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Abstract: We develop nonparametric methods, and theory, for analysing data on

a random p-vector Y represented as a linear form in a p-vector X, say Y = AX,

where the components of X are nonnegative and uncorrelated. Problems of this

nature are motivated by a wide range of applications in which physical consider-

ations deny the possibility that X can have negative components. Our approach

to inference is founded on a necessary and sufficient condition for the existence of

unique, nonnegative-score principal components. The condition replaces an earlier,

sufficient constraint given in the engineering literature, and is related to a notion

of sparsity that arises frequently in nonnegative principal component analysis. We

discuss theoretical aspects of our estimators of the transformation that produces

nonnegative-score principal components, showing that the estimators have optimal

properties.
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1. Introduction and Summary

Principal component analysis, or PCA, aims to explain the variance-covariance

structure of a set of variables through a relatively small number of linear com-

binations of those quantities. The many applications of PCA, for purposes such

as classification and data interpretation, are legion, but in some instances PCA

is not especially successful. One of the difficulties is that the principal compo-

nents do not necessarily conform to specific constraints, such as nonnegativity,

expected from a physical interpretation of the underlying factors. In this pa-

per we develop properties of a version of PCA under the assumption that the

principal components, or PCs, are nonnegative random variables.

Given observations of a random p-vector Y with possibly correlated com-

ponents, nonnegative-score PCA (NSPCA) can be described as an attempt to

find an unobserved p-vector X with nonnegative, uncorrelated components, such

that Y can be represented as a linear form in X: Y = AX, where A is a p × p
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deterministic (unknown) matrix. (Throughout this paper, “nonnegative” means

“nonnegative with probability 1.”) Without loss of generality, the components

of X all have variance 1. The components of X are termed nonnegative-score

canonical components.

In general, such components may not exist, but it might be possible to choose

A such that the components of X = A−1Y are uncorrelated, have unit variance,

and are not far from being nonnegative. At another extreme, nonnegative-score

canonical components might exist but not be uniquely defined.

Next we discuss several practical problems which motivate such an approach

to analysis. In these examples, we consider observed realisations y1, . . . , yn of the

vector Y and corresponding unobserved realisations x1, . . . , xn of the vector X.

The vectors are p-dimensional.

Example 1 (Combinations of images.). A database of n monochromatic im-

ages (e.g., Lee and Seung (1999); Hoyer (2004)) can be represented as a set of

p-dimensional vectors y1, . . . , yn, where p denotes the number of pixels in each

image. The columns of A can be interpreted as prototype images containing im-

portant features present in all images from a given database. Each unobserved

realisation xi represents encoding of the observed image yi = Axi, and in partic-

ular, the jth component x
(j)
i describes the “amount” of the jth prototype image

present in yi. In this example, it is natural to suppose that the components of

A are nonnegative (see Section 4.1 for numerical methods), although in general

that assumption might not be valid. If a small number of nonnegative-score PCs

(NSPCs) explain most of the total variability, then the database can often be

helpfully described using only those prototype images.

Example 2 (Determining prototype diseases.). A database of patients’ medical

records may contain information about a set of p symptoms. Each p-vector yi
describes the “intensity” of each of the p symptoms for the ith patient. Each

column of A represents a configuration of symptoms that may characterise a

disease (we call it a prototype disease). An unobserved xi gives the intensity

of a prototype disease in the ith patient. Uncorrelatedness of NSPCs means

that the intensity of one prototype disease in a patient is not correlated with

intensity of another prototype disease. Such lack of correlation is not likely to

occur between conventional diseases, which is why the NSPCs are interpreted as

prototype diseases with conventional diseases described in terms of combinations

of prototype diseases. This approach can aid the understanding of relationships

among diseases.

Example 3 (Hyperspectral image analysis.). In a hyperspectral image, each

pixel contains a representation of a spectrum (or spectral curve) of reflectance (or
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radiance), digitised as a p-vector yi. Each component of yi represents reflectance

in a narrow spectral band. Spatial information is often ignored in such (often

low-resolution) images (e.g., Manolakis and Shaw (2002)), and the pixelated data

can be interpreted as realisations y1, . . . , yn of a random vector Y . In the formula

Y = AX, each column of A might represent a spectral profile of a feature (or

component) present in the image. The dimension p is often larger than 200,

but there is always a high level of correlation among the reflectance values in

different spectral bands. Often, classic PCA is used to reduce dimensionality,

but the resulting columns of A cannot be interpreted as spectral profiles because

of their negative values.

Further examples of linear mixing of the original sources are given by Oja and

Plumbley (2004), (separation of mixed images), and Plumbley (2003) (separation

of musical audio signals). The setting of compositional data analysis, where

negatively correlated components of X are required, is related, but is usually

handled by other means; see, for example, Aitchison (1982, 1983, 1986).

Thus, NSPCA and the associated concept of explaining variability in high

dimensional data in terms of a much smaller set of variables, have potential to

play an important role in a wide range of applications where nonnegativity is

desirable. Our methodology allows (near) positivity to be imposed on the matrix

A as well as on X; this is useful in many applications but is not usually possible

in classic PCA.

There are two major contemporary approaches to analysis of data from the

model Y = AX, under the assumption of positive X. One is nonnegative inde-

pendent component analysis (ICA); see Plumbley (2002, 2003), Oja and Plumbley

(2004) and Plumbley and Oja (2004). ICA requires independence of components

of X, whereas we assume only uncorrelatedness, a natural assumption when in-

troducing a basis. Hence, our approach is both canonical and more general. The

second approach is nonnegative matrix factorisation (NMF); see Donoho and

Stodden (2003), Hoyer (2004) and Lee and Seung (1999). NMF offers a particu-

larly useful set of numerical algorithms, but arguably without a clear underlying

statistical model and usually with highly non-unique solutions. Some other ap-

proaches (see Han (2010), Sigg and Buhmann (2008) and Zass and Shashua

(2006)), called nonnegative PCA, impose the nonnegativity constraint on the co-

efficients (loadings) of PCs. Those approaches do not require the components of

X to be nonnegative and uncorrelated. In order to distinguish our approach from

such nonnegative PCA, we call our approach NSPCA. Related work includes that

of Ma et al. (2012), who construct two-dimensional nonnegative PCs. This ap-

proach is specific to imaging data since it uses the two-dimensional structure of

images. Comparisons among the various approaches are made in Section 4.1.
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Motivated by examples such as those above, and by a desire for a method

that has greater statistical underpinning than NMF but without the relatively

stringent assumptions of ICA, we make the following contributions in this paper.

