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Abstract: Species assemblage comparison is important in many ecological studies.

In this paper, we develop a novel test for comparing species assemblages when

abundance data from multiple quadrats are available. The test is based on the

zero-inflated Poisson mixture model which we introduce to characterize the species

assemblage given abundance data from multiple quadrats. We present a simulation

study to evaluate the performance of our proposed test. The application of our test

is further demonstrated on an ecological dataset.
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1. Introduction

Comparison of species assemblages has important applications in ecology,

since it provides crucial information about the spatial and temporal variations of

ecosystems. There are two typical types of data collected in ecological studies:

abundance-based data that contains the information of counts of each observed

species in each sampling unit, and incidence-based data that only notes whether

a species is present or absent in each sampling unit. Depending on the sampling

procedure, the abundance-based data can be further divided into two categories.

In one, the whole sampling area is treated as a single sampling unit, and the count

information of each observed species is summarized for the whole area. The other

has the sampling area divided into numerous plots, a sample of plots is randomly

taken, and the count information of each observed species is recorded for each of

the sampled plots. Following the terminology commonly used in ecology, we call

those plots quadrats. We refer to the first type as abundance data from a single

quadrat, and refer to the second type as abundance data from multiple quadrats.

In the literature, mixture models are popular choices to model the ecological

data due to their capabilities to account for heterogeneity among species (see, for

example, Ord and Whitmore (1986), Bunge and Fitzpatrick (1993), Chao and

Bunge (2002), Böhning and Schön (2005), Mao and Colwell (2005), Mao (2006)).

More specifically, for incidence-based data, the binomial mixture model is usually
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used, and for abundance data from a single quadrat, the Poisson mixture model

is used. In Mao and Li (2009), a testing procedure was proposed to compare

species assemblages under the binomial mixture model when the incidence-based

data are available. Recently Li, Mao, and Wang (2012) developed a testing pro-

cedure under the Poisson mixture model when the abundance data from a single

quadrat are available. In this paper, we focus on the species assemblage com-

parison problem when the abundance data from multiple quadrats are available.

We also choose to work on the comparison problem under the mixture model

framework. For this purpose, we first introduce the zero-inflated Poisson mix-

ture model for abundance data from multiple quadrats. Based on this mixture

model, the comparison of species assemblages amounts to comparing the total

numbers of species and the mixing distributions in the zero-inflated Poisson mix-

ture model. However, neither of them can be well estimated nonparametrically in

practice. To circumvent these difficulties, we develop a procedure for comparing

some functions of the total numbers of species and the mixing distributions in-

stead of comparing them directly. Those functions can be readily estimated and

at the same time we show that the comparison of those functions is equivalent

to the comparison of the total numbers of species and the mixing distributions,

which is ultimately equivalent to the comparison of species assemblages under

our zero-inflated Poisson mixture model.

The rest of the paper is organized as follows. In Section 2, we describe our

zero-inflated Poisson mixture model for abundance data from multiple quadrats.

In Section 3, we introduce the hypothesis testing problem associated with the

species assemblage comparison problem under the zero-inflated Poisson mixture

model. In Section 4, we describe our testing procedure for comparing species

assemblages. In Section 5, we report some simulation studies to evaluate the

performance of our proposed test. In Section 6, we demonstrate the application

of our test to an ecological data set. All proofs are collected in the Appendix.

2. Zero-inflated Poisson Mixture Model

To introduce some necessary notation, we consider two species assemblages.

Each assemblage is divided into numerous quadrats. A sample of Ki (i = 1, 2)

quadrats is taken from assemblage i. A species is either present or absent in a

quadrat. If the species is present, the count of the species is recorded. Define

(i) ci: the unknown total number of species in assemblage i;

(ii) Xijk: the number of individuals from species j observed in quadrat k in

assemblage i.

If the species j is absent in quadrat k in assemblage i, then Xijk = 0. Typically,

to model the count data Xijk, the Poisson distribution can be used. However, in
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many ecological data sets, some species may be present only in a small number

of quadrats, which leads to a large frequency of zeros in the data. To account for

this, we use the zero-inflated Poisson model. More specifically, the distribution

of Xijk is given by

Pr(Xijk = xijk|πij , λij) =

1− πij , if xijk,= 0,

πij
exp(−λij)

1−exp(−λij)

λ
xijk
ij

xijk!
, if xijk > 0,

(2.1)

where πij is the probability of species j in assemblage i present in a generic

quadrat and λij is the rate parameter of Poisson distribution for species j. It is

easy to see that this model includes the regular Poisson as a special case with

πij = 1 − exp(−λij). Define Zijk = I{Xijk ̸= 0}, where I{A} is the indicator

function. The zero-inflated Poisson can be written as

Pr(Xijk = xijk, Zijk = zijk|πij , λij)

= π
zijk
ij (1− πij)

1−zijk

{
exp(−λij)

1− exp(−λij)

λ
xijk

ij

xijk!

}zijk

.

Usually πij and λij vary among species in one assemblage. To account for this

heterogeneity among species, we assume that the πij are drawn from a latent

distribution Gi, the λij are drawn from a latent distribution Hi, and the πij and

the λij are independent. We further assume that, conditional on πij and λij , the

Xijk from each species are independent across all the Ki quadrats. Therefore,

the likelihood function for assemblage i can be written as

L(ci, Gi,Hi) =

ci∏
j=1

∫ Ki∏
k=1

πzijk(1− π)1−zijkdGi(π)

×
∫ Ki∏

k=1

{
exp(−λ)

1− exp(−λ)

λxijk

xijk!

}zijk

dHi(λ).

We refer to this as the zero-inflated Poisson mixture.

3. Hypothesis Testing Problem

In the zero-inflated Poisson mixture model, species assemblage i is charac-

terized by the number of species ci and the mixing distributions Gi and Hi. Then

comparing two species assemblages can be formulated as the hypothesis testing

problem

H0 : c1=c2, G1=G2, H1=H2 versus Ha : c1 ̸= c2 or G1 ̸= G2, or H1 ̸= H2.

