is α, then the α-quantile or value-at-risk of Sn is bounded by xα
since P(Sn ≥ xα) ≤ α. Inequality (1.2) suggests two types of bounds for the tail

probability P(Sn ≥ x): if x2 is around the variance µn,2 = var(Sn), then one can

use the Gaussian-type tail exp(−apx
2/µn,2). If x is larger, the algebraic decay

tail µn,p/x
p is needed.

In dealing with temporal or time series data, the Xi are often dependent.

Then the problem naturally arises on how to generalize the Nagaev inequality

to dependent random variables. The latter problem is quite challenging and

very few results have been obtained. Under some boundedness conditions on

conditional expectations, Basu (1985) derived a similar result. However, the

imposed conditions there appear too restrictive and they exclude many commonly

used time series models. Nagaev (2001) considered uniformly mixing processes,

a very strong type of dependence condition. In Nagaev (2007) he considered

martingales. Bertail and Clémençon (2010) dealt with functionals of positive

recurrent geometrically ergodic Markov chains; see also Rio (2000).

The Rosenthal inequality provides a bound for the moment E(|Sn|p). Rosen-
thal (1970) proved that if Xi are i.i.d., then there exists a constant Bp such that

E(|Sn|p) ≤ Bpmax(µn,p, µ
p/2
n,2 ). (1.4)

The calculation of the constant Bp has been extensively discussed in the lit-

erature; see Pinelis and Utev (1984), Johnson, Schechtman, and Zinn (1985),

Ibragimov and Sharakhmetov (2002), among others. Hitczenko (1990) obtained

the best constant for a martingale version of the Rosenthal inequality. Under var-

ious types of strong mixing conditions, the Rosenthal type inequalities have been

obtained for dependent random variables; see Shao (1988, 1995, 2000), Peligrad

(1985, 1989), Utev and Peligrad (2003), and Rio (2000). Rio (2009) and Mer-

levède and Peligrad (2011) used projections and conditional expetations. Pinelis

(2006) applied domination technique to obtain moment inequalities for super-

martingales.
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In this paper we establish Nagaev and Rosenthal-type inequalities for depen-

dent random variables under easily verifiable dependence conditions. We assume

that (Xn) is a stationary causal process of the form

Xi = g(· · · , εi−1, εi), (1.5)

where εi, i ∈ Z, are i.i.d. random variables. We adopt the functional dependence

measure introduced by Wu (2005). Let εi, ε
′
j , i, j ∈ Z, be i.i.d. random variables;

let Fn = (· · · , εn−1, εn) and X ′
n = g(F−1, ε

′
0, ε1, . . . , εn). Define the dependence

measure

θn,p = ∥Xn −X ′
n∥p

and the tail sum

Θm,p =

∞∑
i=m

θi,p.

Assume throughout the paper that the short-range dependence condition Θ0,p <

∞ holds. Let Sn =
∑n

k=1Xk and S∗
n = max1≤i≤n |Si|. Our Rosenthal and

Nagaev-type inequalities are expressed in terms of θn,p and Θm,p, and are pre-

sented in Sections 2 and 3, respectively. Those inequalities are applied to nonlin-

ear time series and kernel density estimates of linear processes. Section 4 provides

an extension to non-stationary processes.

2. A Rosenthal-type Inequality

Throughout the paper we let cp denote a constant that only depends on

p, and whose values may change from place to place. Theorem 1 provides a

Rosenthal-type inequality for the maximum partial sum S∗
n. Peligrad, Utev, and

Wu (2007) proved that, for p ≥ 2,

∥S∗
n∥p ≤ cpn

1/2
[
∥X1∥p +

n∑
j=1

j−3/2∥E(Sj |F0)∥p
]
.

This inequality can be viewed as a generalization of the Burkholder (1973, 1988)

inequality to stationary processes. The Rosenthal inequality has a different flavor

in that it relates higher moments of Sn to its variance. Rio (2009) showed a

Rosenthal-type inequality for stationary processes: for 2 < p ≤ 3, one has

∥Sn∥p ≤ cpn
1/2σN + cpn

1/p(∥X0∥p +∆
1/2
N +DN ), (2.1)

where N = min{i : 2i ≥ n} and

σN = ∥X0∥2 +
1

2

N−1∑
l=0

2−l/2∥E(S2l |F0)∥2,
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∆N =

N−1∑
l=0

2−2l/p∥E(S2
2l |F0)− E(S2

2l)∥p/2,

DN =
N−1∑
l=0

2−l/p∥E(S2l |F0)∥p.