(1) We show that, for a given distribution of a random vector Y , nonnegative-

score canonical components exist and are unique, up to permutation of co-

ordinates, if and only if there exists a vector of nonnegative-score canonical

components satisfying a certain wedged-in condition. This restriction relaxes

a more stringent assumption of Plumbley (2002) based on the notions of

independence and “well groundedness.” (See Section 2.2.)

(2) Given data Y1, . . . , Yn on the p-vector Y , we propose estimators of the p× p

matrix A and of Xi = A−1Yi. We then derive optimal convergence rates of

general estimators, and we show that these rates are achieved by the sug-

gested methods. Since A and Xi are determined only up to multiplication

on the right and left, respectively, by a permutation matrix, the notion of

convergence rate has a nonstandard form. (See Sections 2.3 and 3.)

2. Modelling and Estimating Nonnegative-Score Principal Compo-

nents

2.1. Definition and elementary properties of nonnegative-score prin-

cipal components

Assume that Y = AX, where A = (ajk) is a p × p deterministic (un-

known) matrix, X = (X(1), . . . , X(p))T is an unobserved vector with nonneg-

ative components, and the covariance matrix cov(X) of X is the identity ma-

trix I. We refer to the X(j)’s as nonnegative-score canonical components. For

1 ≤ k ≤ p, let λk =
∑

j a2jk be the square of the length of the kth column

of A, and put Λ = diag(λ1, . . . , λp). Let W = (W (1), . . . ,W (p))T = Λ1/2X, that

is, W (j) = λ
1/2
j X(j). Then W (j) is the nonnegative-score principal component

(NSPC) corresponding to the nonnegative canonical component X(j). Clearly,

var(W (j)) = λj . If the components of X are ordered such that λ1 ≥ . . . ≥ λp,

then W (j) is termed the jth NSPC.

In this notation, Y = AΛ−1/2W = DW , where the columns of the matrix

D = AΛ−1/2 have unit length. Of course, the NSPCs can be expressed as linear

combinations of the observed variables Y (j) through the relationshipW = D−1Y .

The following two results, direct analogues of their counterparts for standard

PCA, are readily proved:

p∑
j=1

var
(
Y (j)

)
=

p∑
j=1

var
(
W (j)

)
, corr

(
W (j), Y (k)

)
=

djk λ
1/2
j

{var(Y (k))}1/2
, (2.1)
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the latter for 1 ≤ j, k ≤ p, where djk denotes the (j, k)th component of D.
The first result in (2.1) asserts that the total variability in Y equals the total
variability in W . Note that left multiplication of Y by an orthogonal matrix
does not change the covariance structure of a vector of PCs (both classic and
nonnegative), but it alters the directions of PCs as described by eigenvectors (for
classic PCA) or by rows of the matrix D−1 (for NSPC).

Consider an illustrative example shedding some light on NSPCA and its
relationship to classic PCA. Let Z be a random vector with its support in the
nonnegative quadrant Q, and such that cov(Z) is the identity matrix I. Let F
be a diagonal matrix of positive elements on the diagonal, and P an orthogonal
matrix. Take Y = PFZ. The classic PCs of Y are given by the vector FZ, which
is also a vector of NSPCs in this case (as one of possibly many solutions). If Z
is wedged in Q, then Z is a unique (up to a permutation) vector of nonnegative-
score canonical components, and FZ is a unique vector of NSPCs. If the support
of Z is far from the boundary of Q, then the set of solutions for nonnegative-
score canonical components may be quite large. Within that set of solutions,
we may find a rotation B such that BTZ is still nonnegative, and PFB is also
nonnegative, or close to being nonnegative. Note that BTZ would be a vector
of nonnegative-score canonical components, and W = FBTZ would be a vector
of NSPCs. This would allow a nonnegative representation Y = DW , where
D = PFBF−1. An advantage of this representation is the nonnegativity of D
(and W ), but a disadvantage is that the first several components of W do not
necessarily maximise variability as do classic PCs.

2.2. Uniqueness of the NSPCA solution

Here we state and discuss the wedged-in condition and show it to be a nec-
essary and sufficient condition for uniqueness of the NSPCA solution.

Let Q = {(x(1), . . . , x(p))T : x(j) ≥ 0 for 1 ≤ j ≤ p} denote the positive
orthant of IRp. LetX = (X(1), . . . , X(p))T be a random p-vector with support S ⊆
IRp. We say that X is nonnegative (equivalently, nonnegative with probability 1)
if S ⊆ Q.

Definition. Pure Rotation. A p-dimensional orthogonal transformation that
is not a permutation of coordinates is called a pure rotation. The identity is
included as a pure rotation.

Definition. “Wedged in” condition. We say that S is wedged in Q if S ⊆ Q
and any pure rotation (that is not the identity) of S takes at least one point of S
outside Q. We extend the definition of “wedged in” from S to (the distribution
of) X by asserting that X is wedged in Q if and only if S is wedged in Q.

The above definition of the wedged-in condition might sometimes be difficult
to check in practice. In the following, we provide simple examples where the
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Figure 1. Example of configuration of the support, S, of the distribution of
X, and the constants C1 and C2, when p = 2.

support S is wedged in Q. Then we give an easier-to-check sufficient assumption

(that we call well-groundedness) for the wedged-in condition to hold.

For example, if S is a subset of Q and the intersection of the closure of S with

the positive half of any axis is nonempty, then S is wedged in Q. However, this

condition is not necessary for S to be wedged in. In particular, the set comprised

of the “interior” of the hyperbola in Q with equation y = 1/x is wedged in Q,

even though the hyperbola is not touching any of the two axes. Figure 1 gives, in

the case p = 2, an example of a set S that is wedged in Q because any nontrivial

rotation will necessarily move S outside the positive quadrant.

The term “wedged in” can be even better appreciated in three dimensions.