(3.1)
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Since it is difficult to verify parametric distribution assumptions for theGi andHi

in practice, we take a nonparametric approach. To develop a testing procedure,

one might first estimate {c1, c2, G1, G2,H1,H2} nonparametrically. However, the

ci and Gi cannot be estimated well (e.g., Bunge and Fitzpatrick (1993), Huggins

(2001), Link (2003), Mao (2006)). To circumvent such difficulties, we search for

another hypothesis that is equivalent to (3.1), for which the parameters in the

hypothesis admit close-form estimators. Toward this end, take

gi(x) = ci

∫
πdGi(π)

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ),

τi(h) = ci

∫
(1− (1− π)h)dGi(π),

for i = 1, 2, h = 1, 2, . . . and x = 1, 2, . . .. It is not difficult to see that τi(1) =∑∞
x=1 gi(x), and that τi(h) is the species accumulation function, used widely in

the ecology literature, and the desired result follows.

Theorem 1. Given that the Hi have bounded support, c1 = c2, G1 = G2, and

H1 = H2 if and only if g1(x) = g2(x) for x = 1, 2, . . . , and τ1(h) = τ2(h) for

h = 2, 3, . . ..

Accordingly, the testing problem at (3.1) is equivalent to

H0 : g1(x) = g2(x) for x = 1, 2, . . . , and τ1(h) = τ2(h) for h = 2, 3, . . . ,

versus

Ha : g1(x) ̸= g2(x) for some x or τ1(h) ̸= τ2(h) for some h. (3.2)

To go further, we need to find estimates for gi(x) and τi(h). Let ni,k be the

number of species in assemblage i that appear in exactly k quadrats. According

to Mao, Colwell, and Chang (2005), a nonparametric estimator of τi(h) is

τ̂i(h) =

Ki∑
k=1

{
1−

(
Ki−h

k

)(
Ki
k

) }
ni,k, h = 1, 2, . . . ,Ki.

To estimate gi(x), we take nv
i,k,x as the number of species that appear

in exactly k quadrats and appear x times in the v-th (v = 1, . . . , k) quadrat

among those k quadrats. Let Bij,t1,...,tk(xt1 , . . . , xtv−1 , x, xtv+1 , . . . , xtk) = {Xijt1

= xt1 , . . . , Xijtv−1 = xtv−1 , Xijtv = x,Xijtv+1 = xtv+1 . . . , Xijtk = xtk , and all

other Xijk = 0}. Then

nv
i,k,x =

ci∑
j=1

∑
1≤t1<...<tk≤Ki

∞∑
xt1=1

· · ·
∞∑

xtv−1=1

∞∑
xtv+1=1

· · ·
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×
∞∑

xtk
=1

I{Bij,t1,...,tk(xt1 , . . . , xtv−1 , x, xtv+1 , . . . , xtk)}.

Since

E[I{Bij,t1,...,tk(xt1 , . . . , xtv−1 , x, xtv+1 , . . . , xtk)}]

=

∫
πk(1− π)Ki−kdGi(π)

×
∫ {

exp(−λ)

1− exp(−λ)

}k λxt1+···+xtv−1+x+xtv+1+···+xtk

xt1 ! · · ·xtv−1 !x!xtv+1 ! · · ·xtk !
dHi(λ),

we have, for any v = 1, . . . , k,

E(nv
i,k,x) = ci

∫ (
Ki

k

)
πk(1− π)Ki−kdGi(π)

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ). (3.3)

Using the result in Mao, Colwell, and Chang (2005), gi(x) can be written as

gi(x) = τi(1)

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ)

=

Ki∑
k=1

{
1−

(
Ki−1

k

)(
Ki
k

) }
ci

∫ (
Ki

k

)
πk(1− π)Ki−kdGi(π)

×
∫

exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ). (3.4)

Therefore, based on (3.3) and (3.4), we have an unbiased estimate of gi(x),

ĝi(x) =

Ki∑
k=1

{
1−

(
Ki−1

k

)(
Ki
k

) }
ni,k,x,

where ni,k,x =
∑k

v=1 n
v
i,k,x/k. Using the simple fact that

∑∞
x=1 n

v
i,k,x = ni,k for

any v = 1, . . . , k, we have ni,k =
∑∞

x=1 ni,k,x. Therefore, τ̂i(h) can also be written

as

τ̂i(h) =

Ki∑
k=1

{
1−

(
Ki−h

k

)(
Ki
k

) } ∞∑
x=1

ni,k,x, h = 1, 2, . . . ,Ki.

Since τi(h) only admits a close-form nonparametric estimator for h = 1, . . .,

Ki and ĝi(x) is always zero for x > m, m is an arbitrarily large integer, henceforth

we consider testing the hypothesis, implied by that at (3.2),

H0 : g1(x) = g2(x) for x = 1, . . . ,m, and τ1(h) = τ2(h) for h = 2, . . . ,K,

versus
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Ha : g1(x) ̸= g2(x) for some x or τ1(h) ̸= τ2(h) for some h, (3.5)

where K = min(K1,K2), and m is some large integer. The choice of m is

discussed further in the next section.

Remark 1. Since H0 at (3.2) implies H0 at (3.5), the testing procedures pro-

posed for testing H0 at (3.5) can be also used for testing H0 at (3.2). When used

for testing H0 at (3.2), the testing procedures still control the type I error at the

nominal level but may admit a larger type II error.

4. The Proposed Test

If ηηηi,K,m = (gi(1), . . . , gi(m), τi(2), . . . , τi(K))′, the hypothesis testing prob-

lem at (3.5) can be written as

H0 : ηηη1,K,m = ηηη2,K,m versus H1 : ηηη1,K,m ̸= ηηη2,K,m, (4.1)

Let

ni = (ni,1,1, . . . , ni,1,m, . . . , ni,Ki,1, . . . , ni,Ki,m)′,

A1i = (ai,1, . . . , ai,k, . . . , ai,Ki) with ai,k = 1−
(
Ki − 1

k

)/(
Ki

k

)
,

A2i = (ai,h,k)
K,Ki

h=2,k=1 with ai,h,k = 1−
(
Ki − h

k

)/(
Ki

k

)
,

B1i = A1i
⊗

Im, and B2i = A2i
⊗

1′m,

where Im is an m-dimensional identity matrix, 1m is a vector of m ones, and
⊗

is the Kronecker product. Take Ti =

(
B1i
B2i

)
and η̂ηηi,K,m = Tini. It is not difficult

to see that η̂ηηi,K,m is the estimator of ηηηi,K,m developed in the previous section.