Merlevède and Peligrad (2011) obtained the following: for all p > 2,

∥S∗
n∥p ≤ cpn

1/p

[
∥X0∥p+

n∑
k=1

∥E(Sk|F0)∥p
k1+1/p

+

( n∑
k=1

∥E(S2
k |F0)∥δp/2

k1+2δ/p

)1/(2δ)]
, (2.2)

where δ = min(1, (p− 2)−1). For 2 < p ≤ 3, (2.2) is a maximal version of Rio’s

inequality (2.1). If the Xi are independent, then E(S2
k |F0) = E(S2

k) = k∥X0∥22
and (2.2) reduces to (1.4). A key step in applying (2.2) is to deal with the

quantity

n∑
k=1

∥E(S2
k |F0)∥δp/2

k1+2δ/p
≤

n∑
k=1

∥E(S2
k |F0)− E(S2

k)∥δp/2
k1+2δ/p

+
n∑

k=1

[E(S2
k)]

δ

k1+2δ/p
.

In doing so, one needs to control ∥E(Sk|F0)∥p and ∥E(S2
k |F0) − E(S2

k)∥p/2. The

computation of the latter can be quite involved. Merlevède and Peligrad (2011)

provided an inequality in terms of individual summands that involve terms such

as E(XiXj |F0) and E(Xj |F0). The latter quantities can be controlled by using

various mixing coefficients in Bradley (2007), Rio (2000), and Dedecker et al.

(2007).

Our Theorem 1 provides an upper bound for ∥S∗
n∥p using the functional

dependence measure θn,p which is easily computable in many applications; see Wu

(2011). We do not need to deal with the quantity ∥E(S2
k |F0)− E(S2

k)∥p/2. Our

inequality is powerful enough so that the behavior of ∥S∗
n∥p for p near boundary

can also be depicted; see Example 1.

In order to provide explicit constants in our Rosenthal-type inequality, we

need the following version of the Rosenthal inequality for independent variables

taken from Johnson, Schechtman, and Zinn (1985)∥∥∥ n∑
i=1

Xi

∥∥∥
p
≤ 14.5p

log p

(
µ
1/2
n,2 + µ1/p

n,p

)
. (2.3)

We also need a version of the Burkholder inequality due to Rio (2009): if

X1, . . . , Xn are martingale differences and p ≥ 2, then∥∥∥ n∑
i=1

Xi

∥∥∥2
p
≤ (p− 1)

n∑
i=1

∥Xi∥2p. (2.4)
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Theorem 1. Assume EX1 = 0 and E(|X1|p) < ∞, p > 2. Then

∥S∗
n∥p ≤ n1/2

[ 87p
log p

n∑
j=1

θj,2 + 3(p− 1)1/2
∞∑

j=n+1

θj,p +
29p

log p
∥X1∥2

]
+n1/p

[87p(p− 1)1/2

log p

n∑
j=1

j1/2−1/pθj,p +
29p

log p
∥X1∥p

]
. (2.5)

Note that, since p > 2, we have θj,2 ≤ θj,p. Then the term
∑n

j=1 θj,2 +∑∞
j=n+1 θj,p in (2.5) can be equivalently replaced by Θ1,2+Θn+1,p. Hence we can

rewrite (2.5) as

∥S∗
n∥p ≤ cpn

1/2(Θ1,2 + ∥X1∥2) + cpn
1/p
[ ∞∑
j=1

min(j, n)1/2−1/pθj,p + ∥X1∥p
]
.

If the Xi are independent, then θj,2 = 0 and θj,p = 0 for all j ≥ 1, and (2.5)
reduces to the traditional Rosenthal inequality (1.4). The presence of Θ1,2 and∑∞

j=1min(j, n)1/2−1/pθj,p is due to dependence. It is generally convenient to
apply Theorem 1 since the functional dependence measure θj,p is directly related
to the data-generating mechanism of the underlying processes, and in many cases
it can be easily computed; see Wu (2011) for examples of linear and nonlinear

processes.

Proof of Theorem 1. For i ≥ 0 and j ≥ 0 let

Si,j =
i∑

k=1

Xk,j , where Xk,j = E(Xk|εk−j , . . . , εk).

