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Abstract: In this paper, we consider estimating the intensity of a recurrent event

process observed under a standard censoring scheme. We first propose a collec-

tion of kernel estimators for which we provide MSE and MISE bounds. We then

describe and study an adaptive procedure of bandwidth selection, in the spirit of

Goldenshluger and Lepski (2011), and prove an oracle type bound for both the

MSE and the MISE of the final estimator. The method is illustrated by simulation

experiments.
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1. Introduction

Recurrent event data arise in such fields as medicine, insurance, economics,

and reliability. Medical examples include infections in HIV-infected subjects,

tumor recurrences in cancer patients and epileptic seizures of patients. Such

repeated events impact on the quality of life of the patients and increase their

risk of death. Therefore it is of interest to study the rate function of the recurrent

event process that represents the instantaneous probability of experiencing a

recurrent event at a given time. In this paper, we propose a new kernel estimator

of the rate function when the recurrent event process is subject to right censoring

and a terminal event is present. Then, we study the finite sample properties of

this nonparametric estimator and develop a method to choose the bandwidth

using data-driven techniques.

Regression methods have been widely used to estimate the cumulative mean

function or the rate function of the recurrent event process. For instance, Ander-

sen and Gill (1982) considered a Cox model in presence of right censoring and

they studied the intensity of the recurrent process under a Poisson assumption.

In the absence of terminal events, Pepe and Cai (1993) and Lin et al. (2000) per-

formed estimation of the regression parameters in a more general model, taking

into account time dependent covariates. Ghosh and Lin (2002, 2003) extended
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these results to the presence of terminal events and derived asymptotic proper-

ties of the regression parameter estimates. Finally, Bouaziz, Geffray, and Lopez

(2010) studied the cumulative mean function through a single-index assumption

that can be seen as a generalization of the previous models. Asymptotic results

on the parameter estimates were derived and data-driven techniques were used.

However, all these approaches rely on models for the mean or the rate func-

tions that may not hold in practice. In a more flexible way, nonparametric

procedures were considered by several authors. In presence of censored data and

without the Poisson assumption, Nelson (1995) and Lawless and Nadeau (1995)

introduced an estimator of the cumulative mean function and derived a robust

estimator of its variance. They also obtained confidence intervals which enabled

them to compare mean functions in a two-sample test. The theoretical prop-

erties of this estimator were derived in Ghosh and Lin (2000). In their main

result, the cumulative mean function is shown to converge weakly to a zero mean

Gaussian process. More recently, Dauxois and Sencey (2009) studied a model

of recurrent events with competing risks and a terminal event. They performed

two-sample tests on the rate function although their estimation procedure did

not need estimation of this function.

Few works using a smoothing approach were introduced in this framework.

Bartoszyński et al. (1981) briefly presented a kernel estimator of the rate function

when the recurrent events were distributed according to a Poisson process and

the censored times constant. Then, Chiang, Wang, and Huang (2005) extended

their results to a more general setting where no Poisson assumption is made,

no terminal events are considered, and the censoring variables are random, but

observed. They studied two types of kernel estimator of the rate function and

gave asymptotic results for both estimators. Mainly, asymptotic normality was

proved and confidence intervals were derived using a bootstrap method, with

theoretical arguments provided to validate their procedures. Another kind of

smoothing estimator was introduced in Bouaziz, Geffray, and Lopez (2010) to

estimate the cumulative mean function when covariables and terminal events are

present.

In this paper, we propose a new kernel estimator of the rate function in

a nonparametric context, with unobserved random censoring variables and ter-

minal events. For this estimator, we develop an adaptive procedure to select

the bandwidth, based on the recent work of Goldenshluger and Lepski (2011).

We establish oracle inequalities for the L2-risk and the integrated L2-risk of our

estimator with a data-driven choice of the bandwidth. This is the first non-

asymptotic result in this setting. In addition, the data-driven procedure is easily

implementable.

The paper is structured as follows. After presenting the recurrent event

model in the next section, we introduce our estimation procedure and infer a
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kernel-type estimator of the rate function in Section 3.1. In Sections 3.2 and

3.3 we give Mean Squared Error (MSE) and Mean Integrated Squared Error

(MISE) bounds on the estimator for a fixed bandwidth. An adaptive procedure

of bandwidth selection is presented in Section 4. In particular, we derive our

main result, an oracle bound for both the MSE and the MISE of our rate function

estimator. A simulation study is conducted in Section 5 to assess the practical

properties of the method. We also provide a comparison with a bootstrap method

adapted from Chiang, Wang, and Huang (2005). Concluding remarks are made

in Section 6. The main proofs are detailed in Section 7, and some technical

results are postponed to the Appendix, Section 8.

2. Notation and Assumptions

2.1. Notation

For a real q ≥ 1 and a function f : R 7−→ R such that |f |q is integrable or

bounded, we take

∥f∥q =
(∫

|f(x)|qdx
)1/q

and ∥f∥∞ = sup
x∈R

|f(x)|.

For simplicity, we set ∥f∥ = ∥f∥2. The integrals and the supremum are re-

stricted to the support of f and, for τ a positive real number, we set ∥f∥∞,τ =

supx∈[0,τ ] |f(x)|.
We denote by x∗ = argminx∈X f(x) the point x∗ such that f(x∗) realizes the

minimum of the function f over the set X , if it exists. For k a positive inte-

ger, f (k) represents the derivative of order k of the function f , and we set by

convention f (0) ≡ f . For h a positive real number, fh represents the function

fh(·) = f(·/h)/h. For square-integrable functions f and g from R to R, we de-

note the convolution product of f and g by f ∗ g. For quantities α(n) and γ(n),

the notations α(n) . γ(n) and α(n) ∝ γ(n) mean that there exists a positive

constant c such that α(n) ≤ cγ(n) and α(n) = cγ(n), respectively.

2.2. Process assumptions

Let D be the terminal event (e.g., death) and N∗(t) be the number of recur-

rent events experienced up to time t. As no recurrent event can occur after the

terminal event, the process N∗(·) has jumps of size +1 on [0, D].

Let C be the censoring time, assumed to be independent of both N∗(·) and
D. The i.i.d. observations are then

Ti = Di ∧ Ci,

δi = I(Di ≤ Ci),

Ni(t) = N∗
i (t ∧ Ci),
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for i = 1, . . . , n. The distribution functions of D, C, and T = D ∧ C are,

respectively, denoted by

F (t) = P[D ≤ t], G(t) = P[C ≤ t] and H(t) = P[T ≤ t], t ≥ 0. (2.1)

The mean function of N∗ is E[N∗(t)] = µ(t) for all t ≥ 0. We assume that

N∗ has an intensity in the sense that there exists a non-negative function λ such

that, for all t ≥ 0,

E[N∗(t)] = µ(t) =

∫ t

0
λ(s)ds.

Note that this definition is different from the conventional one. In our context

λ(t) refers to the occurrence probability of recurrent events at time t uncondi-

tioned by the history of the recurrent events process. In addition, λ(t) is defined

unconditionally to t ≤ D or t ≤ C, contrary to the usual model assumptions in

a recurrent events framework. This function was defined in Cook and Lawless

(2007) and referred to as the rate function, denoted by ρ. It was also introduced

in Dauxois and Sencey (2009) as the frequency function. While the definition of

the rate function in Chiang, Wang, and Huang (2005) is different from ours, no-

tice that multiplying their rate function by 1−G(·−) gives the intensity function

here.

To make inference about λ, we introduce some assumptions.

Assumption 1.

(i) C is independent of D and of the process (N(t))t≥0;

(ii) P
[
dN∗(C) ̸= 0

]
= 0;

(iii)P[D = C] = 0.

Assumption (i) is common in the context of recurrent events when censored

data are present (see e.g., Dauxois and Sencey (2009), Ghosh and Lin (2000)).

Assumptions (ii) and (iii) preclude ties between death, censoring, and the appari-

tion of recurrent event. Notice that in practical situations, if such ties exist, one

can assign censored events values that are just larger than their actual values.