Let N (µ,Ω) denote the multivariate normal distribution with mean vector µ and

covariance matrix Ω.

Theorem 2. As ci → ∞, η̂ηηi,K,m − ηηηi,K,m → N (0,Wi) in distribution, where

Wi = TiViTi
′, and Vi is the covariance matrix of ni.

Therefore, given the independence of the two species assemblages, η̂ηη1,K,m −
η̂ηη2,K,m is asymptotically N (ηηη1,K,m − ηηη2,K,m,ΣK,m), where ΣK,m = T1V1T1

′ +

T2V2T2
′, and a natural test statistic for the hypothesis testing problem at (4.1)

is

RK,m = (η̂ηη1,K,m − η̂ηη2,K,m)′Σ−1
K,m(η̂ηη1,K,m − η̂ηη2,K,m).

It is easy to see that RK,m → χ2
m+K−1 in distribution under H0 at (4.1) as

ci → ∞.
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In RK,m, ΣK,m is unknown, and must be estimated. Since ΣK,m = T1V1T
′
1+

T2V2T
′
2, we study the structure of Vi in order to develop an appropriate estimator

for it. For this, let

ri,k =

∫ (
Ki

k

)
πk(1− π)Ki−kdGi(π),

si,x =

∫
exp(−λ)

1− exp(−λ)

λx

x!
dHi(λ),

si,x,y =

∫ {
exp(−λ)

1− exp(−λ)

}2λx+y

x!y!
dHi(λ),

to get the following.

Proposition 1. (a) var(ni,k,x) =
{
ciri,ksi,x + (k − 1)ciri,ksi,x,x − kcir

2
i,ks

2
i,x

}
/k.

(b) For x ̸= y, Cov (ni,k,x, ni,k,y) =
{
(k − 1)ciri,ksi,x,y − kcir

2
i,ksi,xsi,y

}
/k.

(c) For k ̸= l, Cov (ni,k,x, ni,l,y) = −ciri,ksi,xri,lsi,y.

Based on (3.3), ri,ksi,x can be estimated by ni,k,x/ĉi, where ĉi is some esti-

mator of ci. Similar to the derivations leading to (3.3), we take nv1,v2
i,k,x,y as the

number of species that appear in exactly k quadrats and that appear x times in

the v1-th quadrat and y times in the v2-th quadrate among those k quadrats.

Then, for any v1, v2 = 1, 2, . . . , k, and v1 ̸= v2,

E(nv1,v2
i,k,x,y) = ci

∫ (
Ki

k

)
πk(1− π)Ki−kdGi(π)

∫ {
exp(−λ)

1− exp(−λ)

}2λx+y

x!y!
dHi(λ).

Therefore, ri,ksi,x,y can be estimated by ni,k,x,y/ĉi, where ni,k,x,y =
∑

1≤v1<v2≤Ki

nv1,v2
i,k,x,y/

(
k
2

)
.

Plugging these estimates into Vi, we obtain an estimator for ΣK,m, denoted

Σ̂K,m, and note the following.

Proposition 2. Σ̂K,m is a positive semi-definite matrix.

Plugging Σ̂K,m into RK,m, we can reject H0 in (4.1) at a nominal level α if

R̂K,m = (η̂ηη1,K,m − η̂ηη2,K,m)′Σ̂−1
K,m(η̂ηη1,K,m − η̂ηη2,K,m) > χ2

1−α,m+K−1, (4.2)

where χ2
1−α,m+K−1 is the (1 − α) quantile of χ2

m+K−1. When implementing

this, we often encounter singular Σ̂K,m. To circumvent this, we note that the

correlations between the components of η̂ηη1,K,m− η̂ηη2,K,m are often very large, and

that the first few principal components of Σ̂K,m usually account for the most

variability. Thus we follow Mao and Li (2009) and focus on these principal
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components to test (4.1). Specifically, consider the eigenvalue decomposition

Σ̂K,m = P̂ Λ̂P̂ ′, where Λ̂ = diag{λ̂1, . . . , λ̂m+K−1}, λ̂1 ≥ · · · ≥ λ̂m+K−1 are

the eigenvalues of Σ̂K,m, and P̂ is the orthogonal matrix corresponding to the

eigenvectors of Σ̂K,m. Given a constant t in (0, 1), say t = 0.9999, take

ν̂ = min

{
j : 1 ≤ j ≤ m+K − 1,

j∑
i=1

λ̂i ≥ t

m+K−1∑
i=1

λ̂i

}
.

Let Λ̂ν̂ = diag{λ̂1, λ̂2, . . . , λ̂ν̂}, and P̂ν̂ be the matrix consisting of the first ν̂

columns of P̂ . Our testing procedure is to reject H0 at (4.1) at the nominal level

α if

R̂ν̂ = (η̂ηη1,K,m − η̂ηη2,K,m)′P̂ν̂Λ̂
−1
ν̂ P̂ ′

ν̂(η̂ηη1,K,m − η̂ηη2,K,m) > χ2
1−α,ν̂ . (4.3)

4.1. Choice of m

Recall that the ni,k,x are zero for x > m as are the ĝi(x), if we choose m

as some arbitrarily large integer. Thus, if we choose m = m1 and m2, and the

ni,k,x are zeros for x > mi (i = 1, 2), then R̂K,m1 = R̂K,m2 . Therefore R̂K,m

does not depend on the choice of m as long as it is large enough. However, when

implementing (4.2) the threshold χ2
1−α,m+K−1 does depend on the choice of m,

and different choices of m may yield different conclusions. This is not an issue

if we implement (4.3), as follows. In (4.3) the threshold χ2
1−α,ν̂ only depends on

the degree of freedom ν̂. Given t, ν̂ is determined by the nonzero eigenvalues of

Σ̂K,m, which can be shown not to depend on the choice of m as long as it is large

enough. It can be also shown that R̂ν̂ does not depend on those choices of m.