Note that Xk,j , k ∈ Z, is j-dependent. Namely Xk,j and Xk′,j are independent
if |k − k′| > j. We write Xk as

Xk = Xk −Xk,n +
n∑

j=1

(Xk,j −Xk,j−1) +Xk,0. (2.6)

Then

∥S∗
n∥p ≤

∥∥∥ max
1≤i≤n

|Si−Si,n|
∥∥∥
p
+

n∑
j=1

∥∥∥ max
1≤i≤n

|Si,j−Si,j−1|
∥∥∥
p
+
∥∥∥ max
1≤i≤n

|Si,0|
∥∥∥
p
. (2.7)

For the second term in (2.7),∥∥∥ max
1≤i≤n

|Si,j − Si,j−1|
∥∥∥
p

≤ ∥Sn,j − Sn,j−1∥p +
∥∥∥ max
0≤i≤n−1

∣∣∣ n∑
k=n−i

(Xk,j −Xk,j−1)
∣∣∣∥∥∥

p
. (2.8)
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Note that {Xk,j −Xk,j−1, 1 ≤ k ≤ n} are also j-dependent. Moreover, Xn−k,j −
Xn−k,j−1, 0 ≤ k ≤ n − 1, are martingale differences with respect to σ(εn−k−j ,

εn−k−j+1, . . .). Thus, {|
∑n

k=n−i(Xk,j −Xk,j−1)|, 0 ≤ i ≤ n− 1} is a nonnegative

submartingale with respect to σ(εn−i−j , εn−i−j+1, . . .). By the Doob inequality,

we have∥∥∥∥∥ max
0≤i≤n−1

∣∣∣ n∑
k=n−i

(Xk,j −Xk,j−1)
∣∣∣∥∥∥∥∥

p

≤ p/(p− 1) · ∥Sn,j − Sn,j−1∥p. (2.9)

Write Yi,j =
∑(ij)∧n

k=1+(i−1)j(Xk,j − Xk,j−1), where a ∧ b := min(a, b) for two real

numbers a and b. With l = ⌊n/j⌋+ 1, we have

|Sn,j − Sn,j−1| =
∣∣∣ l∑
i=1

Yi,j

∣∣∣. (2.10)

Observe that Y1,j , Y3,j , . . . are independent and Y2,j , Y4,j , . . . are also independent.

By (2.3),

∥Sn,j − Sn,j−1∥p ≤
14.5p

log p

[∥∥∥ ∑
i is odd

Yi,j

∥∥∥
2
+
∥∥∥ ∑
i is even

Yi,j

∥∥∥
2

+
( ∑

i is odd

∥Yi,j∥pp
)1/p

+
( ∑

i is even

∥Yi,j∥pp
)1/p]

. (2.11)

By (2.4) we have, for 1 ≤ i ≤ l,

∥Yi,j∥p ≤ (p− 1)1/2[(ij) ∧ n− (i− 1)j]1/2∥X1,j −X1,j−1∥p
≤ (p− 1)1/2[(ij) ∧ n− (i− 1)j]1/2θj,p;

∥Yi,j∥2 ≤ [(ij) ∧ n− (i− 1)j]1/2θj,2.

(2.12)

Thus (2.11) implies that for 1 ≤ j ≤ n

∥Sn,j − Sn,j−1∥p ≤
29p

log p

(√
nθj,2 + (p− 1)1/2n1/pj1/2−1/pθj,p

)
. (2.13)

By (2.8)-(2.13) and noting that p/(p− 1) ≤ 2 when p ≥ 2, we obtain

n∑
j=1

∥∥∥ max
1≤i≤n

|Si,j − Si,j−1|
∥∥∥
p

≤ 87p

log p

(√
n

n∑
j=1

θj,2 + (p− 1)1/2n1/p
n∑

j=1

j1/2−1/pθj,p

)
. (2.14)
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For the first term in (2.7), using the Burkholder inequality (2.4) and a similar

argument as (2.8) and (2.9), we have∥∥∥ max
1≤i≤n

|Si − Si,n|
∥∥∥
p
≤ 3(p− 1)1/2n1/2

∞∑
j=n+1

θj,p. (2.15)

For the third term in (2.7), noting that Xk,0, k ∈ Z, are independent, again by

(2.3) and the Doob inequality, we have∥∥∥ max
1≤i≤n

|Si,0|
∥∥∥
p
≤ 29p

log p

(
n1/2∥X1∥2 + n1/p∥X1∥p

)
.