The next assumption circumvents problems arising in the tails of the distri-

butions of C and N .

Assumption 2.

(i) for F , G, H defined by (2.1), there exist positive constants τ, cF , and cG such

that τ < inf{t : H(t) = 1} and, for all t ∈ [0, τ ],

1−G(t) ≥ cG, 1− F (t) ≥ cF ;

(ii) there exists cτ > 0, such that N(t) ≤ cτ almost surely for every t ∈ [0, τ ];
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(iii)∥λ∥∞,τ := supt∈[0,τ ] λ(t) < ∞.

The first assumption is common in the context of estimation with censored
observations (cf., Andersen et al. (1993)) while the second can be found e.g., in
Dauxois and Sencey (2009). The last one is an additional condition required only
for the pointwise setting.

2.3. Kernel and functional assumptions

Our goal is to perform non-parametric estimation of λ using a kernel-type
estimator. Classical regularity conditions are required for the intensity function
and the kernel K.

Assumption 3. There exists β > 0, L > 0 such that λ(l) exists for l = ⌊β⌋ and

|λ(l)(t+ z)− λ(l)(t)| ≤ L|z|β−l, ∀z ∈ [−h, h], t ∈ [h, τ − h].

The following set of assumptions is fulfilled by many standard kernel func-
tions.

Assumption 4.
(i) K has a compact support [−1, 1],

∫ 1
−1K(u)du=1 and ∥K∥2=

∫ 1
−1K

2(u)du<
∞;

(ii) ∥K∥∞ = supu∈[−1,1] |K(u)| < ∞;

(iii)K is a l = ⌊β⌋ order kernel, in the sense that∫ 1

−1
ujK(u)du = 0, for j = 1, . . . , l,

∫ 1

−1
uβK(u)du < ∞;

(iv)nh ≥ 1 and 0 < h < 1.

3. The MSE and MISE of λ̂h

3.1. Kernel estimator

One of the difficulties in estimating the intensity function is that the process
N∗(t) is not directly observable. Our estimation procedure is based on an equality
that provides an expression of λ relying on the process N , instead of N∗(t).
Under Assumption 1, and since N∗ does not jump after D, we have

E[dN(t)] = E[dN∗(t ∧ C)] = E[dN∗(t)E[I(t ≤ C)|N∗]] = λ(t)
(
1−G(t−)

)
dt.
(3.1)

The distribution function G is estimated by Ĝ, the Lo, Mack, and Wang (1989)
modified Kaplan-Meier estimator

Ĝ(t) =


1−

∏
i:T(i)≤t

(
1− 1

n− i+ 2

)1−δ(i)

if t ≤ T(n),

Ĝ(T(n)) if t > T(n),



640 OLIVIER BOUAZIZ, FABIENNE COMTE AND AGATHE GUILLOUX

where T(i) denotes the ith order statistic in the sample T1, . . . , Tn and the (δ(i))’s

are the δi’s associated to these indexes. Notice then that, for all t ≥ 0

1− Ĝ(t) ≥ (n+ 1)−1. (3.2)

We propose a kernel estimator to estimate λ

λ̂h(t) =
1

nh

n∑
i=1

∫
K

(
t− s

h

)
dNi(s)

1− Ĝ(s−)
, (3.3)

where K and h satisfy Assumption 4. As the kernel has support [−1, 1], the

integrand in (3.3) vanishes outside [t − h, t + h]. Therefore, given a bandwidth

h, we only discuss estimation of λ for t such that t± h ∈ [0, τ ].

Consider the pseudo-estimator

λ̃h(t) =
1

nh

n∑
i=1

∫
K

(
t− s

h

)
dNi(s)

1−G(s−)
,

the kernel estimator of λ if G were known. The study of the quadratic error of

λ̂h−λ is divided into two parts − the error of λ̃h−λ, and that of λ̃h−λ̂h. Bounds

on the Mean Squared Error (MSE) at a fixed point and the Mean Integrated

Squared Error (MISE) of λ̂h − λ are given in Theorem 1.

3.2. Study of the pseudo estimator λ̃h

We obtain results with rather classical tools, for the risk of the pseudo-

estimator. We state successively the pointwise error and the integrated error as

the sum of a bias term and a variance term.

Proposition 1. Under Assumptions 1 to 4

(a) for all t ∈ [h, τ − h]

E
[(
λ̃h(t)− λ(t)

)2] ≤ c21h
2β +

cτ∥λ∥∞,τ

nhcG
∥K∥2,

where

c1 =
L

l!

∫ 1

−1
|u|βK(u)du;

(b)

∫ τ−h

h
E
[(
λ̃h(t)− λ(t)

)2]
dt ≤ τc21h

2β +
cτΛ(τ)

nh
∥K∥2, where

Λ(τ) =

∫ τ

0

λ(s)ds

1−G(s−)
.
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Proof. For the bias terms, we proceed as in Tsybakov (2009) and observe that,

from (3.1)

E[λ̃h(t)] =
1

h

∫
K

(
t− s

h

)
λ(s)ds,

and, using a change of variables, this leads to

(
E[λ̃h(t)]− λ(t)

)2 ≤ (∫ 1

−1
K(u)

(
λ(t+ uh)− λ(t)

)
du

)2

.

Now write λ(t+uh) = λ(t)+λ′(t)uh+ · · ·+((uh)l/l!)λ(l)(t+ ξuh) for 0 ≤ ξ ≤ 1,

and use Assumptions 3 and 4 to obtain the required squared bias bounds c21h
2β

in (a) and τc1h
2β in (b).

Let us denote by V[X] the variance of X. For the variance terms, recalling that

Kh(·) = (1/h)K(·/h), we write

V[λ̃h(t)] =
1

n
V
[∫

Kh (t− s)

1−G(s−)
dN(s)

]
≤ 1

n
E

[(∫
Kh (t− s)

1−G(s−)
dN(s)

)2
]
.

Then apply Lemma 9 (see Section 8) and use Assumption 2 (ii):

V[λ̃h(t)] ≤
cτ
n
E
[∫

K2
h (t− s)

(1−G(s−))2
dN(s)

]
≤ cτ

n

∫
K2

h (t− s)

1−G(s−)
λ(s)ds.

From this point, Assumption 2(i) and (iii), and the equality
∫
K2

h(t − s)ds =

h−1∥K∥2, give the pointwise variance bound of (a), while a change of variables

gives the integrated variance term of (b).

Gathering the bias and the variance bounds gives the MSE and the MISE

stated in (a) and (b), and thus the result of Proposition 1 follows.

3.3. Study of the estimator λ̂h

The difference between λ̂h and λ̃h is expressed here, and the proof is in

Section 7.

Lemma 1. Under Assumptions 1 to 4, for all t ∈ [h, τ − h] we have

E
[(
λ̂h(t)− λ̃h(t)

)2] ≤ c
log(n)

n
,

E
[∫ τ−h

h

(
λ̂h(t)− λ̃h(t)

)2
dt

]
≤ c′

log(n)

n
,
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where c is a constant depending on ∥K∥∞, ∥λ∥∞,τ , and cτ , and c′ is a constant
depending on Λ(τ), ∥K∥, and cτ .

Gathering the results of Proposition 1 (a)−(b) and Lemma 1 provides global
bounds for the estimator.

Theorem 1. Under Assumptions 1 to 4 we have:
(a) for all t ∈ [h, τ − h],

E
[(
λ̂h(t)− λ(t)

)2] ≤ 2c21h
2β + 2

cτ∥λ∥∞,τ

nhcG
∥K∥2 + c

log(n)

n
,

(b) ∫ τ−h

h
E
[(
λ̂h(t)− λ(t)

)2]
dt ≤ 2τc21h

2β + 2
cτΛ(τ)

nh
∥K∥2 + c′

log(n)

n
,

where c1 is the constant defined in Proposition 1, and c and c′ are the constants
introduced in Lemma 1.