Here one possibility for S to be wedged in Q is that the closure of S intersects

with all three positive half axes. This means that S is “stuck” in the positive

orthant Q, in the sense that it cannot be rotated so that it stays within that

orthant. On the other hand, a sphere of radius 1 with its center at the point

(1, 1, 1) is not wedged in Q because its rotation around the vector (1, 1, 1) gives

the same sphere, and hence it is not taken outside Q. Note that this sphere

touches each of the three plane boundaries of the positive orthant Q at only

one point. Assume now that S ⊆ Q touches (intersects) each of the three plane

boundaries at a larger area such as a rectangle. In that case, S would be wedged

in Q. There are many other ways in which S could be wedged in Q. A full

characterisation of all those ways is beyond the scope of this paper though we

give one sufficient condition for it in Proposition 1 at the end of this section.

The following theorem provides a necessary and sufficient condition for unique-

ness of the NSPCA solution. The proof is deferred to Section 5.
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Theorem 1. Assume that for a given distribution of a random vector Y , a

vector X of nonnegative-score canonical components exists. Then the vector X

is unique, up to a permutation of coordinates, if and only if X is wedged in Q.

By way of comparison, classic canonical components in PCA are unique only

up to a rotation. It can also be shown that the NSPCs are unique when all the

λks are distinct and the vector X is unique, up to a permutation of coordinates.

We now revisit the examples in Section 1 to discuss sparsity and the wedged-

in condition. Recall that sparsity of a vector or matrix means that most of its

elements are equal to zero. If, for some realisations xi, all but one or two elements

are equal to zero (or close to zero), then a wedged-in-Q distribution of X is

suggested.

Example 1 (Combinations of images). Lee and Seung (1999) advocate the as-

sumption of sparsity of the unobserved xi vectors, which is equivalent to having

at least some of the observed images as linear combinations of a small number

of prototype images. This type of sparsity helps create prototype images with

localised features that correspond better to intuitive notions of parts of faces.

Example 2 (Determining prototype diseases). In a medical database, sparsity

of the unobserved xi vectors means that a given patient usually does not suffer

from many prototype diseases. Assuming that at least some patients do not

have more than one or two prototype diseases is consistent with the wedged-in-Q
condition.

Example 3 (Hyperspectral image analysis). In this context, sparsity means that

in at least some pixels, the number of features (or components) is quite small.

This would be the case for uncomplicated scenes such as images of non-urban

areas, or images with a relatively high resolution.

In order to formulate sufficient and easy-to-check assumptions for the wedged-

in-Q condition, we provide the following definitions.

Definition. “Well grounded” condition for a random variable. A random vari-

able X(j) (component of X) is well grounded if P (0 ≤ X(j) < δ) > 0 for each

δ > 0.

Definition. “Well grounded” condition for a random vector. A random vector

X = (X(1), . . . , X(p)) is well grounded if there exists δ > 0 such that, for each

ϵ > 0,

P
(
X(j) > δ and, for all k ̸= j, 0 ≤ X(k) < ϵ

)
> 0 for 1 ≤ j ≤ p .

The above definition may seem complex, but it is easy to check once the

support of the distribution of X has been specified.
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In the context of the components of X being mutually independent (as as-

sumed by Plumbley (2002)), well-groundedness is a sufficient condition for the

wedged-in condition. That is, if X is nonnegative, and if the components of X

are mutually independent and well-grounded, then X is wedged in Q.

The definition of well-groundedness for a random vector allows the following

weaker characterisation of the wedged-in condition without the assumption of

independence.

Proposition 1. A sufficient condition that X = (X(1), . . . , X(p))T be wedged in

Q is that it be nonnegative and well grounded.

2.3. Estimation of A and X from low-noise data

Here we provide a mathematical formulation of a class of problems of prac-

tical interest; see Section 1. Further, we suggest an algorithm for solving the

problems.

Suppose we observe independent random vectors Y1, . . . , Yn, each distributed

as Y = AX, where X = (X(1), . . . , X(p))T is nonnegative, is wedged in Q, and

has identity covariance matrix, and where A is a nonsingular p× p deterministic

(unknown) matrix. We refer to this as the low-noise case, arguing that small

amounts of noise in observations of Y can be neglected without changing the

method for inference. When noise is not negligible, neither A nor X is identifi-

able, even up to permutations.

We wish to estimate A and compute approximations to the random vectors

X1, . . . , Xn given by Yi = AXi, for 1 ≤ i ≤ n. We assume that p < n. Necessarily

the approximations will be accurate only up to permutations of the coordinates

of the Xi’s, and likewise, A will be identifiable only up to multiplication on the

right by a permutation matrix.

We suggest a four-step approach to defining estimators.

(i) Compute

Σ̂Y =
1

n− 1

n∑
i=1

(Yi − Ȳ ) (Yi − Ȳ )T , (2.2)

the conventional estimator of ΣY = cov Y .

(ii) Given an orthogonal matrix B, put

Zi =
(
Z

(1)
i , . . . , Z

(p)
i )T = Zi(B) = BΣ̂

−1/2
Y Yi .

In the ICA literature, this is known as pre-whitening. Note that the obser-

vation vectors Zi are such that their sample covariance matrix is the identity

matrix. The orthogonal matrix B is needed for the purpose of rotation into

the positive orthant Q in the next step.
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(iii)Take

S∗(B) = max
1≤j≤p

max
1≤i≤n

(−Z
(j)
i ) , B̂ = argminS∗(B) , (2.3)

where B is an orthogonal matrix. Define the negativity score

S(B) = max{S∗(B), 0} . (2.4)

In particular, S(B) = 0 if and only if each Z
(j)
i ≥ 0, and otherwise S(B) > 0;

B̂ is a transformation for which the most negative value of Z
(j)
i = Z

(j)
i (B)

achieves its least negative value.

Since an orthogonal B can be represented as a composition of a permutation

and a pure rotation, the minimisation to find B̂ in (2.3) can be performed over

pure rotations P parameterised as P = exp(L) (Chevalley (1946)), where L is a

skew-symmetric matrix (LT = −L). More specifically, we move along a geodesic

P(t) = etLP0. A similar method is used by Plumbley (2003); see also Edelman,

Arias, and Smith (1998, eq. (2.14)). Take J(t) = S∗(etLP0) as the negativity

score in the direction of L. This negativity score is not always differentiable,

hence the following optimization procedure is used.

Step 1. Start with P0 as the identity matrix I.