This, together with (2.7), (2.15), and (2.14), implies Theorem 1.

Example 1. Consider the nonlinear time series that is expressed in the form of

iterated random functions (see for example Diaconis and Freedman (1999)):

Xi = F (Xi−1, εi) = Fεi(Xi−1), (2.16)

where F is a bivariate measurable function and εi, i ∈ Z, are i.i.d. innovations.

Assume that there exist x0 and p > 2 such that

κp := ∥x0 − Fε0(x0)∥p < ∞ (2.17)

and the Lipschitz constant

Lp := sup
x ̸=x′

∥Fε0(x)− Fε0(x
′)∥p

|x− x′|
< 1. (2.18)

By Theorem 2 in Wu and Shao (2004), conditions (2.17) and (2.18) imply that

(2.16) has a stationary ergodic solution with ∥X0∥p ≤ |x0|+ κp/(1− Lp) =: Kp.

Also the functional dependence measure θi,p ≤ Li
p∥X0−X ′

0∥p ≤ 2KpL
i
p. We now

apply Theorem 1 to the process (Xi). Assume E(Xi) = 0 and let A = 1/2− 1/p.

Then ∑∞
j=n+1 θj,p + n−A

∑n
j=1 j

Aθj,p

2Kp
≤

∞∑
j=n+1

Lj
p +

n∑
j=1

( j
n

)A
Lj
p

≤min

( ∞∑
j=1

Lj
p, n−A

∞∑
j=1

jALj
p

)
. (2.19)

Elementary manipulations show that there exists a constant CA such that, if

Lp ≥ 1 − 1/n, the right hand side of (2.19) is less than CA/(1 − Lp), while if

Lp ≤ 1 − 1/n, it is less than CA/(n
A(1 − Lp)

1+A). Combining these two cases,
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we obtain an upper bound for (2.19) as CAmin(1/(1−Lp), 1/(n
A(1−Lp)

1+A)).

Hence by Theorem 1, we obtain

∥S∗
n∥p ≤ cpn

1/2
n∑

j=1

θj,2 + cpn
1/2K2 + cpn

1/pKp

+n1/2KpCAmin
( 1

1− Lp
,

1

nA(1− Lp)1+A

)
≤ 2K2cpn

1/2

1− L2
+

cpn
1/2Kp

1− Lp
min(1, n−A(1− Lp)

−A). (2.20)

If there exists a positive constant λ0 such that Lp < 1−λ0, then the second term

in (2.20) has magnitude O(n1/p), which together with the first term mimic the

classical Rosenthal inequality (1.4). If this well-separateness condition is violated,

then we can have a quite interesting behavior. Let Lp = 1− rn with rn → 0. If

rn ≥ 1/n, then the second term in (2.20) has order O(n1/pr
1/p−5/2
n ). If rn ≤ 1/n,

then the order becomes O(n1/2r−2
n ). As a specific example, consider the ARCH

model with Fεi(x) = εi(a
2+b2x2)1/2, where the εi are i.i.d. standard normal and

a, b > 0 are parameters. Then Lp = ∥bε0∥p. Choose p0 such that Lp0 = 1. Note

that E(|X0|p0) = ∞ since, for some C > 0, P(X0 ≥ x) ∼ Cx−p0 as x → ∞ (see

Goldie (1991)). Since Lp = Lp0 +O(|p− p0|), if p− p0 = O(rn), Lp − 1 = O(rn).

Overall, as rn ↓ 0, the second term in (2.20) has bound n1/2r−2
n min(1, (nrn)

−A).

3. A Nagaev-type Inequality

Nagaev-type inequalities under dependence have been much less studied than

Rosenthal-type inequalities for dependent random variables. If we just apply the

Markov inequality and (2.5), we only obtain that

P(S∗
n ≥ x) ≤ ∥S∗

n∥
p
p

xp
= O

(np/2

xp

)
.