The inequalities stated in Theorem 1 are nonasymptotic; in both cases, they
provide a bound that contains a squared-bias term of order h2β, a variance term
of order 1/(nh) and a residual term that is negligible. For an asymptotic con-
vergence rate, one has to optimize with respect to h to obtain the smallest pos-
sible order of the risk bounds. Classically, it appears that we should choose
h ∝ n−1/(2β+1) to obtain a rate proportional to n−2β/(2β+1). Nevertheless, to
reach such a rate, we would need to know β, the regularity index of the unknown
function. To circumvent this impossibility we provide a data-driven way of se-
lecting the bandwidth that allows one to reach almost, or exactly, the optimal
rate without knowledge of β.

4. Adaptive Estimation of λ

4.1. Pointwise bandwidth selection

We wish to automatically select a relevant bandwidth for our estimator using
the Goldenshluger and Lepski (2011) method. Let t = t0 be the point of interest
and define, for any t

λ̂h,h′(t) = Kh′ ∗ λ̂h(t),

where ∗ denotes the convolution product. From the definition of λ̂h,h′ ,

λ̂h,h′(t) =
1

n

n∑
i=1

∫
Kh′∗Kh(t−s)

dNi(s)

1− Ĝ(s−)
=

1

n

n∑
i=1

∫
Kh∗Kh′(t−s)

dNi(s)

1− Ĝ(s−)
,

so that λ̂h,h′(t) = Kh ∗ λ̂h′(t) = λ̂h′,h(t). Then, for some κ0 > 0, take

V0(h) = κ0
cτ∥λ∥∞,τ∥K∥2 log(n)

nhcG
(4.1)
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and consider, for Hn a discrete set of bandwidths specified in the following,

A0(h, t0) = sup
h′∈Hn

{
(λ̂h′ − λ̂h,h′)2(t0)− V0(h

′)
}
+
. (4.2)

We define our adaptive estimator as follows:

ĥ(t0) = argmin
h∈Hn

(A0(h, t0) + V0(h)) and λ̌(t0) = λ̂ĥ(t0)
(t0). (4.3)

Theorem 2. Under Assumptions 1 to 4, if Hn is a finite discrete set of band-

widths such that Card(Hn) ≤ n,

∀h ∈ Hn, nh ≥ κ1 log(n), for some κ1 ≥ 0, (4.4)

and ∑
k: hk∈Hn

1

nhk
. loga(n), for some a ≥ 0, (4.5)

then there exists a constant κ0 such that λ̌ defined by (4.1), (4.2), and (4.3)

satisfies:

∀h ∈ Hn, E
[(
λ̌(t0)− λ(t0)

)2] ≤ c(c21h
2β + V0(h)) + c′

log(1+a)(n)

n
, (4.6)

where c is an absolute constant and c′ a constant depending on cτ , ∥λ∥∞,τ , and

cG.

Remark 1. Note that V0(h) contains several types of terms: κ0 can be taken as

80 to get the theoretical result, but a smaller value works in practice (see Section

5); log(n)/(nh) gives the asymptotic order of the term and is known; ∥K∥ is

a known constant, as the kernel is user-chosen; cτ and ∥λ∥∞,τ are unknown

quantities that can be estimated by

ĉτ = max
1≤i≤n

Ni(τ), ∥̂λ∥∞,τ = sup
x∈[hn,τ−hn]

λ̂hn(x). (4.7)

Here hn is an arbitrary bandwidth (it can be taken as n−1/5 for instance). Note

that if we replace the unknown terms in V0(h) by their estimates, we get an

estimate V̂0(h).

The bound (4.6) holds for all h ∈ Hn and therefore automatically reaches

the rate (n/ log(n))−2β/(2β+1), provided that an optimal value for h of order

(n/ log(n))−1/(2β+1) belongs to Hn. A logarithmic loss occurs here with respect

to the optimal non-adaptive rate. This is also what happens for classical den-

sity estimation, and we can thus conjecture that the procedure is nevertheless

adaptively optimal.
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Example of Hn. Considering the constraints (4.4) and (4.5) on Hn, we can take

Hn =

{
k

n
: k = ⌊log2(n)⌋, ⌊log2(n)⌋+ 1, . . . , n

}
so that Card(Hn) ≤ n and ∀k = ⌊log2(n)⌋, . . . , n, we have hk ∈ [n−1, 1] and

hk ≥ log(n)/n which gives (4.4). Moreover, k0 = ⌊n2β/(2β+1)(log(n))1/(2β+1)⌋ is

guaranteed to be such that k0/n ∝ (n/ log(n))−1/(2β+1) belongs to Hn. Besides,∑
k 1/(nhk) = O(log(n)) and (4.5) holds with a = 1.

4.2. Global bandwidth selection

In the global risk setting, we set, for some κ > 0,

V (h) = κ
cτΛ(τ)∥K∥2

nh
, (4.8)

and we consider for Hn the discrete set of bandwidths specified above. Let

A(h) = sup
h′∈Hn

{
∥λ̂h′ − λ̂h,h′∥2 − V (h′)

}
+

(4.9)

and

ĥ = argmin
h∈Hn

(A(h) + V (h)) and λ∗ = λ̂ĥ. (4.10)

Theorem 3. Under Assumptions 1 to 4, if Hn is a finite discrete set of band-

widths such that Card(Hn) ≤ n, (4.5) holds and∑
k : hk∈Hn

exp(− b

hk
) < +∞, ∀b > 0, (4.11)

then there exists a constant κ such that λ∗ defined by (4.8), (4.9) and (4.10)

satisfies:

∀h ∈ Hn,

∫ τ−1

1
E
[(
λ∗(t)− λ(t)

)2]
dt ≤ c(τc21h

2β + V (h)) + c′
log1+a(n)

n
,

(4.12)

where c is a numerical constant and c′ a constant depending on cτ , Λ(τ), and

cG.

Remark 2. Note that all the points in Remark 1 pertain to V (h). The additional

term Λ(τ) is also unknown and can be estimated by

Λ̂(τ) =
1

n

n∑
i=1

∫ τ

0

dNi(s)

(1− Ĝ(s−))2
.
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It is worth emphasizing here that, if Hn is large enough to contain band-

widths of order hopt ∝ n−1/(2β+1), then the adaptive estimator automatically

reaches the optimal rate n−2β/(2β+1) without requiring the knowledge of β. Com-

pared to the pointwise setting, no logarithmic loss occurs here.

Here are examples of Hn that satisfy Assumption 4 (iv), (4.5), and (4.11).

Example 1. Take

Hn =

{
hk =

1

k
: k = 1, 2, . . . , ⌊

√
n⌋
}
.

Then Card(Hn) ≤
√
n ≤ n and ∀k = 1, . . . , ⌊

√
n⌋, we have hk ∈ [n−1, 1]. More-

over ∑
k : hk∈Hn

(
1

nhk
) =

1

n

⌊
√
n⌋∑

k=1

k = O(1),

which ensures condition (4.5). Lastly,

∑
k : hk∈Hn

exp(− b

hk
) =

⌊
√
n⌋∑

k=1

e−bk = O(1)

and (4.11) is ensured.

Since hopt ∝ n−1/(2β+1), the condition n−1/2 ≤ n−1/(2β+1) ≤ 1 is required,

that is β ≥ 1/2. This means that there is a minimal regularity condition to

impose on the function of interest for (4.12) to hold.

Example 2. Take

Hn =

{
hk =

1

2k
, k = 1, 2, . . . ,

⌊
log(n)

log(2)

⌋}
.

Then Card(Hn) ≤ log(n)/ log(2) ≤ n and ∀k = 1, 2, . . . , ⌊log(n)/ log(2)⌋, we have
hk ∈ [n−1, 1]. Moreover

∑
k : hk∈Hn

(
1

nhk
) =

1

n

⌊log(n)/ log(2)⌋∑
k=1

2k = O(1),

which ensures (4.5). Lastly

∑
k : hk∈Hn

exp(− b

hk
) =

⌊log(n)/ log(2)⌋∑
k=1

e−b2k = O(1)

and (4.11) is verified. Here, no minimum regularity condition of the function to

estimate is needed.
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Figure 1. Scenario 1 with β = 1 and n = 500, r̄e = 1.01, pc = 0% (top),
n =1,000, r̄e = 1.05, pc = 0% (middle), n = 5, 000, r̄e = 0.96, pc = 0%
(bottom)

5. Simulations

We illustrate the behavior of the estimator λ̌, constructed with the pointwise

bandwidth selection of Section 4.1, and conduct a Monte Carlo study to compare

our adaptive procedure for the selection of the bandwidth to a boostrap-based

selection.