Therefore, the test at (4.3) yields the same conclusion no matter the choice of m,

as long as it is large enough that the ni,k,x are zero for x > m. Accordingly, the

test at (4.3) is recommended. We call it the eigenvalue adjusted (Eva) χ2 test,

similar to the term used in Mao and Li (2009).

4.2. Impact of using different ĉi

In our testing procedure, we need an estimator for ci. Mao (2007) found that

there is no unbiased estimate for ci. However, quite a few lower bound estimators

are available in the literature. A popular choice is Chao’s lower bound estimator

(Chao (1989)),

ĉi,Chao = ni,+ +
(Ki − 1)n2

i,1

2Kini,2
,

where ni,+ =
∑Ki

k=1 ni,k is the number of species observed in assemblage i. One

can also use the trivial upper bound estimator ĉi = ∞ in the calculation of the

test statistic in (4.3). Based on our simulations, the test tends to be conservative
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when the upper bound ĉi = ∞ is used, while it tends to be liberal if the lower

bound estimators are used. The impact of using different ĉi can be seen in our

simulation studies.

Alternatively, to avoid problems caused by the biased estimates of ci,

we can use the bootstrap method to approximate the null distribution of

R̂ν̂ . Here first generate the bootstrap resample of ni,+, denoted n∗
i,+, from

Binomial (ĉi,Chao,ni,+/ĉi,Chao). With n∗
i,+ species in assemblage i, for species j

(j = 1, . . . , n∗
i,+), randomly choose k∗i,j out of the Ki quadrats as the quadrats

in which species j appears. Here k∗i,j is a random number drawn from a zero-

truncated binomial distribution with size Ki and probability π∗
i,j , where π∗

i,j is

drawn from Q̂i with Q̂i the nonparametric maximum likelihood estimator of

Qi with dQi(π) = [(1− (1− π)Ki)dGi(π)]/[
∫
(1− (1−ϖ)Ki)dGi(ϖ)] (Mao, Col-

well, and Chang (2005)). Next, for species j (j = 1, . . . , n∗
i,+) in assemblage i,

in each one of the k∗i,j quadrats where species j appears, generate the count of

species j, X∗
ijk, from a zero-truncated Poisson distribution with rate parameter

λ∗
i,j , where λ

∗
i,j is drawn from Ĥi, the nonparametric maximum likelihood estima-

tor of Hi. For the quadrats where species j does not appear, X∗
ijk is simply zero.

Based on those X∗
ijk (i = 1, 2, j = 1, . . . , n∗

i,+, k = 1, . . . ,Ki), we can calculate

R̂∗
ν̂ = (η̂ηη∗1,K,m − η̂ηη∗2,K,m − (η̂ηη1,K,m − η̂ηη2,K,m))′P̂ ∗

ν̂ (Λ̂
∗
ν̂)

−1
(P̂ ∗

ν̂ )
′

×(η̂ηη∗1,K,m − η̂ηη∗2,K,m − (η̂ηη1,K,m − η̂ηη2,K,m)), (4.4)

where η̂ηη∗1,K,m−η̂ηη∗2,K,m, P̂ ∗
ν̂ and Λ̂∗

ν̂ are the counterparts of η̂ηη1,K,m−η̂ηη2,K,m, P̂ν̂ and

Λ̂ν̂ , respectively, based on the X∗
ijk. Repeat the resampling procedure B times

and let κ1−α be the (1− α) empirical quantile of R̂∗1
ν̂ , . . ., R̂∗B

ν̂ , where R̂∗j
ν̂ is R̂∗

ν̂

in (4.4) calculated from the j-th bootstrap resample. The Eva-bootstrap testing

procedure is to reject H0 in (4.1) at the level α if R̂ν̂ > κ1−α.

Remark 2. The proposed testing procedures can be easily extended to the com-

parison of L (L ≥ 2) species assemblages. Following earlier notation, we take,

for l = 1, . . . , L, ηηηl,K,m = (gl(1), . . . , gl(m), τl(2), . . . , τl(K))′, where m is some

arbitrarily large number and K = min(K1, . . . ,KL). Then comparing L species

assemblages can be formulated as the hypothesis testing problem

H0 : ηηη1,K,m = · · · = ηηηL,K,m versus H1 : ηηηi,K,m ̸= ηηηj,K,m for some i ̸= j.

Let ddd = (ηηη′1,K,m −ηηη′L,K,m, . . . , ηηη′L−1,K,m −ηηη′L,K,m)′. This problem is equivalent to

H0 : ddd = 000(L−1)(m−1+K) versus H1 : ddd ̸= 000(L−1)(m−1+K),

where 000p is a vector of p zeros. Denote the estimate of ηηηl,K,m by η̂ηηl,K,m, l =

1, . . . , L. A natural estimate for ddd is d̂dd = (η̂ηη′1,K,m − η̂ηη′L,K,m, η̂ηη′2,K,m − η̂ηη′L,K,m, . . .,
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η̂ηη′L−1,K,m − η̂ηη′L,K,m)′. One can easily prove that, asymptotically, d̂dd is N (ddd,ΣL),

where

ΣL =
⊕

l=1,2,...,L−1

Wl + (111L−1111
′
L−1)

⊗
WL, (4.5)

Wl is the covariance matrix of η̂ηηl,K,m, and
⊕

is the direct sum. Therefore, we can

reject H0 at the significance level α if d̂dd
′
Σ̂−1
L d̂dd > χ2

1−α,(L−1)(m+K−1), where Σ̂L

is the estimator of ΣL by plugging the estimators of the Wl in (4.5). There are

then Eva-χ2 and Eva-bootstrap tests for the L species assemblage comparison

problem. As in the two species assemblage case, the Eva-χ2 test does not depend

on the choice of m, and the Eva-bootstrap test is not affected by the choice of ĉi.