Step 2. Find P(t) = etLP0 minimising J(t) for t ≥ 0 (L is defined below) through

a line search.

Step 3. Use the optimum pure rotation P(t) found in Step 2 as a new value for

P0.

Step 4. Repeat Steps 2 and 3 until convergence, or use another stopping rule.

The direction matrix L is chosen as described below, so as to ensure reduction

of J(t) in the vicinity of t = 0+. This is not necessarily the direction of steepest

descent.

Let V be a p × n matrix consisting of vectors (−P0 Σ̂
−1/2
Y Yi) as columns,

where 1 ≤ i ≤ n. Then J(t) is the maximum element of the matrix etLV. First

assume that the maximum element of V is attained at exactly one entry (i0, j0)

in that matrix. Then J(t) is differentiable at zero, with (dJ/dt)|t=0 = Hi0j0 ,

where Hi0j0 is the (i0, j0) entry in the matrix H = LV. In this case, we can use

the steepest descent direction L = Q −QT , where Q is a p× p matrix of zeros

except for the i0th column equalling the j0th column of V.

Let us now assume that the maximum element of V is attained at exactly k

matrix elements in k different rows. Take V∗ to be a p×k matrix of columns from

V in which those maximum elements are located, and consider the case where

k = p. For simplicity of notation we assume that the maximum elements of V∗



972 PETER BAJORSKI, PETER HALL AND HYAM RUBINSTEIN

are on the diagonal (otherwise use a permutation of coordinates). Partition V∗

as

V∗ =

[
a bT

c K

]
,

where a is the maximum element of V∗, b and c are (p− 1)-dimensional vectors,

and L is a (p− 1)× (p− 1) matrix.

With this notation it can be shown that the direction L that reduces all

points of maximum at the same rate is given by

L =

[
0 −xT

x M

]
,

where M is a (p− 1)× (p− 1) matrix with entries Mij = gj Kij − giKji, vector

g = (g1, . . . , g(p−1)) is calculated as cTE−1 , E = F+diag(b) is a (p−1)× (p−1)

matrix, F is a (p− 1)× (p− 1) matrix with all rows being the same (equal to cT)

and diag(b) is a diagonal matrix with the vector b on the diagonal. The vector x

is calculated as E−1f , where f is a (p− 1)-dimensional vector with components

fi =
∑

1≤j≤p−1 Mij Kji.

When k < p we use the same partitioning of V∗ and L, but L is now a

(p− 1)× (k− 1) matrix and b is a (k−1)-dimensional vector. Here x needs to be

partitioned into x = (x(1), x(2)), where x(1) is a (k − 1)-dimensional sub-vector,

and x(2) is (p − k)-dimensional. The vector c is partitioned in a similar way as

c = (c(1), c(2)). The matrix M is now defined as follows: Mij = gj Kij − giKji

for 1 ≤ i, j ≤ k− 1; Mij = −giKji for 1 ≤ i ≤ k− 1, k ≤ j ≤ p− 1; Mij = gjKij

for k ≤ i ≤ p− 1, 1 ≤ j ≤ k − 1; and Mij = 0 for k ≤ i, j ≤ p− 1.

A new matrix E(1) is defined similarly to E with c replaced by c(1) , and E(2)

is a (k − 1) × (p − k) matrix with all rows being the same (equal to cT(2)). The

vector f∗ is a (k − 1)-dimensional vector defined in the same way as f . Finally,

the components of x are calculated as:

x(1) = E−1
(1)(f −E(2)x(2)) , x(2) = cT(2) − cT(1)E

−1
(1)E(2) .

In our experience, this minimisation process typically converges to a neg-

ativity score (defined in (2.4)) equal to zero, where the minimisation can be

terminated (since a nonnegative solution has been found). Alternatively, the

process stops when for one of the i values, say i0, (−Z
(j)
i0

) = S∗(B) > 0 for all

j = 1, . . . , p. In that case, we know that we have achieved a local minimum,

which is typically also a global minimum for the type of data considered here.

In order to see why, denote by a the value S∗(B) > 0 at which the minimisation

stopped. That is, (−Zi0) is a vector with all coordinates equal to a. Consider

a rotation P of (−Zi0) that would be needed to further reduce all of its coor-

dinates. Let the vector Q = P(−Zi0) be such that all of its coordinates Q(j),
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j = 1, . . . , p, are smaller than a. If all coordinates Q(j) are also larger than

(−a), then ∥Q∥ < ∥Zi0∥, which contradicts the assumption of P being a rotation

(which preserves the vector norm). This means that for at least one j, say j0,

Q(j0) ≤ (−a). Hence, the rotation P results in the j0 coordinate of (−Zi0) being

transformed from a > 0 into a number not larger than (−a). This proves that

the original value S∗(B) cannot be reduced by a local “small” rotation (in fact,

the value always goes up after a small rotation), so this value is a local minimum.

This still leaves the possibility of reaching a global minimum by the “larger” ro-

tation P discussed above. However, for the type of data considered in this paper,

that does not happen in practice. To see why, note that a is typically a small

positive value and most points (−Zi) are in the negative orthant (or Zi are in

the positive orthant Q). Consider a vector R with all coordinates equal to (−r)

(that is, positioned centrally in the negative orthant), with r significantly larger

than a (as are typical coordinates of most points (−Zi)). Under the rotation P

discussed above, the vector R would be transformed into a vector with at least

one coordinate at least as large as r (since R and (−Zi0) are collinear, but going

in opposite directions). This will typically move the points (−Zi) significantly

outside the negative orthant, resulting in an increase in the negativity score. Of

course, one can find an artificial scenario with points (−Zi), where the rotation

may indeed reduce the negativity score, but we have not encountered this in

practice. If this were to occur, one could use a random search with a randomly

generated L matrix defining the rotation.

It should be noted that the above described minimisation process can get

stuck at some points, probably due to some other types of local minima or due

to flatness of the optimized function. In those cases, a random rotation is used

to continue the search, or an entirely different starting point is used.

Further work can be done to improve the minimisation process by modifica-

tions of the above method, or by some other methods. This would not impact

any of the theoretical results in our paper, which hold for any solution to the

minimisation (2.3).