5.1. Description of the simulation scheme

Recurrent events data were simulated as follows. For individuals i = 1, . . . , n,

the terminal event Di was simulated according to the distribution F , the censor-

ing time Ci according to G. Conditionally on Di, the number n(i) of recurrent

events experienced by individual i on time interval [0, Di] were simulated ac-

cording to a Poisson distribution P(
∫ Di

0 φ(u)du). Finally the recurrent times for
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Figure 2. Scenario 2 with β = 0.05 and n = 500, r̄e = 0.87, pc = 0% (top),
n =1,000, r̄e = 0.95, pc = 0% (middle), n = 5, 000, r̄e = 0.93, pc = 0%
(bottom)

individual i were simulated as n(i) i.i.d. random variables with common proba-

bility density function φ/
∫ D
0 φ(u)du. The intensity of the process N∗ was then

λ(t) = φ(t)(1− F (t)).

We consider two scenarios for the simulated data

1. φ(t) = t and 1− F (t) = exp(−βt).

2. φ(t) = (3/2)(1− |t− 1|)2 on [0, 2] and 1− F (t) = exp(−βt) on [0, 2].

The estimators of Section 4.1 were constructed with Epanechnikov kernels

KE,2(t) =
3

4
(1− t2), if |t| ≤ 1.

We used a data-driven criterion for the selection of the bandwidth, by replacing
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V0(h) in Definition (4.1) by

V̂0(h) = κ0
ĉτ∥λ̂∥∞,τ∥K∥2 log(n)

nhĉG
,

with

ĉτ = max
i=1,...,n

( sup
t∈[0,Tmax]

N i(t)) + 2

∥λ̂∥∞,τ = sup
t∈[0,Tmax]

|λ̂0.5(t)| and

ĉG = 1− Ĝ(Emax−) and

κ0 = 10−2,

where Emax was the greatest observed recurrent event. We set the universal value

of κ0 at 10−2 after an extensive simulation study comparing the MSE for several

candidate values in the range 10−5 − 102, and in different scenarios.

The finite set of bandwidths (Hn) considered in the algorithm was

Hn =
{ log2 n

n
+

1

2k
, k = 0, 1, . . . ,

⌊
log(n)

log(2)

⌋}
.

5.2. Illustration of the behavior of the adaptive estimator

For Figures 1−3, the intensity functions were estimated on a 20-point grid,

regularly spaced on [0, Emax]. The number of observations n, the mean number

of recurrent r̄e and the level of censoring pc are reported in the captions. On

the left of the figures, the true intensity functions are drawn with solid lines,

the estimators with dashed lines, and the set of all the estimators proposed to

the selection algorithm with dotted lines. The right plots show the value of the

selected windows for all points on the grid.

In Figures 1 and 2, we see the behavior of our estimators as the sample size

grows. In scenario 1, where the intensity λ is smooth, and in scenario 2 where λ

has a singularity, the estimator behaves as expected, improving with the sample

size.

In Figure 3, we see the behavior of our estimator as the censoring level

grows. In this case, the censoring time has an exponential distribution, with

1 − G(t) = exp(−γt), where the parameter γ takes the values γ = 1/30 (top),

γ = 1/3 (middle) and γ = 1 (bottom). The resulting levels of censoring and

mean numbers of recurrent events are indicated in the caption. Note that, as the

level of the censoring grows, the numbers of observed recurrent events vanishes

(from r̄e = 0.89, when pc = 3%, to r̄e = 0.25, when pc = 51%) as does the time
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Figure 3. Scenario 1 with β = 1 and n = 1, 000, r̄e = 0.89, pc = 3% (top),
n = 1, 000, r̄e = 0.60, pc = 26% (middle), n = 1, 000, r̄e = 0.25, pc = 51%
(bottom)

intervals, on which they are observed (from [0, 5.7] when pc = 3%, to [0, 2.3],

when pc = 51%).

We see in Figures 1, 2 and 3 that the algorithm makes very different band-

width choices, depending on the point of time. Therefore, the pointwise strat-

egy is very useful. In particular, we see in Figures 1 and 2 that the minimal

bandwidth choice occurs at time 1, which in both cases is the location of the

maximum; moreover, the selected bandwidth is smaller when the function is less

smooth (look at the value of ĥ for the peaks of the functions). Lastly, Figure

3 shows that the pointwise strategy is relevant: indeed, it is obviously a good

strategy to change the bandwidth over time since none of the proposed curves

would globally give a better estimate.
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5.3. Monte Carlo study

Here, we compare our adaptive strategy for the selection of the bandwidth

to a bootstrap-based strategy, in the spirit of Chiang, Wang, and Huang (2005).

Note that no theoretical results are available for the latter in our setting; indeed

Chiang, Wang, and Huang (2005) present only asymptotic results for a fixed

bandwidth.

We conducted a Monte Carlo study (with M = 100 replications) and calcu-

lated the squared error for m = 1, . . . ,M

SE(λ̂m) =
1

K − 2⌊Kρ⌋

K−⌊Kρ⌋∑
k=1+⌊Kρ⌋

(
λ̂m
η(tk)

(tk)− λ(tk)
)2
,

where λ̂m
η(tk)

is the estimator λ̂ calculated on the mth dataset in the Monte

Carlo experiment, at point tk (on a K point grid) and for the selected pointwise

bandwidth η(tk). Here 0 ≤ ρ < 1 represents the proportion of the smallest and

largest observations withdrawn in the computation of SE to avoid boundary

effects.

We compare two bandwidth selection procedures: the adaptive procedure

described in the previous subsection, denoted by SE(λ̂m
Adapt), and its squared

error, with λ̂m
η(tk)

= λ̂m
ĥ(tk)

, ĥ(tk) as in (4.3); a bootstrap-based procedure, denoted

by SE(λ̂m
Boot), and its squared error, with λ̂m

η(tk)
= λ̂m

ĥm,∗(tk)
,

ĥm,∗(tk) = argmin
h∈Hn

M̂SE
∗
(λ̂m

h (tk)),

with

M̂SE
∗
(λ̂m

h (tk)) = V̂ ar
∗
(λ̂m

h (tk)) +
(
B̂ias

∗
(λ̂m

h (tk))
)2

.

The term V̂ ar
∗
(λ̂m

h (tk)) is the estimated variance calculated on B samples boot-

strapped from the mth dataset in the Monte Carlo experiment, and

B̂ias
∗
(λ̂m

h (t)) =
1

nh

n∑
i=1

∫ {
KE,2

(
t− s

h

)
−KE,4

(
t− s

h

)} dNm
i (s)

1− Ĝm(s−)
,

where Nm
i and Ĝm are calculated on the mth Monte Carlo experiment and

KE,4 = (15/8) × (1 − (7/2)u2)KE,2(u), see Chiang, Wang, and Huang (2005)

and Schucany (1995) for the estimation of the bias, and Hansen (2005) for the

definition of KE,4.

In Tables 1 to 3, we display the mean and the median of SE(λ̂m
Adapt) and

SE(λ̂m
Boot) obtained from M = 100 Monte Carlo experiments. The number of



NONPARAMETRIC ESTIMATION FOR RECURRENT EVENTS 651

Table 1. Scenario 1 with 0% of censoring and β = 1.

×103
n = 200 n = 500 n = 1, 000

mean median mean median mean median
Adaptive 1.72 1.44 0.71 0.50 0.31 0.21
Bootstrap 1.76 1.57 0.73 0.55 0.37 0.28

Table 2. Scenario 1 with ∼ 33% of censoring and β = 1.