In comparison, the boundO(n/xp) in (1.3) is much sharper. We also observe that,

according to Borovkov (1972), the Nagaev inequality (1.2) also holds for S∗
n, the

maximum of absolute partial sums, when X1, . . . , Xn are mean zero independent

variables:

P(S∗
n ≥ x) ≤

(
1 +

2

p

)pµn,p

xp
+ 2 exp

(
− 2x2

ep(p+ 2)2µn,2

)
. (3.1)

We will need the Gaussian-like tail function

Gq(y) =

∞∑
j=1

e−jqy2 , y > 0, q > 0.
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Note that supy≥1Gq(y)e
y2 = Gq(1)e. Hence if y ≥ 1, Gq(y) ≤ Gq(1)ee

−y2 . In

this section C,C1, . . . denote constants that do not depend on x and n.

Theorem 2. (i) Assume that

ν :=

∞∑
j=1

µj < ∞, where µj = (jp/2−1θpj,p)
1/(p+1). (3.2)

Then for all x > 0,

P(S∗
n ≥ x) ≤ cp

n

xp
(
νp+1 + ∥X1∥pp

)
+4

∞∑
j=1

exp

(
−
cpµ

2
jx

2

nν2θ2j,2

)
+ 2 exp

(
− cpx

2

n∥X1∥22

)
. (3.3)

(ii) Assume that Θm,p = O(m−α), α > 1/2 − 1/p. Then there exist positive

constants C1, C2 such that for all x > 0,

P(S∗
n ≥ x) ≤

C1Θ
p
0,p n

xp
+ 4G1−2/p

(
C2x√
nΘ0,p

)
. (3.4)

(iii) If Θm,p = O(m−α), α < 1/2− 1/p, then a variant of (3.4) holds:

P(S∗
n ≥ x) ≤

C1Θ
p
0,p n

p(1/2−α)

xp
+ 4G(p−2)/(p+1)

(
C2x

n(2p−1−2αp)/(2+2p)Θ0,p

)
.

(3.5)

If the Xi are independent, then θj,2 = θj,p = 0 for all j ≥ 1, and hence (3.3)

reduces to the traditional Nagaev inequality (3.1).

We remark that those inequalities are non-asymptotic and they hold for any

n and x. The exponential term in (3.3) decays to zero very quickly as j → ∞. If

x =
√
nν1+1/py with y > 0, then µ2

jx
2/(nν2θ2j,2) ≥ j1−2/py2 and

∞∑
j=1

exp
(
−

cpµ
2
jx

2

nν2θ2j,2

)
≤

∞∑
j=1

exp(−cpj
1−2/py2)

is an upper bound for the second term in (3.3). Consider the two cases y ≥ 1

and y < 1 separately, we conclude that there exists constants cp and c′p such that

the second term in (3.3) is bounded by c′p exp[−cpx
2/(nν2+2/p)].

We now compare conditions on dependence in (i) and (ii). Consider the

special case θj,p = j−β. Then (3.2) requires β > 3/2, and (ii) only requires

β > 3/2 − 1/p. On the other hand, (3.2) implies Θm,p = o(m1/p−1/2) since∑2m−1
j=m θj,p ≤ (

∑2m−1
j=m θ

1/q
j,p )

q, where q = 1+1/p, andm(p/2−1)/(1+p)
∑2m−1

j=m θ
1/q
j,p ≤
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∑2m−1
j=m µj = o(1). In case (iii) the dependence is stronger; as compensation, we

need a larger numerator np(1/2−α) than n, and the term n(2p−1−2αp)/(2+2p) in (3.5)

is also larger than
√
n.

Proof of Theorem 2. (i) We use the decomposition (2.6). Let λj , j = 1, . . . , n

be a positive sequence such that
∑n

j=1 λj ≤ 1. For i ∈ Z and ℓ ∈ N, write

⌊i⌋ℓ := ⌊i/ℓ⌋ℓ. Define

Mi,j =
i∑

k=1

(Xk,j −Xk,j−1) and M∗
n,j = max

1≤i≤n
|Mi,j |. (3.6)

Then Sn,n − Sn,0 =
∑n

k=1(Xk,n − Xk,0) =
∑n

j=1Mn,j . For each 1 ≤ j ≤ n, as

in (2.10), let Yi,j =
∑(ij)∧n

k=1+(i−1)j(Xk,j −Xk,j−1), 1 ≤ i ≤ l, where l = ⌊n/j⌋+ 1.