The value of B̂, defined in (2.3), may not be uniquely defined. For example,

this is generally the case when S(B̂) = 0, where there can be a continuum of

transformations B such that none of the components Z
(j)
i is negative. If a practi-

tioner finds this non-uniqueness troubling, it can be overcome by taking B̂ to be

the transformation that maximises
∑

i

∑
j Z

(j)
i (B) over orthogonal transforma-

tions B for which S(B) achieves its maximum. In cases where B̂ is not defined

uniquely, the results in Section 3 apply to any version of it.

(iv) Take Â = Σ̂
1/2
Y B̂T to be our estimator of A, and X̂perm

i = B̂Σ̂
−1/2
Y Yi to be

our approximation to Xi. The superscript “perm” indicates that the components
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of Xi that are approximated by X̂perm
i may be permutations of those of Xi, the

same permutation applying for each i.

To motivate this methodology, let ΣY = AAT denote the covariance matrix

of Y . If Z = BΣ
−1/2
Y Y , where B is a p × p matrix, then, equivalently, Z =

BΣ
−1/2
Y AX, and so covZ = BBT. It now follows from Lemma 1 in Section 4.2

that, if B is chosen so that covZ = I and Z is nonnegative, then

U ≡ BΣ
−1/2
Y A (2.5)

must be a permutation matrix. Moreover, BBT = I and so B is orthogonal.

If we can find a B = B0 such that Xperm ≡ B0Σ
−1/2
Y Y is nonnegative and

satisfies covXperm = I, then B0 is orthogonal and from (2.5),

Xperm = B0Σ
−1/2
Y Σ

1/2
Y B−1

0 UX = UX . (2.6)

In particular, the p-vector Xperm is obtained by permuting the components of X.

The procedure suggested in points (i)–(iv) above amounts to replacingΣY by Σ̂Y ,

then choosing B = B̂ to make BΣ̂
−1/2
Y Yi “as positive as possible” in the sense of

the score-function S(B), and finally, taking Â = Σ̂
1/2
Y B̂T = Σ̂

1/2
Y B̂−1 (in place

of A1 = Σ
1/2
Y B−1) and X̂perm

i = B̂ Σ̂
−1/2
Y Yi (in place of Xperm

i = BΣ
−1/2
Y Yi) to

be our estimator of A and approximation to Xperm
i , respectively.

3. Properties of Solution in Low-Noise Case

In this section, we give theory for the estimator Â, and for the approxi-

mations X̂perm
i , suggested in Section 2.3. Throughout we keep the number of

dimensions, p, fixed and take the sample size, n, to diverge. Our main result,

Theorem 2, describes how accurately our method estimates the true matrix A

and approximates the nonnegative-score canonical components given by X. The

theorem can be paraphrased by stating that, if the density of X at points distant

u from the boundary of Q is larger than a constant times uc−1 as u ↓ 0, then,

for an appropriate permutation matrix U, the rate of convergence of ÂU to A,

and of X̂perm
i to UXi, is max(n−1/c, n−1/2) as n → ∞. Moreover, this rate of

convergence is optimal in a minimax sense; see Theorem 3.

One difficulty in formally phrasing such results is that of defining concisely

the condition on the density stated in the previous paragraph. Writing C1 < C2

for positive constants, and Π1, . . . ,Πp for the portions of (p − 1)-dimensional

planes that form the boundary of Q, we require that the density be evaluated

at a point that is not only distant u from one of Π1, . . . ,Πp, but is also not too

close to the remaining (p− 1)-dimensional planes and is distant between C1 and

C2 from the origin. The result fails without the restriction that the point lies

between C1 and C2.
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One might consider, for instance, the case where C1 = 0 and S intersects the

boundary ofQ only at the origin. There it is possible to construct examples where

X is uniformly distributed on its support, in which case the density is either 0, or a

positive constant value, at each point in IRp; and the convergence rate is dictated

completely by the behaviour of the support boundary in the neighbourhood of

the origin. Our regularity conditions, given in the next paragraph, exclude such

cases from specific treatment; this greatly simplifies our discussion. In particular,

we ask that the support of the distribution of X have a significant presence in

the region defined by C1 ≤ ∥X∥ ≤ C2 and X ∈ Q, including parts of this region

close to the coordinate planes. Figure 1 illustrates a configuration in the case

p = 2.

Against this background, we define classesA of matricesA and F of distribu-

tions F . Let 0 < C1 < C2 < ∞ and C3, C4, c, ϵ, δ > 0, such that δ < 1
2 p

−1/2C1.

Write F = F(C1, . . . , C4, c, ϵ, δ) for the class of distributions F of X such that,

for each 1 ≤ j ≤ p, the density of the distribution is at least C3 u
c−1 at points

x ∈ Q distant u perpendicularly from Πj , provided that C1 ≤ ∥x∥ ≤ C2 and

x is not closer than δ to all remaining Πk’s, where k ̸= j. (Here, ∥x∥ denotes

the Euclidean length of the p-vector x.) We also assume that E(∥X∥4+ϵ) ≤ C4,

which ensures uniform integrability of fourth moments of distributions of X in

F ; this condition could instead be imposed directly. Fourth moments are needed

because we require root-n consistency of Σ̂Y .

Given 0 < C5 < C6 < ∞, let A = A(C5, C6) denote the class of p×pmatrices

A for which all the eigenvalues of AAT lie in the interval [C5, C6]. If M is a p×p

matrix, write ∥M∥ for any conventional norm of M for which ∥Mx∥ ≤ ∥M∥ ∥x∥
for a vector x, where ∥Mx∥ and ∥x∥ are the standard Euclidean norms. The

square root of the sum of the squares of the components of M, its Frobenius

norm, is one possibility. Take δn = max(n−1/c, n−1/2).

Theorem 2. There exists a sequence of permutation matrices Un, depending on

the data, such that, for any measurable versions of Â and X̂perm
i defined at (iv)

of Section 2.3,

lim sup
n→∞

sup
A∈A

sup
F∈F

PF

(∥∥ÂUn −A
∥∥ > C δn

)
→ 0 , (3.1)

lim sup
n→∞

sup
A∈A

sup
F∈F

PF

(∥∥X̂perm
i −UnXi

∥∥ > C δn ∥Xi∥
)
→ 0 (3.2)

as C → ∞.

Results (3.1) and (3.2) should be compared with (2.5) and (2.6), respectively.