×103
n = 200 n = 500 n = 1, 000

mean median mean median mean median
Adaptive 4.25 3.24 2.05 1.56 1.26 1.10
Bootstrap 4.30 3.24 1.95 1.56 0.95 0.73

Table 3. Scenario 2 with 0% of censoring and β = 0.05.

×102
n = 200 n = 500 n = 1, 000

mean median mean median mean median
Adaptive 2.25 2.28 1.55 1.56 0.03 0.03
Bootstrap 1.69 1.60 0.99 0.95 0.02 0.03

bootstrap samples was B = 100 and τ = 0.1. The variances and interquartile

ranges are roughly the same for both methods. Note that the grid of bandwidths

proposed in the bootstrap algorithm was borrowed from our theoretical proposal.

We can see from Tables 1−3 that the perfomances of the two bandwidth

selection methods are roughly similar: our proposal is slightly better in Table 1

while the bootstrap method performs slightly better in Table 3. This is partly due

to the choice of the set of bandwidths Hn which sets the bootstrap under control.

We also emphasize that the number of kernel estimators that are computed are

|Hn|2 for our method versus B|Hn| for the bootstrap method, where B = 100

and |Hn| ≃ 10 for n = 1, 000; our method is approximately ten times faster.

6. Concluding Remarks

In this work, we provide a kernel estimator for the intensity function of a

recurrent event process, and prove oracle type inequalities for the risk of an adap-

tive estimator with data-driven selected bandwidth. We have studied pointwise

risk for pointwise-chosen bandwidth and integrated global risk with a globally

selected bandwidth. Our bandwidth selection proposal differs from standard

cross-validation methods. It is based on recent ideas developed by Goldensh-

luger and Lepski (2011); the results are new, and proofs are of interest. We also

assessed the practical feasibility and performance of our proposal through a short

simulation study.
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7. Proofs

7.1. Proof of Lemma 1

The proof relies on some additional lemmas. First, write

λ̂h(t)− λ̃h(t) =
1

nh

n∑
i=1

∫
Ĝ(s−)−G(s−)

(1− Ĝ(s−))(1−G(s−))
K

(
t− s

h

)
dNi(s),

and consider

ΩG =
{
ω : ∀t ∈ [0, τ ], G(t)− Ĝ(t) ≥ −cG

2

}
,

Ω⋆
G =

{
ω : ∀t ∈ [0, τ ], |G(t)− Ĝ(t)| ≤ c0

√
n−1 log n

}
,

Ωc0 = ΩG ∩ Ω⋆
G. (7.1)

We study the difference process λ̂h − λ̃h on Ωc0 and its complement. The proof

of the next lemma is postponed to Section 8.

Lemma 2. For all p ∈ N, there exists a choice of the constant c0 = c0(p) such

that

P
[
Ωc
c0(p)

]
≤ c2n

−p, (7.2)

where c2 is a constant depending on p, cF and cG, and c0(p) depends on cF .

Let Ωp = Ωc0(p) be such that (7.2) holds.

Lemma 3. Under Assumptions 1 to 4, for all p ∈ N, t ∈ [h, τ − h], we have

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
≤ (n+ 1)2n2−p/2c3(∥K∥∞)2,

where

c3 = c3/2τ

√
c2

(∫ τ

0

λ(s)ds

(1−G(s−))3

)1/2

.

Choosing p≥10 yields E
[(
λ̂h(t)−λ̃h(t)

)2
I(Ωc

p)
]
≤c/n for a positive constant c.

Lemma 4. Under Assumptions 1 to 4, for all p ∈ N, we have∫ τ−h

h
E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
dt ≤ (n+ 1)2n1−p/2c3∥K∥2.

Choosing p ≥ 8 yields
∫ τ−h
h E

[(
λ̂h(t)−λ̃h(t)

)2
I(Ωc

p)
]
dt≤c/n for a positive con-

stant c.
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Proof of Lemmas 3 and 4. From 1 − Ĝ(t) ≥ (n + 1)−1 (see (3.2)) and

∥Ĝ−G∥∞ < 1, we have for all t ∈ [h, τ − h],

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
≤ (n+ 1)2

n2
E

( n∑
i=1

∫
Kh (t− s)

1−G(s−)
dNi(s)

)2

I(Ωc
p)


≤ (n+ 1)2E

[(∫
Kh (t− s)

1−G(s−)
dN(s)

)2

I(Ωc
p)

]

≤ (n+ 1)2cτE

[∫
K2

h (t− s) I(Ωc
p)

(1−G(s−))2
dN(s)

]
, (7.3)

where the last inequality is obtained from Lemma 9. For the proof of Lemma 3,

use consecutively the Cauchy-Schwarz inequality and Lemma 9 to obtain:

E

[∫
K2

h (t− s) I(Ωc
p)

(1−G(s−))2
dN(s)

]

≤ E1/2

[(∫
K2

h (t− s)

(1−G(s−))2
dN(s)

)2
]√

P[Ωc
p]

≤ (∥K∥∞)2h−2√cτ E1/2

[∫ τ

0

dN(s)

(1−G(s−))4

]√
P[Ωc

p]

≤ (∥K∥∞)2h−2n−p/2√c2cτ

(∫ τ

0

λ(s)ds

(1−G(s−))3

)1/2

,

and conclude the proof using the fact that h−1 ≤ n. To prove Lemma 4 write∫ τ−h

h

∫
K2

h (t− s)

(1−G(s−))2
dN(s)dt ≤ h−1∥K∥2

∫ τ

0

dN(s)

(1−G(s−))2
.

Then, using the Cauchy-Schwarz inequality, we get from (7.3) that∫ τ−h

h
E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωc

p)
]
dt ≤ (n+ 1)2cτ

h
∥K∥2 E

[∫ τ

0

I(Ωc
p)dN(s)

(1−G(s−))2

]
≤ (n+ 1)2

h
cτ∥K∥2 E1/2

[(∫ τ

0

dN(s)

(1−G(s−))2

)2
]√

P
[
Ωc
p

]
≤ (n+ 1)2n−p/2

h
c3/2τ

√
c2∥K∥2

(∫ τ

0

λ(s)ds

(1−G(s−))3

)1/2

,

and, again, we conclude the proof using the fact that h−1 ≤ n.
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Lemma 5. Under Assumptions 1 to 4, we have for all t ∈ [h, τ − h] and any

p ∈ N,

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ c4 log n

n
∥λ∥∞,τ

{
(∥K∥1)2∥λ∥∞,τ +

cτ∥K∥2

cGnh

}
,

where c4 = 4c20c
−2
G and c0 = c0(p). For t ∈ [h, τ − h], we have

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ c log(n)

n
,

where c is a positive constant.

Lemma 6. Under Assumptions 1 to 4, for any p ∈ N,∫ τ−h

h
E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
dt ≤ c4 log n

n
∥K∥2

{
2

∫ τ

0
λ2(t)dt+

cτΛ(τ)

nh

}
,

with Λ(τ) as in Proposition 1, and∫ τ−h

h
E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
dt ≤ c log(n)

n
,

where c is a positive constant.

Proof of Lemmas 5 and 6. First, use 1−Ĝ(t) = 1−G(t)+G(t)−Ĝ(t) ≥ cG/2

on ΩG and ∥G(t)− Ĝ(t)∥∞ ≤ c0
√

n−1 logn on Ω⋆
G, to write

E
[(
λ̂h(t)− λ̃h(t)

)2
I(Ωp)

]
≤ 4c20 log n

nc2G
E

( 1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

)2
 .

Then (
E

[
1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

])2

=

(∫
|Kh (t− s)|λ(s)ds

)2

≤ (∥K∥1∥λ∥∞,τ )
2,

and

V

[
1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

]
≤ cτ∥K∥2∥λ∥∞,τ

cGnh
,

from Proposition 1. Combining these bounds gives Lemma 5.