Define W e
s,j =

∑s
i=1(1+(−1)i)/2 ·Yi,j and W o

s,j =
∑s

i=1(1− (−1)i)/2 ·Yi,j . Then

P(M∗
n,j ≥ 3λjx) ≤ P

(
max
i≤n

|M⌊i⌋j ,j | ≥ 2λjx

)
+ P

(
max
i≤n

|M⌊i⌋j ,j −Mi,j | ≥ λjx

)
≤ P

(
max
s≤l

|W e
l,j | ≥ λjx

)
+ P

(
max
s≤l

|W o
l,j | ≥ λjx

)
+
n

j
P
(
max
i≤j

|Mi,j | ≥ λjx
)
. (3.7)

Since Y2,j , Y4,j , . . . , are independent, from (3.1) and (2.12) we obtain

P(max
s≤l

|W e
l,j | ≥ λjx) ≤ cp

(n/j)E(|Y2,j |p)
(λjx)p

+ 2 exp
(
− cp

(λjx)
2

nθ2j,2

)
≤ cp

n

xp
jp/2−1θpj,p

λp
j

+ 2 exp
(
− cp

(λjx)
2

nθ2j,2

)
. (3.8)

A similar inequality holds for W o
s,j . For the last term in (3.7), noting that, by

(2.4) and the Doob inequality,

E(max
1≤i≤j

|Mi,j |p) ≤ 2p−1E
(
|Mj,j |p + max

1≤i≤j

∣∣∣ j∑
k=i

(Xk,j −Xk,j−1)
∣∣∣p) ≤ cpj

p/2θpj,p,

we have

P(M∗
n,j ≥ 3λjx) ≤ cp

n

xp
jp/2−1θpj,p

λp
j

+ 4 exp
(
− cp

(λjx)
2

nθ2j,2

)
. (3.9)

Since ∥X1,0∥ ≤ ∥X1∥2 and ∥X1,0∥p ≤ ∥X1∥p, by (3.1), we have

P

(
max
1≤i≤n

|Si,0| ≥ x

)
≤ cp

n∥X1∥pp
xp

+ 2 exp

(
− cpx

2

n∥X1∥22

)
.
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Choose λj = µj/ν. By (2.6) and (2.15), we obtain (3.3) in view of

Θ
p/(p+1)
n+1,p ≤

∞∑
l=n+1

θ
p/(p+1)
l,p ≤

∞∑
l=n+1

( l

n

)(p/2−1)/(p+1)
θ
p/(p+1)
l,p ,

P(S∗
n ≥ 5x) ≤

n∑
j=1

P(M∗
n,j ≥ 3λjx)

+P

(
max
1≤i≤n

|Si − Si,n| ≥ x

)
+ P

(
max
1≤i≤n

|Si,0| ≥ x

)
.

(ii) Let 0 = τ0 < τ1 < . . . < τL = n be a sequence of integers. As in (3.6), write

Si,n − Si,0 =

L∑
l=1

M̆i,l, where M̆i,l =

i∑
k=1

(Xk,τl −Xk,τl−1
).

Then there exists a constant cp > 0 such that

∥M̆i,l∥p√
i

≤ cp

τl∑
i=1+τl−1

θi,p =: cpθ̆l,p and
∥M̆i,l∥2√

i
≤

τl∑
i=1+τl−1

θi,2 := θ̆l,2.

Let M̆∗
n,l = maxi≤n |M̆i,l|. Again let λ̆1, . . . λ̆L be a positive sequence with∑L

l=1 λ̆l ≤ 1. With the argument in (3.7), (3.8), and (3.9), we similarly obtain

P(M̆∗
n,l ≥ 3λ̆lx) ≤ cp

n

xp

τ
p/2−1
l θ̆pl,p

λ̆p
l

+ 4 exp
(
− cp

(λ̆lx)
2

nθ̆2l,2

)
.