5. Simulations

We first report on a simulation study to assess the type I error of the Eva-

χ2 test. The study consisted of 36 simulation settings, determined by the total

number of species ci(c1 = c2 = 500 or 2,000), the number of quadrats Ki (K1 =

K2 = 50 or 150), the mixing distribution Gi for πij (G1 = G2 = B, logitN or

DG), and the mixing distribution Hi for λij (H1 = H2 = G , logN or DH). Here

B is the beta distribution with shape parameters 1 and 20, logitN is obtained

by letting log{π/(1−π)} be normal with mean −4 and variance 2, DG is discrete

with support points 0.01, 0.05, 0.10, and 0.15 and corresponding weights 0.65,

0.20, 0.10, and 0.05, G is the gamma distribution with shape parameter 1 and

scale parameter 2 right truncated at 20, logN is the lognormal distribution with

mean 0 and variance 1 right truncated at 20, and DH is discrete with support

points 1, 2, 5, and 10 and corresponding weights 0.65, 0.20, 0.10, and 0.05.

To investigate the effect of different estimators for ci on type I error, we

took ĉi = ĉi,Chao and ĉi = ∞ in the calculation of R̂ν̂ at (4.3). To benchmark the

performance, we also include the type I errors of the test when ĉi = ci was used in

the test. In all tests, we used t = 0.9999 in the eigenvalue decomposition to choose

ν̂, and the nominal size of the test α was set at 0.05. Tables 1 and 2 summarize

the simulated type I errors of the Eva-χ2 test based on 500 replications. From

Tables 1 and 2, we can see that the estimator of ci has a significant impact on

the type I errors. With high-quality estimators for the ci, the type I errors would

approach the nominal level. If the ci are underestimated, the Eva-χ2 test is

liberal; if ĉi = ∞ is used, the Eva-χ2 test is conservative. Tables 1 and 2 also

include the type I errors of the Eva-bootstrap test. For computation simplicity,

we only considered the Eva-bootstrap test with ĉi = ∞ used in the calculation of

R̂ν̂ . The number of bootstrap resamples, B, was 500. As we can see from Tables 1

and 2, the Eva-bootstrap test corrects the conservativeness of the corresponding

Eva-χ2 test and approximately achieves its nominal type I error. Based on the
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Table 1. The type I error of the proposed tests given different ĉi being used.
One case is represented by (ci,Ki, Gi,Hi) such that c1 = c2 = 500 or 2,000,
K1 = K2 = 50, G1 = G2 = B, logitN or DG, and H1 = H2 = G , logN or
DH .

Eva-χ2 Eva-bootstrap
(ci,Ki,Gi,Hi) ĉi = ci ĉi = ĉChao ĉi = ∞ ĉi = ∞
(500,50,B,G ) 0.052 0.090 0.018 0.044
(500,50,B,logN ) 0.056 0.100 0.022 0.054
(500,50,B,DH) 0.046 0.072 0.022 0.046
(500,50,logitN ,G ) 0.052 0.088 0.032 0.048
(500,50,logitN ,logN ) 0.050 0.086 0.028 0.048
(500,50,logitN ,DH) 0.066 0.098 0.044 0.070
(500,50,DG,G ) 0.040 0.050 0.014 0.040
(500,50,DG,logN ) 0.066 0.076 0.044 0.062
(500,50,DG,DH) 0.058 0.072 0.028 0.050
(2000,50,B,G ) 0.056 0.090 0.020 0.054
(2000,50,B,logN ) 0.056 0.092 0.012 0.044
(2000,50,B,DH) 0.048 0.086 0.026 0.050
(2000,50,logitN ,G ) 0.058 0.076 0.046 0.042
(2000,50,logitN ,logN ) 0.036 0.062 0.036 0.058
(2000,50,logitN ,DH) 0.046 0.068 0.026 0.048
(2000,50,DG,G ) 0.07 0.082 0.032 0.072
(2000,50,DG,logN ) 0.042 0.050 0.016 0.046
(2000,50,DG,DH) 0.050 0.068 0.026 0.046

simulation results, we suggest using the Eva-χ2 test with both ĉi = ĉi,Chao and

ĉi = ∞. If they yield the same conclusion, take it; otherwise, resort to the

Eva-bootstrap test.

As suggested by the referees, we also conducted simulations with a smaller

ci(c1 = c2 = 100). The simulation results were similar to the ones reported

above, indicating our procedure can work well with relatively small populations.

To investigate the effect of other estimators of ci on type I errors, we also used ĉi =

Chao’s abundance coverage estimator and Chao’s incidence coverage estimator

(Chao and Lee (1992), Chao, Ma, and Yang (1993), Lee and Chao (1994)) in the

calculation of R̂ν̂ at (4.3). As in the ĉi = ĉi,Chao case, the test based on these

estimators also tended to be liberal, rejecting more often than desired.

We also carried out a simulation study to assess the power of the Eva-

bootstrap test for detecting differences of two species assemblages, with Ki =

50 (i = 1, 2). Then each of the species assemblages can be represented by

(ci, Gi,Hi) (i = 1, 2). The exact simulation settings are listed in Table 3,

where DG, D∗
G, DH , and D∗

H are discrete distributions with support points

(0.02, 0.1, 0.2, 0.3), (0.025, 0.1, 0.2, 0.3), (1, 2, 5, 10), and (4, 2, 5, 10), respectively,

and common weights of (0.65, 0.2, 0.1, 0.05). In Settings 1-3, the two species
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Table 2. The type I error of the proposed tests given different ĉi being used.
One case is represented by (ci,Ki, Gi,Hi) such that c1 = c2 = 500 or 2,000,
K1 = K2 = 150, G1 = G2 = B, logitN or DG, and H1 = H2 = G , logN
or DH .

Eva-χ2 Eva-bootstrap
(ci,Ki,Gi,Hi) ĉi = ci ĉi = ĉChao ĉi = ∞ ĉi = ∞
(500,150,B,G ) 0.036 0.094 0.024 0.050
(500,150,B,logN ) 0.050 0.110 0.034 0.058
(500,150,B,DH) 0.064 0.086 0.014 0.048
(500,150,logitN ,G ) 0.042 0.068 0.026 0.044
(500,150,logitN ,logN ) 0.068 0.100 0.038 0.064
(500,150,logitN ,DH) 0.038 0.080 0.006 0.048
(500,150,DG,G ) 0.048 0.052 0.020 0.040
(500,150,DG,logN ) 0.050 0.052 0.032 0.048
(500,150,DG,DH) 0.056 0.062 0.034 0.052
(2000,150,B,G ) 0.038 0.088 0.012 0.038
(2000,150,B,logN ) 0.058 0.100 0.046 0.068
(2000,150,B,DH) 0.040 0.112 0.016 0.038
(2000,150,logitN ,G ) 0.042 0.062 0.030 0.058
(2000,150,logitN ,logN ) 0.044 0.080 0.034 0.050
(2000,150,logitN ,DH) 0.070 0.100 0.032 0.058
(2000,150,DG,G ) 0.058 0.056 0.034 0.052
(2000,150,DG,logN ) 0.048 0.052 0.016 0.040
(2000,150,DG,DH) 0.042 0.048 0.022 0.040

assemblages differ in only one out of the three species assemblage characteris-

tics c, G and H; in Settings 4−9, the two assemblages differ in two out of the

three characteristics; in Settings 10−13, the two assemblages differ in all three

characteristics.