The proof of Lemma 6 is much the same. From a change of variables and

the Cauchy-Schwarz inequality we have∫ τ−h

h

(
E

[
1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

])2

dt
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=

∫ τ−h

h

(∫
|Kh (t− s)|λ(s)ds

)2

dt

≤
(∫ 1

−1
K2(u)du

)∫ τ−h

h

∫ 1

−1
λ2(t− uh)dudt

≤ 2∥K∥2
∫ τ

0
λ2(t)dt,

where the last inequality is obtained with another change of variables. From

arguments as in the proof of Proposition 1, we have∫ τ−h

h
V

[
1

n

n∑
i=1

∫
|Kh (t− s)|
1−G(s−)

dNi(s)

]
dt ≤ cτΛ(τ)

nh
∥K∥2,

and the result follows.

The results of Lemmas 3 to 6 imply Lemma 1.

7.2. Proof of Theorem 2

For all h ∈ Hn,(
λ̌(t0)− λ(t0)

)2 ≤ 3
(
λ̂ĥ(t0)

(t0)− λ̂h,ĥ(t0)
(t0)
)2

+ 3
(
λ̂h,ĥ(t0)

(t0)− λ̂h(t0)
)2

+ 3
(
λ̂h(t0)− λ(t0)

)2
≤ 3
(
A0(h, t0) + V0(ĥ(t0))

)
+ 3
(
A0(ĥ(t0), t0) + V0(h)

)
+ 3
(
λ̂h(t0)− λ(t0)

)2
≤ 6A0(h, t0) + 6V0(h) + 3

(
λ̂h(t0)− λ(t0)

)2
.

Since V0(h), given in (4.1), and (λ̂h(t0)− λ(t0))
2, bounded in Theorem 1a, have

the right order (with an additional log(n) for V0), we only study A0(h, t0). With

λ̃h,h′ = Kh′ ∗ λ̃h, λh(t0) = E[λ̃h(t0)] and λh,h′(t0) = E[λ̃h,h′(t0)], A0(h, t0) as

A0(h, t0) = sup
h′∈Hn

{(
λ̂h′(t0)− λ̂h,h′(t0)

)2 − V0(h
′)
}
+

≤ 5 sup
h′∈Hn

{(
λ̃h′(t0)− λh′(t0)

)2 − V0(h
′)

10

}
+

+5 sup
h′∈Hn

{(
λ̃h,h′(t0)− λh,h′(t0)

)2 − V0(h
′)

10

}
+

+5 sup
h′∈Hn

(
λ̂h′(t0)− λ̃h′(t0)

)2
+ 5 sup

h′∈Hn

(
λ̂h,h′(t0)− λ̃h,h′(t0)

)2
+5 sup

h′∈Hn

(
λh′(t0)− λh,h′(t0)

)2
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:= 5(T0,1 + T0,2 + T0,3 + T0,4 + T0,5).

Since

|λh′(t0)− λh,h′(t0)| = |Kh′ ∗ λ(t0)−Kh′ ∗Kh ∗ λ(t0)| = |Kh′ ∗ (λ−Kh ∗ λ)(t0)|
≤ ∥K∥1 sup

t∈[0,τ ]
|(λ−Kh ∗ λ)(t)|,

T0,5 ≤ ∥K∥21 ∥λ−Kh ∗ λ∥2∞,τ ≤ (∥K∥1)2c21h2β,

as λ−Kh ∗ λ corresponds to the bias term in Proposition 1.

We decompose T0,3 into terms corresponding to I(Ωp) and I(Ωc
p), Ωp as in

(7.1). From Lemma 3, we have

E
[
sup

h′∈Hn

(λ̂h′ − λ̃h′)2(t0)I(Ω
c
p)

]
≤

∑
k,hk∈Hn

E
[
(λ̂hk

− λ̃hk
)2(t0)I(Ω

c
p)
]

≤
∑

k,hk∈Hn

4c3(∥K∥∞)2n4−p/2

≤ 4c3(∥K∥∞)2n5−p/2,

using the fact that Card(Hn) ≤ n. This term is of order 1/n as soon as p ≥ 12.

On the other hand,

E
[
sup

h′∈Hn

(λ̂h′ − λ̃h′)2(t0)I(Ωp)

]

≤ 4c20
c2G

log(n)

n
E

 sup
h′∈Hn

(∫
|Kh′(t0 − s)|
1−G(s−)

(
1

n

n∑
i=1

dNi(s)

))2


≤ 8c20
c2G

log(n)

n
E

 sup
h′∈Hn

(∫
|Kh′(t0−s)|
1−G(s−)

(
1

n

n∑
i=1

dNi(s)−λ(s)(1−G(s−))ds

))2


+
8c20
c2G

log(n)

n
sup

h′∈Hn

(∫
|Kh′(t0 − s)|λ(s)ds

)2

≤ 8c20
c2G

log(n)

n

∑
k,hk∈Hn

V

[
1

n

n∑
i=1

∫ |Khk
(t0−s)|

1−G(s−)
dNi(s)

]
+
8c20∥λ∥2∞,τ

c2G

log(n)

n
∥K∥21

≤ 8c20
c3G

log(n)

n

∑
k,hk∈Hn

cτ∥λ∥∞,τ∥K∥2

nhk
+

8c0(2∥λ∥∞,τ )
2

c2G

log(n)

n
∥K∥21, (7.4)

where the bound on the variance term comes from the proof of Proposition 1.

Therefore E[T0,3] . log1+a(n)/n from (4.5), and this bounds T0,3.
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The term T0,4 can be handled in a similar way using the relation λ̂h,h′(t0)−
λ̃h,h′(t0) = Kh′ ∗ (λ̂h − λ̃h)(t0). Indeed,

E
[
sup

h′∈Hn

(λ̂h,h′ − λ̃h,h′)2(t0)I(Ω
c
p)

]
= E

[
sup

h′∈Hn

(
Kh′ ∗ (λ̂h − λ̃h)

)2
(t0)I(Ω

c
p)

]
≤ (∥K∥1)2E

[
∥λ̂h − λ̃h∥2∞,τI(Ω

c
p)
]

≤ 4c3(∥K∥1∥K∥∞)2n4−p/2

from Lemma 3, and

E
[
sup

h′∈Hn

(λ̂h,h′ − λ̃h,h′)2(t0)I(Ωp)

]
≤ 8c20

c2G

log(n)

n

∑
k,hk∈Hn

V

[
1

n

n∑
i=1

∫ |Khk
∗Kh(t0 − s)|

1−G(s−)
dNi(s)

]

+
8c20
c2G

∥λ∥∞,τ
log(n)

n
( sup
h′∈Hn

∥Kh′ ∗Kh∥1)2.

Using

∥f ∗ g∥q ≤ ∥f∥1∥g∥q for q ≥ 1, (7.5)

it is easy to see that

V

[
1

n

n∑
i=1

∫ |Khk
∗Kh(t0 − s)|

1−G(s−)
dNi(s)

]
≤ cτ

ncG
∥λ∥∞,τ∥Kh ∗Khk

∥2

≤ cτ
ncG

∥λ∥∞,τ (∥Kh∥1)2∥Khk
∥2

≤ cτ∥λ∥∞,τ (∥K∥1)2∥K∥2

ncGhk
,

and

(∥Kh′ ∗Kh∥1)2 ≤ (∥Kh′∥1∥Kh∥1)2 = ∥K∥41.

We conclude that E[T0,4] . log1+a(n)/n.

To study T0,1 and T0,2, we recall the following.

Lemma 7 (Bernstein inequality). Let ξ1, . . . , ξn be independent and identically

distributed random variables and Sn(ξ) =
∑n

i=1 ξi. Then, for η > 0,

P (|Sn(ξ)− E[Sn(ξ)]| ≥ nη) ≤ 2max

(
exp

(
−nη2

4w

)
, exp

(
−nη

4b

))
, (7.6)

where w and b are such that |ξ1| ≤ b almost surely and V(ξ1) ≤ w.
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We apply this result to ξi =
∫
Kh(t0− s)dNi(s)/(1−G(s−)). First, we need

to establish the values of the bounds b and w. We have

|ξ1| ≤ (cτ∥K∥∞)/(cGh) := b and V(ξ1) ≤ cτ∥λ∥∞,τ∥K∥2/(cGh) := w.