They give rates of convergence of Â to A, and of X̂perm
i to Xi. However, since A

and Xi are uniquely defined only up to multiplication by permutation matrices,
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the “rate of convergence” has to be interpreted appropriately. Note that the

same permutation, Un, is used in both (3.1) and (3.2).

The next theorem provides a lower bound of the same order as the upper

bound given by Theorem 2. It applies to all choices of F = F(C1, . . . , C4, c, ϵ, δ)

such that 0 < δ < C1(4p)
−1/2, and A = A(C5, C6) for which 0 < C1 < C2 < ∞,

0 < C5 < C6 < ∞ and C3, C4, c, ϵ > 0, with C3 chosen sufficiently small and

C4 sufficiently large as functions of the other constants. Let Un denote the class

of all random permutation matrices that are measurable functions of the data

Y1, . . . , Yn.

Theorem 3. Let Ã denote any estimator of A. Then there exists a constant

C > 0 such that

lim sup
n→∞

sup
A∈A

sup
F∈F

inf
U∈Un

PF (∥ÃU−A∥ > C δn) > 0 . (3.3)

To interpret (3.3), note that the result holds trivially if U is a poor choice

for the approximation “ÃU ≈ A.” The theorem shows that, in a sense made

precise by (3.3), no choice of U can render the approximation more accurate

than O(δn).

In principle, Theorem 3 leaves open the possibility that, although A cannot

be estimated at a faster rate than δn, individual vectors Xi can be estimated

at a faster rate. To see that this cannot happen, suppose it can, and in fact

that we can compute X̃1, . . . , X̃n such that, for a sequence un ↓ 0, and a random

permutation matrix U,

sup
1≤i≤n

PF

(∥∥X̃i −UXi

∥∥ ≤ un δn ∥Xi∥
)
→ 0 . (3.4)

Suppose too that for some C1 > 0, P (∥X∥ ≤ C1) = 1, and that the matrix A for

which E∥Y −AX∥ = 0 is unique. Let us use a least-squares approach to estimate

A, choosing B = B̃ to minimise
∑

i ∥BX̃i − Yi∥2. This proposal is motivated

by the fact that, if X̃i is close to UXi, as suggested by (3.4), then BX̃i − Yi is

close (on average) to (BU−A)Xi, and therefore if BX̃i − Yi is small then BU

is close to A. Indeed, for each C2 > 0, P (∥B̃U−A∥ ≤ C2δn) → 1, where U is as

at (3.4). This contradicts (3.3). The proofs of Theorems 2 and 3 can be found

in Hall, Bajorski, and Rubinstein (2009).

4. Numerical Results

4.1. Comparison to other methods

Our methodology of NSPCA is now compared to four related methods dis-

cussed in Section 1. Recall the assumption used in this paper that the observed
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vector Y is a linear transformation of a nonnegative W having uncorrelated com-

ponents, that is, Y = DW , whereW is the vector of NSPCs. Hence, our goal is to

estimate D and approximate values of W rather than to try to find linear trans-

formations of Y with maximum variability, which is the goal of some of the other

approaches to nonnegative PCA. Based on notation of Section 2.1, the matrix D

is estimated by D̂ = ÂΛ̂−1/2, where Â is defined in Step (iv) of the algorithm

presented in Section 2.3, and Λ̂ is the diagonal matrix with λ̂1 ≥ . . . ≥ λ̂p being

the squares of the lengths of the columns of Â. Similarly, Ŵ = Λ̂1/2X̂, where

X̂ is the approximation of X defined in Step (iv) of the algorithm presented in

Section 2.3.

The first method being compared here is nonnegative ICA (NICA), which

is the most similar to NSPCA. It uses a different negativity score (based on

the sums of squares) and more stringent assumptions of independence and “well

groundedness” as discussed in Section 1.

The second method, expectation-maximisation NPCA (EMNPCA), is based

on maximisation of variability of linear combinations with positive coefficients.

These nonnegative PCs are constructed sequentially for a total of p PCs. Rather

than rely on perfect orthogonality of the loadings vectors, a quadratic penalty

term (see formula (20) in Sigg and Buhmann (2008)) is introduced, resulting in

quasi-orthogonality of the loadings vectors. The obtained nonnegative PCs are

typically correlated. Note that even orthogonality of the loadings vectors does

not guarantee uncorrelatedness of nonnegative PCs in EMNPCA.

The third method we evaluate is nonnegative semi-disjoint PCA (NSDPCA),

introduced in Zass and Shashua (2006). This method is also based on maximi-

sation of variability of linear combinations with positive coefficients. However, it

identifies a whole set of k ≤ p nonnegative PCs, rather than constructing them

in a sequential fashion. With k < p, one could not estimate the matrix D, which

would make it more difficult to compare NSDPCA to the other methods. Hence,

we used k = p. Using smaller k would result in nonnegative PCs more similar to

those produced by EMNPCA. We have also made comparisons to classic PCA.

For each of the five methods, we have evaluated how close the estimated D̂

is to the true D and how close the approximation vectors Ŵi (scores of PCs)

are to the simulated Wi’s based on the standardized root mean squared errors of

approximation as defined by

Ddiff =

∥∥D̂−D
∥∥

∥D∥
, Wdiff =

∥∥Ŵ −W
∥∥

∥W∥
,

where W [Ŵ] is an n by p matrix of Wi’s [Ŵi’s] as rows.

The evaluation was performed based on three cases of simulated data. In

each case, we took p = 10 and n = 1, 000. The components of X were generated
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Figure 2. Cumulative variability of NSPCs in the three cases considered in
Section 4.1.

Table 1. The approximation errors (as measured by Ddiff) for the five meth-
ods and three cases considered in Section 4.1.

Case NSPCA NICA EMNPCA NSDPCA PCA
1 0.2362 0.2360 0.3624 0.3598 0.7713
2 0.0547 0.0552 1.0538 0.4688 0.6716
3 0.0861 0.0859 0.9423 0.4755 0.6634

as independent from the same beta distribution with parameters 2 and 4, scaled

to have variance 1. The matrices D were chosen as different in each case and such

that the resulting percentages of variability explained by W (j)’s (as described by

the Λ matrix) were as shown in Figure 2. For example, variances of W (1) were

96, 77 and 57 percent of the total variability for Cases 1, 2 and 3, respectively.