The simulated power of the Eva-bootstrap test, from 500 simulations for each

setting, is reported in column “abundance-Eva” of Table 3. In this simulation

study, ignoring the count information of the observed species in each of the

sampled quadrats leads to incidence-based data. Given such data, the Eva-

bootstrap test in Mao and Li (2009) can be used to detect species assemblage

differences. We also applied the Eva-bootstrap test to the data. The simulated

powers are reported in column “incidence-Eva” of Table 3. In both cases, the

nominal level of the test was set to 0.05. To distinguish the two Eva-bootstrap

tests, we refer to the one proposed here as the abundance Eva-bootstrap test,

and the Mao and Li (2009) test as the incidence Eva-bootstrap test.

As we can see from Table 3, our abundance Eva-bootstrap test has good

power detecting a variety of species assemblage differences. Furthermore, in

Settings 1, 2, 4, 5 where the Hi are the same for both species assemblages, our

abundance Eva-bootstrap test performs similarly to the incidence Eva-bootstrap
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Table 3. The simulated power of the bootstrap adjusted χ2 tests for
abundance-based data and incidence-based data.

Setting (c1, G1,H1) (c2, G2,H2) abundance-Eva incidence-Eva
1 (500,DG,DH) (450,DG,DH) 0.144 0.138
2 (500,DG,DH) (500,D∗

G,DH) 0.256 0.260
3 (500,DG,DH) (500,DG,D∗

H) 0.480 0.054
4 (500,DG,DH) (450,D∗

G,DH) 0.202 0.204
5 (500,D∗

G,DH) (450,DG,DH) 0.716 0.706
6 (500,DG,DH) (450,DG,D∗

H) 0.546 0.138
7 (500,DG,D∗

H) (450,DG,DH) 0.524 0.132
8 (500,DG,DH) (500,D∗

G,D
∗
H) 0.456 0.234

9 (500,DG,D∗
H) (500,D∗

G,DH) 0.546 0.284
10 (500,DG,DH) (450,D∗

G,D
∗
H) 0.406 0.200

11 (500,DG,D∗
H) (450,D∗

G,DH) 0.496 0.182
12 (500,D∗

G,DH) (450,DG,D∗
H) 0.824 0.696

13 (500,D∗
G,D

∗
H) (450,DG,DH) 0.764 0.702

test, indicating that our abundance Eva-bootstrap test which is more general

does not lose efficiency for testing simpler hypotheses. In Setting 3, where the

ci and Gi are the same in both species assemblages and the assemblages differ

only in H, the incidence Eva-bootstrap test has no power. This is expected

since the incidence Eva-bootstrap test can only test H0 : c1 = c2, G1 = G2.

In the remaining settings where the assemblages differ in both H and (c,G),

the abundance Eva-bootstrap test significantly outperforms the incidence Eva-

bootstrap test. Thus, overall, our abundance Eva-bootstrap test outperforms

the incidence Eva-bootstrap test. This is not surprising since our abundance

Eva-bootstrap test uses all the information in the data, while the incidence Eva-

bootstrap test does not. Ignoring the abundance information in the data and

resorting to the simpler incidence Eva-bootstrap test can lead to significant loss

of power for detecting differences of species assemblages.

6. An Application

The Bosques Project, located in La Selva Biological Station and surrounding

areas in the Atlantic lowlands of northeastern Costa Rica, was established in

1997 to study the vegetation dynamics in tropical second-growth rain forests

(Chazdon, Redondo Brenes, and Vilchez Alvarado (2005)). One of the goals for

this project is to provide information about spatial and temporal differences in

population of seedlings in tropical second-growth rain forests. Such information

can be obtained by comparing the seedling assemblages across different sites and

over different years. To demonstrate how our proposed test can be applied to help

carry out those comparisons, we choose the seedling assemblage data collected
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from the study sites Lindero Sur (LSUR) and Tirimbina (TIR). In both sites,

all seedlings were sampled in 144 1m × 5m quadrats in 12 strips through the

50m × 200m plot. The species identity was determined for all seedlings (> 20

cm in height, but < 1 cm in diameter at breast height). In LSUR, 132 species

with 2,287 individuals were observed, and in TIR, 153 species with 3,443 were

observed. Chao’s lower bound estimators ĉi,Chao for these two sites are 169 and

196, respectively.

To determine whether there is a difference between these two seedling assem-

blages, we can apply our test. We choose m = 118 and the number of principal

components ν̂ = 4 according to t = 0.9999. The p-values of the Eva-χ2 test are

0.0015 and 0.035 given ĉi = ĉi,Chao and ĉi = ∞, used in R̂ν̂ in (4.3), respectively.

Both p-values are smaller than 0.05. Based on our simulation studies, using

ĉi = ∞ often leads to a conservative procedure. The null hypothesis is rejected

even when using ĉi = ∞. This implies that there is enough evidence to reject

the null hypothesis that there is no difference between these two seedling assem-

blages. Our Eva-bootstrap test yields a p-value 0.004, which further confirms

that there is a significant difference between them.

With abundance data from multiple quadrats, we can always treat them as

incidence data by ignoring the count information of the observed species in each

sampling quadrat and then apply the incidence Eva-bootstrap test proposed in

Mao and Li (2009) to test whether the two species assemblages are the same.

Applying the incidence Eva-bootstrap test to the same assemblages, the p-value

is 0.018. The fact that the p-value of our abundance Eva-bootstrap test is smaller

than the p-value of the incidence Eva-bootstrap test further confirms that our

abundance Eva-bootstrap test is, in general, more powerful than the incidence

Eva-bootstrap test.