Let µ̆l = (τ
p/2−1
l θ̆pl,pΘ

−p
0,p)

1/(p+1), ν̆L =
∑L

l=1 µ̆l, and λ̆l = µ̆l/ν̆L. Using (3.10), we
have

P(S∗
n ≥ 5x) ≤

L∑
l=1

P(M̆∗
n,l ≥ 3λ̆lx)

+P

(
max
1≤i≤n

|Si − Si,n| ≥ x

)
+ P

(
max
1≤i≤n

|Si,0| ≥ x

)
≤ cp

n

xp
νp+1
L + 4

L∑
l=1

exp(−cp
(λ̆lx)

2

nθ̆2l,2
)

+cp
np/2Θp

n+1,p

xp
+ cp

n∥X0∥pp
xp

+ 2 exp

(
− cpx

2

n∥X0∥2

)
. (3.10)

We now show that the above relation implies (3.4). Let A = (1/2− 1/p)p/(1 + p)
and B = αp/(1 + p). Since θ̆l,p ≤ Θτl−1+1,p, we have

ν̆L =

L∑
l=1

(τ
p/2−1
l θ̆pl,p)

1/(p+1)
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= O(1)

L∑
l=1

(τ
1/2−1/p
l τ−α

l−1)
p/(1+p)

= O(1)
L∑
l=1

τAl
τBl−1

.

If A < B, choose ρ ∈ (A/B, 1), L = 1 + ⌊(log log n)/(log ρ−1)⌋, and τl =
⌊nρL−l⌋, 1 ≤ l ≤ L. Since A < ρB and τAl /τBl−1 ∼ nρL−l(A−ρB), elementary

calculation shows that
∑L

l=1 τ
A
l /τBl−1 = O(1). Let x =

√
nΘ0,pν̆

1+1/p
L y, then

(λ̆lx)
2

nθ̆2l,2
=

µ̆2
l ν̆

2/p
L Θ2

0,py
2

θ̆2l,2
≥

µ̆
2+2/p
l Θ2

0,py
2

θ̆2l,2
= τ

1−2/p
l y2,

and the second term on the right hand side of (3.10) is bounded by
∑∞

l=1

4 exp(−cpl
1−2/py2), which implies (3.4).

If A > B, let r = (A/B)1/(A−B), τl = ⌊n/rL−l⌋, and L = 1 + ⌊(log n −
1)/(log r)⌋. Then ν̆L = O(nA−B). Since A − B = (1/2− 1/p− α)p/(1 + p), we
have, by (3.10),

P(|S∗
n| ≥ 5x) =

O(np(1/2−α))Θp
0,p

xp
+4

L∑
l=1

exp
(
− cp

(λ̆lx)
2

nθ̆2l,2

)
+2 exp

(
− cpx

2

n∥X0∥2
)
.

Let x =
√
nΘ0,pν̆Ly, then

(λ̆lx)
2

nθ̆2l,2
=

µ̆2
lΘ

2
0,py

2

θ̆2l,2
=

(θ̆l,p/Θ0,p)
2p/(p+1)τ

(p−2)/(p+1)
l y2

(θ̆l,2/Θ0,p)2
≥ τ

(p−2)/(p+1)
l y2,

and (3.5) follows.

Remark 1. We consider the boundary case of Theorem 2 with α = 1/2 − 1/p.
Recall the proof of the Theorem 2 for the definitions of A, B, and ν̆L. Now we
have A = B. Let τl = 2l for 1 ≤ l < L, where L = ⌊(log n)/(log 2)⌋, we have
νL = O(log n). Then the argument there implies the following upper bound:
there exist positive constants C1 and C2 such that for all x > 0,

P(|S∗
n| ≥ x) ≤

C1Θ
p
0,p n(log n)

p+1

xp
+ 4G(p−2)/(p+1)

[ C2x

Θ0,p
√
n log n

]
.

Example 2. (Kernel Density Estimation) Consider estimating the marginal den-
sity of the linear process Yi =

∑∞
j=0 ajεi−j , where (aj)

∞
j=0 are real coefficients and

the εj are i.i.d. innovations with density fε satisfying f∗ := supu[fε(u)+|f ′
ε(u)|] <

∞. Based on the data Y1, . . . , Yn, we estimate the marginal density f of Yi by

f̂n(u) =
1

nbn

n∑
i=1

K
(u− Yi

bn

)
,
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where bn is the bandwidth sequence with bn → 0 and nbn → ∞, and K is a
bounded kernel function with support [−1, 1]. We want an upper bound for the
tail probability P(|f̂n(u) − Ef̂n(u)| ≥ x). The latter problem has been studied
for i.i.d. random variables; see Louani (1998), Gao (2003), and Joutard (2006),
among others. However, the case of dependent random variables has been largely
untouched.