The resulting estimation errors Ddiff are shown in Table 1. We can see that

NSPCA and NICA are performing very similarly to each other, with NSPCA

sometimes slightly better and sometimes slightly worse than NICA. In Cases 2

and 3, both NSPCA and NICA are able to recover the matrix D quite precisely.

The remaining three methods are significantly worse at recovering D. This is

not surprising since they are not optimized for the recovery of the nonnegative

uncorrelated components. Instead, they try to find components with maximum

variability. In Case 1, both NSPCA and NICA are not performing as well as in

the other two cases. This might be due to the fact that most λi’s are very close

to each other (except for λ1). Similar behaviour is well known in classic PCA.
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Table 2. The estimation errors (as measured by Ddiff) for the five methods
and three cases considered in Section 4.1.

Case NSPCA NICA EMNPCA NSDPCA PCA
1 0.581 0.589 2.342 2.307 8.740
2 0.343 0.330 13.437 9.029 5.879
3 0.400 0.407 11.605 7.626 5.305

The approximation errors Wdiff are shown in Table 2. We can again see that

NSPCA and NICA are performing very similarly to each other, with NSPCA

sometimes slightly better and sometimes slightly worse than NICA. The remain-

ing three methods are significantly worse at recovering W. The very large ap-

proximation errors are due to the fact that recovered PCs are entirely different

from the true NSPCs (since the three methods have assumptions very different

from those of NSPCA).

It is also of interest to investigate the percent of variability explained by PCs

produced by the five methods. The results are represented in Figures 3, 4 and 5,

showing the cumulative percent of variability in Cases 1, 2 and 3, respectively.

In each figure, the solid line represents the true cumulative variability of the un-

derlying NSPCs as assumed in the simulations. The NICA produces results very

similar to those of NSPCA (the lines would overlap) so, for clarity of presenta-

tion, the NICA results are not shown. In Case 1 (Figure 3), all methods produce

very high cumulative variabilities that are close to the true values. Interest-

ingly enough, the EMNPCA and NSDPCA lines overlap the true values almost

perfectly, despite the fact that they estimate different PCs as demonstrated in

previous considerations summarized in Tables 1 and 2.

In Case 2 (Figure 4), NSPCA recovers the approximately correct amounts of

the cumulative variability, while the other methods either overestimate or under-

estimate that variability. As expected, EMNPCA (which sequentially maximises

variability) explains more variability than NSPCA. If the main goal were to max-

imise variability, then EMNPCA would be a preferred method. One could also

increase the variability explained by NSDPCA, but that would require a con-

struction (and hence maximisation of variability) of a smaller number of PCs. In

our approach, the main goal is to reconstruct the underlying signals W (j) rather

than maximise the variability.

Case 3 (Figure 5) is again an example where NSPCA is best in estimating

the true variability, while the other methods either overestimate or underestimate

that variability.

The three simulation examples used in this section demonstrate good per-

formance of NSPCA in recovering the underlying mixing matrix D and nonneg-

ative uncorrelated signals in W (j) assumed by the model presented in Section
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Figure 3. Cumulative percent of variability explained by PCs produced by
various methods in Case 1 considered in Section 4.1.

Figure 4. Cumulative percent of variability explained by PCs produced by
various methods in Case 2 considered in Section 4.1.

2.1 (and used throughout the paper). The competing NICA methodology pro-

vides computationally similar results, but it uses more stringent assumptions of

independence and “well groundedness” (see Sections 1 and 2.2). The remaining

competing methodologies (EMNPCA and NSDPCA) discussed here are designed

for different purposes (of variability maximisation), and hence, they do not per-
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Figure 5. Cumulative percent of variability explained by PCs produced by
various methods in Case 3 considered in Section 4.1.

form well in recovering the underlying mixing matrix D and signals in W (j)’s.

4.2. Simulation study

Further simulations were performed to see how precisely NSPCA can recover

the underlying model in final samples. The approach and notation here is con-

sistent with that of Theorem 2. Recall that Theorem 2 shows the asymptotic

behaviour of our estimators when the sample size approaches infinity. In simu-

lations, we assumed that the components X(1), . . . , X(p) were independent and

followed the same power-function distribution, with distribution function (x/γ)c

for 0 ≤ x ≤ γ, where c > 0 and the scale parameter γ = (2c−1 +1)1/2(c+1) was

chosen to obtain variance 1. In this case, the joint distribution of X belonged to

the class F defined in Section 3.

Figure 6 shows simulated distributions of the random variables

G =

∥∥ÂU−A
∥∥

δn ∥A∥
, H =

∥∥X̂perm
i −UXi

∥∥
δn ∥Xi∥

,

where δn = max(n−1/c, n−1/2) is the rate of convergence given by Theorem 2.

All simulations were repeated 4,000 times. Since the distribution of H does not

depend on i, then all observations (for 1 ≤ i ≤ n) from all repetitions were

combined in the figures. Hence, the results for the distribution of H are, in

effect, summaries of 4, 000n observations.
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Figure 6. Histograms of the simulated G and H distributions for (p, c, n) =
(3, 1, 103), based on simulations discussed in Section 4.2.

Figure 6 shows approximations to the distributions of G and H in the case

(p, c, n) = (3, 1, 103). Similar plots for varying values of p, c, and n show almost

identical shapes of distributions.

In the setting of Figure 6, the 95th percentile of the simulated G distribution

is about 1.85, which is equivalent to 6% error. When n is reduced to 100, the

error increases to 20%, and for n = 104, the error decreases to 2%. This reduction

in the error of estimation with increasing n is also observed for other values of p

and c, as expected.

We also investigated the changes in the estimation error as a function of c

for p ranging from 2 to 5. Figure 7 shows the errors in estimation of A and X

(with p = 5) as described by the 95th percentiles of the simulated distributions

of ∥ÂU −A∥/∥A∥ and ∥X̂perm
i −UXi∥/∥Xi∥ , respectively. The error usually

decreases when c changes from 1 to 2, and then increases when c increases to 3

and 4. Similar behaviour is also observed for p = 2, 3, and 4.