For each of these seedling assemblages, one can also pool all the count in-

formation for each observed species across all the sampling quadrats and treat

the data as abundance data from a single quadrat. Then the test proposed in

Li, Mao, and Wang (2012) can be applied. The p-value from that test is 0.308,

thus finds no significant difference. The opposing results can be explained as fol-

lows. Pooling the count information and applying the test in Li, Mao, and Wang

(2012) can only test whether or not the overall abundances of the species are the

same, but it cannot tell whether or not the distributions of the abundances of

each species across the sampling quadrats are the same. The disparity between

the distributions of the abundances of each species across the sampling quadrates

can be of interest to ecologists.
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7. Concluding Remarks

In this paper, we propose a testing procedure for comparing species assem-

blages when abundance data from multiple quadrats are available. The testing

procedure is based on the zero-inflated Poisson mixture model we introduce to

characterize the abundance data from multiple quadrats. Since we use the non-

parametric approach for estimating G and H, to verify our zero-inflated Poisson

mixture model assumption, we need only check whether the zero-truncated Pois-

son distribution is a reasonable distribution for the non-zero abundances of each

observed species. Some existing goodness-of-fit procedures, for example Chi-

squared goodness-of-fit test, can be used for this purpose.

The abundance data we deal with in this paper are taken from a single snap-

shot of the species assemblages. Due to the nature of such data, our method does

not take into account the dynamics of species assemblages, i.e., how birth, death,

immigration and other factors affect the species abundance. Recently, stochastic

models have been proposed to study such dynamics when such information as

abundance data from sequential sampling or species traits is available (for ex-

ample, Alonso, Ostling, and Etienne (2008), Jabot (2010)). It is of interest to

incorporate those models into our comparison procedures in our future research.
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Appendix

Proof of Theorem 1. It is straightforward that, if c1 = c2, G1 = G2, and

H1 = H2, then g1(x) = g2(x) for x = 1, 2, . . . and τ1(h) = τ2(h) for h = 2, 3, . . ..

When g1(x) = g2(x) for x = 1, 2, . . ., τ1(1) = τ2(1) since τi(1) =
∑∞

x=1 gi(x).

Together with τ1(h) = τ2(h) for h = 2, . . . ,∞, we have c1 = c2 and G1 = G2,

following Theorem 2 of Mao and Li (2009). Therefore, g1(x) = g2(x) implies that∫
exp(−λ)

1− exp(−λ)

λx

x!
dH1(λ) =

∫
exp(−λ)

1− exp(−λ)

λx

x!
dH2(λ), x = 1, 2, . . . ,

thus∫
exp(−λ)

1− exp(−λ)

λx+y

(x+ y)!
dH1(λ) =

∫
exp(−λ)

1− exp(−λ)

λx+y

(x+ y)!
dH2(λ), (A.1)



1230 JUN LI AND JIFEI BAN

for x = 1, 2, . . . and y = 1, 2, . . .. Multiplying both sides of (A.1) with (x+y)!/x!,

we will have∫
exp(−λ)λ(x+y)/x!

1− exp(−λ)
dH1(λ) =

∫
exp(−λ)λ(x+y)/x!

1− exp(−λ)
dH2(λ),

for x = 1, 2, . . . and y = 1, 2, . . .. Because

∞∑
x=1

∫
exp(−λ)λ(x+y)/x!

1− exp(−λ)
dHi(λ) =

∫ ∞∑
x=1

exp(−λ)λ(x+y)/x!

1− exp(−λ)
dHi(λ)

=

∫
λydHi(λ),

for any positive integer y, ∫
λydH1(λ) =

∫
λydH2(λ).

Given that both H1(λ) and H2(λ) have bounded support, the moment generation

functions of H1 and H2 are identical, H1 = H2.

Proof of Theorem 2. We put Ivi,j,k,x = I{In assemblage i, species j ap-

pears exactly in k quadrats and appears x times in the v-th quadrat among

those k quadrats}. It is easy to see that nv
i,k,x =

∑ci
j=1 I

v
i,j,k,x. Since ni,k,x =∑k

v=1 n
v
i,k,x/k, ni,k,x =

∑ci
j=1

∑k
v=1 I

v
i,j,k,x/k. Therefore, ni =

∑ci
j=1 Ii,j , where

Ii,j =
( 1∑

v=1

Ivi,j,1,1
1

, . . . ,
1∑

v=1

Ivi,j,1,m
1

, . . . ,

Ki∑
v=1

Ivi,j,Ki,1

Ki
, . . . ,

Ki∑
v=1

Ivi,j,Ki,m

Ki

)′
.

Based on our assumptions, the Ii,j are i.i.d., and so {ni − E(ni)} converges to

N (0, Vi) in distribution as ci goes to ∞. Since η̂ηηi,K,m = Tini, the result follows

by using the delta method.

Proof of Proposition 1. (a) Since ni,k,x =
∑k

v=1 n
v
i,k,x/k,

var(ni,k,x) = {var(n1
i,k,x) + (k − 1)Cov (n1

i,k,x, n
2
i,k,x)}k−1.

Based on the definitions of ni,k and n1
i,k,x, {ni,0, and n1

i,k,x, k = 1, . . . ,Ki, x =

1, 2, . . .} follows a multinomial distribution with size ci and probabilities

ri,0 and ri,ksi,x. Therefore, var(n1
i,k,x) = ciri,ksi,x(1 − ri,ksi,x). We also have

Cov (n1
i,k,x, n

1
i,k,y) = −ciri,k

2si,xsi,y, and Cov (n1
i,k,x, n

1
i,l,y) = −ciri,kri,lsi,xsi,y.