Thus, (7.6) can be written in the following way: for some x > 0,

P

[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)

10
+ x

]

≤ 2max

(
exp

(
−n(V0(h)/10 + x)

4w

)
, exp

(
−
n
√

V0(h)/10 + x

4b

))

≤ 2max

(
exp

(
−n(V0(h)/10 + x)

4w

)
, exp

(
−
n
√

V0(h)/5

8b

)
exp

(
−
n
√

x/2

4b

))
.

With κ0 ≥ 80,
nV0(h)

40w
= (κ0/40) log(n) ≥ 2 log(n).

On the other hand,

n
√

V0(h)

8b
√
5

=
∥K∥

√
cGκ0∥λ∥∞,τ

8∥K∥∞
√
5cτ

√
nh log(n) := κ2

√
nh log(n).

Taking κ1 ≥ 4κ−2
2 in (4.4) gives

n
√

V0(h)

8b
√
5

≥ 2 log(n).

Therefore, we have

P

[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)

10
+ x

]
≤ 2n−2max

(
e−κ3nhx, e−κ4nh

√
x
)
,

where

κ3 =
cG

4cτ∥λ∥∞,τ∥K∥2
and κ4 =

cG

4cτ∥K∥∞
√
2
.

This yields

E
[{

|λ̃h(t0)− λh(t0)|2 −
V0(h)

10

}
+

]
≤
∫ +∞

0
P

[
|λ̃h(t0)− λh(t0)| ≥

√
V0(h)

10
+ x

]
dx
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≤ 2n−2max

(∫ +∞

0
e−κ3nhxdx,

∫ +∞

0
e−κ4nh

√
xdx

)
≤ 2n−2max

(
1

κ3nh
,

2

κ24(nh)
2

)
≤ κ5n

−2

for some positive constant κ5. Finally,

E[T0,1] = E
[
sup

h′∈Hn

{(
λ̃h′ − λh′

)2
(t0)−

V0(h
′)

10

}
+

]
≤

∑
k,hk∈Hn

E
[{(

λ̃hk
− λhk

)2
(t0)−

V0(hk)

10

}
+

]
≤ κ5 Card(Hn)n

−2,

and, since Card(Hn) ≤ n, we conclude that E[T0,1] . n−1.

Now T0,2 can be treated in a similar way. Write

E[T0,2] = E
[
sup

h′∈Hn

{(
λ̃h,h′ − λh,h′

)2
(t0)−

V0(h
′)

10
)+

}]
≤

∑
k,hk∈Hn

E
[{(

λ̃h,hk
− λh,hk

)2
(t0)−

V0(hk)

10

}
+

]
and proceed as in the proof of T0,1 except that all h vanish because ∥Kh∗Kh′∥∞ ≤
∥Kh′∥∞∥K∥1.
Gathering the bounds of the five terms gives Theorem 2.

7.3. Proof of Theorem 3

As for the proof of Theorem 2 we have, for all h ∈ Hn,

∥λ∗ − λ∥2 ≤ 3∥λ̂ĥ − λ̂h,ĥ∥
2 + 3∥λ̂h,ĥ − λ̂h∥2 + 3∥λ̂h − λ∥2

≤ 3(A(h) + V (ĥ)) + 3(A(ĥ) + V (h)) + 3∥λ̂h − λ∥2

≤ 6A(h) + 6V (h) + 3∥λ̂h − λ∥2.

Here V (h) and ∥λ̂h − λ∥2 (see Theorem 1(b)), have the right order and we only

need to study A(h). Recall that λ̃h,h′ = Kh′ ∗ λ̃h, λh(t) = E[λ̃h(t)], λh,h′(t) =

E[λ̃h,h′(t)], and write

A(h) = sup
h′∈Hn

{
∥λ̂h′ − λ̂h,h′∥2 − V (h′)

}
+

≤ 5 sup
h′∈Hn

{
∥λ̃h′−λh′∥2−V (h′)

10

}
+

+5 sup
h′∈Hn

{
∥λ̃h,h′−λh,h′∥2 − V (h′)

10

}
+
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+5 sup
h′∈Hn

∥λ̂h′ − λ̃h′∥2+5 sup
h′∈Hn

∥λ̂h,h′−λ̃h,h′∥2+5 sup
h′∈Hn

∥λh′−λh,h′∥2

:= 5(T1 + T2 + T3 + T4 + T5).

From

∥λh′ − λh,h′∥2 = ∥Kh′ ∗ (λ−Kh ∗ λ)∥2 ≤ (∥Kh′∥1)2∥λ−Kh ∗ λ∥2,

where we used (7.5) with q = 2, we obtain

T5 ≤ (∥K∥1)2 τc21h2β,

since ∥λ−Kh ∗ λ∥ corresponds to the bias term in Proposition 1.

Now, with

λ̂h,h′ − λ̃h,h′ = Kh′ ∗ (λ̂h − λ̃h),

we have

E [T4] ≤ ∥K∥21E
[
∥λ̂h − λ̃h∥2

]
≤ c′(∥K∥1)2

log(n)

n
,

where the last inequality is obtained from Lemma 1.

For T3, from Lemma 4,

E
[
sup

h′∈Hn

∫
(λ̂h′ − λ̃h′)2(t)I(Ωc

p)dt

]
≤

∑
j,hj∈Hn

∫
E[(λ̂hj

− λ̃hj
)2(t)I(Ωc

p)]dt

≤
∑

j,hj∈Hn

4c3∥K∥2n3−p/2 ≤ 4c3∥K∥2n4−p/2,

and this is of order 1/n as long as p ≥ 10. Then, similar to (7.4),

E
[
sup

h′∈Hn

∫ τ−h

h
(λ̂h′ − λ̃h′)2(t)I(Ωp)dt

]
≤ 8c20

c2G

log(n)

n

∑
k,hk∈Hn

cτΛ(τ)∥K∥2

nhk
+

16c20
c2G

log(n)

n
∥K∥2

∫ τ

0
λ2(t)dt,

and we conclude from (4.5) that E[T3] . loga+1(n)/n.

As in Theorem 2, T1 and T2 can be treated using a concentration inequality.

First, we need to express each of them as a centered empirical process. For T1,

write

E

[{
sup

h′∈Hn

∥λ̃h′ − λh′∥2 − V (h′)

10

}
+

]
≤

∑
k,hk∈Hn

E
[{

∥λ̃hk
− λhk

∥2 − V (hk)

10

}
+

]
,

and recall that

∥λ̃hk
− λhk

∥2 = sup
f∈L2([hk,τ−hk]),∥f∥=1

⟨λ̃hk
− λhk

, f⟩2. (7.7)
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Now we introduce the centered empirical process

νn,hk
(f) = ⟨λ̃hk

− λhk
, f⟩

=
1

n

n∑
i=1

∫ τ−hk

hk

f(u)

(∫
Khk

(u− s)

(
dNi(s)

1−G(s−)
− λ(s)ds

))
du.

As f 7→ νn,hk
(f) is continuous, the supremum in (7.7) can be taken over a

countable dense subset of {f ∈ L2([1, τ − 1]), ∥f∥ = 1}, which we denote by

Bτ (1). Therefore,

E[T1] ≤
∑

k,hk∈Hn

E

[{
sup

f∈Bτ (1)
ν2n,hk

(f)− V (hk)

10

}
+

]

and the expectation here can be bounded using a concentration inequality.

Theorem 4 (Talagrand Inequality). Let ξ1, . . . , ξn be independent random val-

ues, and let νn,ξ(f) = (1/n)
∑n

i=1{f(ξi)− E[f(ξi)]}. Then, for a countable class

of functions F uniformly bounded and ε > 0, we have

E

[{
sup
f∈F

ν2n,ξ(f)−2(1+2ε2)H2
}
+

]
≤ 4

d

(
W

n
e−dε2 nH2

W +
98M2

dn2φ2(ε)
e
− 2dφ(ε)ε

7
√

2
nH
M

)
,

with φ(ε) =
√
1 + ε2 − 1, d = 1/6 and

sup
f∈F

∥f∥∞ ≤ M, E
[
sup
f∈F

|νn,ξ(f)|
]
≤ H, sup

f∈F

1

n

n∑
i=1

V[f(ξi)] ≤ W.