Note that when varying p, the fixed matrix A also changes, so a direct

comparison of errors across different values of p could be misleading.
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Figure 7. Errors in the estimation of A and X as defined by the 95th
percentiles of the simulated distributions of ∥ÂU−A∥/∥A∥ and ∥X̂perm

i −
UXi∥/∥Xi∥ , respectively, based on simulations for p = 5 and sample sizes
of n = 102, 103 and 104 as discussed in Section 4.2.

4.3. Example with hyperspectral imaging data

Here we used a hyperspectral image of an urban area in Rochester, NY, USA,

near the Lake Ontario shoreline. The image was gathered using NASA’s Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) technology. We selected the

sub-image shown in Figure 8(b), consisting of n = 10,000 pixels, in order to

reduce the computational burden. The same sub-image was used by Bajorski

(2011a,b) and in the book by Bajorski (2012), where more information can be

found. We used p = 102 spectral bands in the range from 400 to 1340nm in

order to avoid the water absorption wavelengths. The numerical results reported

here are generally close to those obtained using methods suggested by Plumbley

(2002, 2003), Oja and Plumbley (2004) and Plumbley and Oja (2004), although

as noted in earlier sections our assumptions and negativity score are different.

The NSPCs were estimated using the methodology described in this paper.

The first columns of D (see section 2.1) representing profiles of the NSPCs (ex-

plaining 98.9 percent variability) are shown in Figure 9. The first NSPC can be

interpreted as the infrared component of the image. The second and third NSPCs

represent the visible spectrum (400 to 700 nm) with the second (third) NSPC
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Figure 8. (a) AVIRIS image of Rochester, NY and Lake Ontario. (b) Actual
100× 100 pixel image used in section 4.3.

Figure 9. Profiles of the first three nonnegative PCs estimated from an
AVIRIS hyperspectral image (see section 4.3).

representing more of the red (blue) wavelength. In this context, the classic PCs

are more difficult to interpret because they represent contrasts between spectral

bands, and their values are often negative.

4.4. Density data example

The density of photographic film was measured along a 21-step log exposure
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Figure 10. Profiles of the first three nonnegative PCs estimated from the
density data (see section 4.4).

series. Each set of 21 response values is often plotted against an index and referred

to as a Dloge curve (e.g., Farnell (1966); Hunt (1987, Sec. 14.14). The curve

characteristically starts at a minimum density, increases with greater exposure,

and then reaches some maximum density. The 32 observations in this dataset

were generated from a 25 full factorial experiment, where five variables, each at

two levels, were manipulated as design variables in the making of a photographic

emulsion.

Although the actual dimension here is 21, the effective dimension is relatively

low. Indeed, the data can be well approximated using only four to nine principal

components, and so the nominal dimension of 21 is not intrinsic.

We again estimated the NSPCs using our methodology. The profiles (columns

of D) of the first three NSPCs (explaining 94.9 percent variability) are shown in

Figure 10. The benefit of using the NSPCs is that they can be interpreted as ad-

ditive effects, as opposed to contrasts usually available in classic PCA, explaining

different aspects of the data. For example, the first NSPC can be interpreted

as showing variability in the emulsion density, represented by the starting points

of the Dloge curves. The second NSPC explains variability in the final stages

of a Dloge curve; that is, the maximum density achieved in the process. The

third NSPC is responsible for the variability in the middle range of the Dloge

curves, where a steep incline is observed, interpreted by emulsion scientists as

representing film contrast.

LaLonde and Bajorski (2006) used these NSPCs as response variables to

model the log exposure data with the five design variables as predictors. They
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also compared this method with two other approaches, multivariate linear regres-

sion with all 21 response variables and with principal components as predictors.

The advantage of using NSPCs was ease of interpretation.

5. Appendices

5.1. Method for computing nonnegative A.

As indicated in Examples 1 and 2 in Section 1, we may sometimes require

A to be a matrix of positive values. Since cov(Y ) = AAT, then the canonical

representation Y = AX, with positive A, will only be possible when the elements

of Y are positively correlated. In practice, small levels of negativity might be

acceptable. However, initial estimates often give many negative elements in Â,

even for predominantly positively correlated data. Below we suggest a penalty-

based method that minimises negativity of both Â and X̂.

Recall that, from a computational viewpoint, the matrix B is estimated by

minimisation of a negativity score, say S∗(B), for Y∗BT, where Y∗ is an n × p

matrix of observations of Σ̂
−1/2
Y Yi . Since A is estimated by Â = Σ̂

1/2
Y B̂T, where

B̂ is given at (2.3), we also want to minimise a negativity score, say N(B), for

Σ̂
1/2
Y BT. In order to balance both minimisations, we minimise S∗(B) + aN(B),

where a is a chosen constant. This approach is especially useful when the solution

to Y = AX is not unique and there is significant flexibility in choice of B.

5.2. Wedged-in lemma

Lemma 1. Assume that the vector X is wedged in Q and has identity covariance

matrix. Let H be a square matrix such that X∗ = HX is nonnegative and has

identity covariance matrix. Then H is a permutation matrix.

Proof. Since I = cov(X∗) = HHT, H is an orthogonal transformation. Any

orthogonal transformation can be expressed as a pure rotation followed by a

permutation, that is, H = UR whereU andR are permutation and pure rotation

matrices, respectively. In particular, RX = UTX∗ is a permutation of X∗, and

so is nonnegative. If R represents a pure rotation then R takes part of S outside

Q. This contradicts the fact that RX is nonnegative. Therefore R must be the

identity, and so H must be a permutation matrix U.

5.3. Proof of Theorem 1

Suppose we have two representations, say Y = AX and Y = A∗X∗, of Y

in terms of vectors X and X∗ of nonnegative-score canonical components, and

one of them, say X, is wedged in Q. Then, X∗ = A−1
∗ AX. From Lemma 1,

we deduce that H = A−1
∗ A must be a permutation matrix U. That is, A∗ =
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UTA and X∗ = UX, which proves the uniqueness of nonnegative-score canonical

components up to the permutation of coordinates.

Conversely, supposeX is a unique random vector of nonnegative-score canon-

ical components but is not wedged in Q. It follows from the wedged-in condition

that there exists a nondegenerate pure rotation matrix R such that X∗ = RX

is nonnegative. Then, cov(X∗) = RRT = I. That is, X∗ is also a vector of

nonnegative-score canonical components, contradicting the uniqueness of X.
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