To find Cov (n1
i,k,x, n

2
i,k,x), recall that n

v
i,k,x =

∑ci
j=1 I

v
i,j,k,x. Since the species

are independent of each other,

Cov (n1
i,k,x, n

2
i,k,x) =

ci∑
j=1

Cov (I1i,j,k,x, I
2
i,j,k,x)
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=

ci∑
j=1

E(I1i,j,k,xI
2
i,j,k,x)−

ci∑
j=1

E(I1i,j,k,x)E(I2i,j,k,x)

Clearly, E(I1i,j,k,x) = E(I2i,j,k,x) = ri,ksi,x and

E(I1i,j,k,xI
2
i,j,k,x) = E[

∑
1≤t1<...<tk≤Ki

∞∑
xt3=1

· · ·
∞∑

xtk
=1

I{Bij,t1,...,tk(x, x, xt3 , . . . , xtk)}]

= ri,ksi,x,x

Thus, Cov (n1
i,k,x, n

2
i,k,x) = ciri,ksi,x,x − ci(ri,ksi,x)

2 and

var(ni,k,x) =
[
ciri,ksi,x(1− ri,ksi,x) + (k − 1)

{
ciri,ksi,x,x − ci(ri,jsi,x)

2
}]

k−1

=
{
ciri,ksi,x + (k − 1)ciri,ksi,x,x − kcir

2
i,ks

2
i,x

}
k−1.

(b) Again based on the definition of ni,k,x,

Cov (ni,k,x, ni,k,y) = {Cov (n1
i,k,x, n

1
i,k,y) + (k − 1)Cov (n1

i,k,x, n
2
i,k,y)}k−1.

Similar to the proof in (a), we can obtain Cov (n1
i,k,x, n

1
i,k,y) = −ciri,k

2si,xsi,y and

Cov (n1
i,k,x, n

2
i,k,y) = ciri,ksi,x,y − ciri,k

2si,xsi,y. Therefore,

Cov (ni,k,x, ni,k,y) =
{
−ciri,ksi,xri,ksi,y + (k − 1)(ciri,ksi,x,y − cir

2
i,ksi,xsi,y)

}
k−1

=
{
(k − 1)ciri,ksi,x,y − kcir

2
i,ksi,xsi,y

}
k−1.

(c) Since Cov (ni,k,x, ni,l,y) = Cov (n1
i,k,x, n

1
i,l,y) = −ciri,ksi,xri,lsi,y.

Proof of Proposition 2. Take ni,+ =
∑Ki

k=1 ni,k, the number of species observed

in assemblage i. W.l.o.g, we assume that species j, j = 1, . . . , ni,+, is observed

in the sample. Following the notation in the proof of Theorem 2, we denote the

sample covariance matrix of Ii,1, . . . , Ii,ni,+ by Si, and its element in the j-th row

and k-th column by Si,j,k. We denote the plug-in estimate of Vi by V̂i, and its

element on the j-th row and k-th column by V̂i,j,k. In the following, we first show

that V̂i = ni,+ · Si +nininininini
′(1/ni,+ − 1/ĉi).

First of all, for any diagonal element of Si, Si,x+m(k−1),x+m(k−1) we have,

Si,x+m(k−1),x+m(k−1)

=
1

ni,+

ni,+∑
j=1

( k∑
v=1

Ivi,j,k,x
k

− 1

ni,+

ni,+∑
j=1

k∑
v=1

Ivi,j,k,x
k

)2

=
1

ni,+

ni,+∑
j=1

( k∑
v=1

Ivi,j,k,x
k

)2
−

( ni,+∑
j=1

k∑
v=1

Ivi,j,k,x
k

)2
(n2

i,+)
−1
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=
1

ni,+

ni,+∑
j=1

{ 1

k2

( k∑
v=1

Ivi,j,k,x + 2
∑

1≤v1<v2≤k

Iv1i,j,k,xI
v2
i,j,k,x

)}
−

n2
i,k,x

n2
i,+

=
1

ni,+

[
1

k2
{k · ni,k,x + k(k − 1)ni,k,x,x}

]
−

n2
i,k,x

n2
i,+

=
1

k

{
ni,k,x

ni,+
+

(k − 1)ni,k,x,x

ni,+

}
−

n2
i,k,x

n2
i,+

.

Since V̂i,x+m(k−1),x+m(k−1) is the estimate of var(ni,k,x), based on our estimating

procedure, we have

V̂i,x+m(k−1),x+m(k−1) =
1

k

{
ni,k,x + (k − 1)ni,k,x,x −

kn2
i,k,x

ĉi

}
.

Therefore, V̂i,x+m(k−1),x+m(k−1) = ni,+ · Si,x+m(k−1),x+m(k−1) + n2
i,k,x(1/ni,+ −

1/ĉi).

Similarly, for any off-diagonal elements in Si, when 0 < x, y ≤ m and 1 ≤
k ≤ Ki,

Si,x+m(k−1),y+m(k−1) =
1

k

{(k − 1)ni,k,x,y

ni,+
−

kni,k,xni,k,y

n2
i,+

}
.

For V̂i,x+m(k−1),y+m(k−1), the estimate of Cov (ni,k,x, ni,k,y), we have

V̂i,x+m(k−1),y+m(k−1) =
1

k

{
(k − 1)ni,k,x,y −

kni,k,xni,k,y

ĉi

}
.

Therefore,

V̂i,x+m(k−1),y+m(k−1) = ni,+ · Si,x+m(k−1),y+m(k−1) + ni,k,xni,k,y

( 1

ni,+
− 1

ĉi

)
.

When 0 < x, y ≤ m and 1 ≤ k ̸= l ≤ Ki,

Si,x+m(k−1),y+m(l−1) = −
ni,k,xni,l,y

n2
i,+

.

For V̂i,x+m(k−1),y+m(l−1), which is the estimate of Cov (ni,k,x, ni,l,y), we have

V̂i,x+m(k−1),y+m(l−1) = −ni,k,xni,l,y/ĉi. Therefore, V̂i,x+m(k−1),y+m(l−1) = ni,+ ·
Si,x+m(k−1),y+m(l−1) + ni,k,xni,l,y(1/ni,+ − 1/ĉi).

Thus we have shown that V̂i = ni,+ · Si + nininininini
′(1/ni,+ − 1/ĉi). From this

it is not difficult to see that V̂i is positive semi-definite, since Si is the sample

covariance matrix, nininininini
′ is positive semi-definite, ni,+ > 0, and ĉi ≥ ni,+. Since

Σ̂K,m = T1V̂1T
′
1 + T2V̂2T

′
2, the result follows.
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