To apply this result, we need to compute appropriate values of the bounds

H, M , W , and the constant ε. Clearly,

E

[
sup

f∈Bτ (1)
ν2n,hk

(f)

]
≤ E

[
∥λ̃hk

− λhk
∥2
]
=

∫ τ−hk

hk

V
[
λ̃hk

(t)
]
dt =

V (hk)

κ

and thus we require H2 = V (hk)/κ. Then we set ε2 = 1/2 and κ = 40 in order

to have 2(1 + 2ε2)H2 = V (hk)/10.

Now to find the bound M , use the Cauchy-Schwarz inequality and the fact

that ∥f∥ = 1 on Bτ (1) to write∣∣∣∣∫ τ−hk

hk

f(u)

∫
Khk

(u− s)
dN(s)

1−G(s−)
du

∣∣∣∣
=

∣∣∣∣∫ (∫ τ−hk

hk

f(u)Khk
(u− s) du

)
dN(s)

1−G(s−)

∣∣∣∣
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≤ ∥f∥
∫ (∫ τ−hk

hk

K2
hk
(u− s)du

)1/2
dN(s)

1−G(s−)
≤ cτ∥K∥

cG

1√
hk

:= M.

To determine W , introduce the notation K−
hk
(s) = Khk

(−s) and write

V
[∫ τ−hk

hk

f(u)

∫
Khk

(u− s)
dN(s)

1−G(s−)
du

]
≤ E

[(∫∫ τ−hk

hk

Khk
(u− s)f(u)du

dN(s)

1−G(s−)

)2
]

≤ E

[(∫
K−

hk
∗ f(s) dN(s)

1−G(s−)

)2
]

≤ cτ

(∫
(K−

hk
∗ f)2(s)

1−G(s−)
λ(s)ds

)

≤ cτ∥λ∥∞,τ

cG
∥K−

hk
∗ f∥2≤ cτ∥λ∥∞,τ

cG
(∥K−

hk
∥1)2∥f∥2=

cτ∥λ∥∞,τ (∥K∥1)2

cG
:= W,

where we used Lemma 9 and (7.5) for q = 2. Therefore, W is a constant and we

can apply the Talagrand Inequality:

E

[{
sup

f∈Bτ (1)
ν2n,hk

(f)− V (hk)

10

}
+

]
≤ ϑ1

n

(
exp(−ϑ2

hk
) +

1

nhk
exp(−ϑ3

√
n)

)
,

for some positive constants ϑ1, ϑ2 and ϑ3. Then, from (4.5), (4.11), and the fact

that Card(Hn) ≤ n, we have

E[T1] ≤
ϑ1

n

∑
k,hk∈Hn

(
exp(−ϑ2

hk
) +

1

nhk
exp(−ϑ3

√
n)

)
. 1

n
.

Now, as with T1,

E[T2] ≤
∑

k,hk∈Hn

E
[{

∥λ̃h,hk
− λh,hk

∥2 − V (hk)

10

}
+

]
,

and the Talagrand inequality needs to be applied to the centered process ⟨λ̂h,hk
−

λh,hk
, f⟩, where f ∈ Bτ (1). Since λ̃h,hk

= Kh ∗ λ̃hk
and λh,hk

= Kh ∗ λhk
, the

same bounds H,M , and W can be used, up to a constant. Indeed, using the

inequalities

∥Kh ∗Khk
∥2 ≤ ∥K∥1∥K∥2(hk)−1/2 and ∥Kh ∗K−

hk
∥1 ≤ (∥K∥2)1
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it can be shown that Theorem 4 can be applied with

H2 =
V (hk)(∥K∥1)2

κ
, M =

cτ∥K∥1∥K∥
cG

√
hk

, and W =
cτ∥λ∥∞,τ

cG
(∥K∥1)4.

Finally, we obtain again that E[T2] . 1/n.

Gathering the bounds of the five terms gives the result of Theorem 3.

8. Technical Lemmas

For Lemma 2, we consider a result which is a direct consequence of Theorem

1 in Bitouzé, Laurent and Massart (1999).

Lemma 8. For all k ∈ N∗, there exists a positive constant ck depending on k

such that

E
[
∥Ĝ−G∥2k∞,τ

]
≤ ck

nk
.

Proof. We use a nonasymptotic exponential bound for the Kaplan-Meier es-

timator that can be formulated as follows (see Bitouzé, Laurent and Massart

(1999)): there exists a positive constant η such that for any positive constant ε,

P
[√

n∥(1− F ) (Ĝ−G)∥∞,τ > ε
]
≤ 2.5 e−2ε2+ηε (8.1)

and so

E
[
∥Ĝ−G∥2k∞,τ

]
≤ 2k

∫ +∞

0
u2k−1 P

[
∥Ĝ−G∥∞,τ > u

]
du

≤ 2k

∫ +∞

0
u2k−1 P

[
c−1
F ∥(1− F ) (Ĝ−G)∥∞,τ > u

]
du

≤ 2k

∫ +∞

0
u2k−1 P

[√
n∥(1− F ) (Ĝ−G)∥∞,τ > cF

√
nu
]
du

≤ 5keη
2/8

∫ ∞

0
u2k−1 exp

{
−2c2Fn

(
u− η

4
√
ncF

)2
}
du

≤ 5eη
2/8k

2kc2kF

∫ +∞

−η/(2
√
2)

(
z +

η

2
√
2

)2k−1

e−z2dz n−k := ckn
−k.

Proof of Lemma 2. Since P[Ωc] ≤ P[Ωc
G] + P[(Ω⋆

G)
c], we bound each term

separately. For any k > 0, we have

P [Ωc
G] ≤ P

[
∥G− Ĝ∥∞,τ > cG/2

]
≤ 4k

c2kG
E
[
(∥G− Ĝ∥∞,τ )

2k
]
.

Thus, Lemma 8 implies that

P [Ωc
G] ≤ dkn

−k, where dk > 0. (8.2)
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Next, we use (8.1) and write

P
[
∥Ĝ−G∥∞,τ > c0

√
n−1 log(n)

]
≤ P

[
∥(1− F )(Ĝ−G)∥∞,τ > c0cF

√
n−1 log(n)

]
≤ 2.5 exp(−2c2F c

2
0 log(n)+ηcF c0

√
log(n))≤2.5 exp((−2cF c0+η)c0cF log(n)).

Thus, for c0 ≥ (η +
√

η2 + 8k)(4cF )
−1 we have

P [Ω⋆c
G ] = P

[
∥G− Ĝ∥∞,τ > c0

√
n−1 log n

]
≤ 2.5n−k.

This and (8.2) imply that P[Ωc] ≤ (dk + 2.5)n−k.

We conclude this section with a useful inequality concerning integrals with

respect to the counting process N .

Lemma 9 (Cauchy-Schwarz). For every bounded function h on [0, τ ], we have

N(τ)

∫ τ2

τ1
h2(s)dN(s) ≥

(∫ τ2

τ1

h(s)dN(s)

)2

,

where 0 ≤ τ1 ≤ τ2 ≤ τ .

Proof. We have

0 ≤
∫ τ2

τ1

(
h(s)−

∫ τ2

τ1

h(s)dN(s)

N(τ)

)2 dN(s)

N(τ)

0 ≤ 1

N(τ)

∫ τ2

τ1

h2(s)dN(s)− 2

(∫ τ2

τ1

h(s)
dN(s)

N(τ)

)2

+

(∫ τ2

τ1

h(s)
dN(s)

N(τ)

)2 ∫ τ2

τ1

dN(s)

N(τ)
.

Then, notice that
∫ τ2
τ1

dN(s) ≤ N(τ) to obtain the desired result.
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