Assume a0 = 1. Let Wi−1 =
∑∞

j=1 ajεi−j = Yi − εi, Fi−1 = (. . . , ϵi−2, ϵi−1),
and

f̂⋄
n(u) =

1

nbn

n∑
i=1

E
[
K
(u− Yi

bn

)∣∣∣Fi−1

]
=

1

n

n∑
i=1

Xi,

where

Xi =

∫ 1

−1
K(v)fε(u−Wi−1 − vbn)dv.

We compute the functional dependence measure of Xi. Let W ′
i−1 = Wi−1 −

aiε0 + aiε
′
0, where ε′0, εl, l ∈ Z, are i.i.d. Then |Xi −X ′

i| ≤ |ai||ε0 − ε′0|κ, where
κ = f∗

∫ 1
−1 |K(v)|dv. Assume E(|ε0|q) < ∞, q > 0. Since |Xi| ≤ κ and |X ′

i| ≤ κ,
we obtain

E(|Xi −X ′
i|p) ≤ E[min(2κ, |ai||ε0 − ε′0|κ)p]

≤ (2κ)pE[min(1, |ai||ε0 − ε′0|)min(p,q)]
≤ (2κ)p(|ai|min(p,q))E[|ε0 − ε′0|min(p,q)].

Hence the the functional dependence measure of Xi, θi,p = O(|ai|min(1,q/p)). As-
sume that

∞∑
i=1

(ip/2−1|ai|min(q,p))1/(p+1) < ∞.

By Theorem 2(i), there exists constants C1, C2, C3 > 0 such that, for all y > 0,

P[|f̂⋄
n(u)− Ef̂⋄

n(u)| ≥ y] = P(|X1 + · · ·+Xn − nEX1| ≥ ny)

≤ C1n

(ny)p
+ C3 exp

(
− C2(ny)

2

n

)
. (3.11)

Since Di := K((u − Yi)/bn) − E[K((u − Yi)/bn)|Fi−1], i = 1, . . . , n, are martin-
gale differences bounded by K2 = 2 supu |K(u)| and E(D2

i |Fi−1) ≤ bnK3, where
K3 = f∗

∫ 1
−1K

2(v)dv, by Freedman (1975)’s martingale exponential inequality,
we obtain

P[|fn(u)− f̂⋄
n(u)| ≥ y] ≤ 2 exp

[
− (nbny)

2

2nbnyK2 + 2nbnK3

]
= 2 exp

[
− nbny

2

2yK2 + 2K3

]
. (3.12)
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For sufficiently large n, bn ≤ K3. So by (3.11) and (3.12), we have the upper

bound

P[|fn(u)− Efn(u)| ≥ 2y] ≤ 3 exp
[
− nbny

2

2yK2 + 2K3

]
+

C1n

(ny)p
.

Hence, if y ≥ (log n)/
√
nbn, the tail probability P[|fn(u)− Efn(u)| ≥ 2y] has an

upper bound with order n/(ny)p = n1−py−p.

4. Extension to Non-stationary Processes

The inequalities for the stationary case can be generalized to causal non-

stationary processes without essential difficulties. Consider the non-stationary

process

Xi = gi(· · · , εi−1, εi), (4.1)

where εi, i ∈ Z, are i.i.d. and the gi are measurable functions. If gi does not

depend on i, then (4.1) reduces to the stationary process (1.5). For any random

vector (X1, . . . , Xn), one can always find g1, . . . , gn and independent random vari-

ables εi uniformly distributed over [0, 1] such that (Xi)
n
i=1 and (gi(ε1, . . . , εi))

n
i=1

have the same distribution (see for example Rosenblatt (1952) and Wu and Miel-

niczuk (2010)). We define a uniform functional dependence measure. Again let

εi, ε
′
j , i, j ∈ Z, be i.i.d. and assume for all i that E(|Xi|p) < ∞, p > 2, and

E(Xi) = 0. For m ≥ 0 let

θ∗m,p = sup
i

∥Xi − gi(· · · , εi−m−1, ε
′
i−m, εi−m+1, . . . , εi)∥p,

and define the tail sum Θ∗
m,p =

∑∞
j=m θ∗j,p. A careful check of the proofs of

Theorems 1 and 2 suggest that they remain valid if we instead use the uniform

functional dependence measure θ∗m,p. The details are omitted.
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