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Abstract: In this paper, we consider the problem of variable selection for high-

dimensional generalized varying-coefficient models and propose a polynomial-spline

based procedure that simultaneously eliminates irrelevant predictors and estimates

the nonzero coefficients. In a “large p, small n” setting, we demonstrate the conver-

gence rates of the estimator under suitable regularity assumptions. In particular,

we show the adaptive group lasso estimator can correctly select important vari-

ables with probability approaching one and the convergence rates for the nonzero

coefficients are the same as the oracle estimator (the estimator when the impor-

tant variables are known before carrying out statistical analysis). To automatically

choose the regularization parameters, we use the extended Bayesian information cri-

terion (eBIC) that effectively controls the number of false positives. Monte Carlo

simulations are conducted to examine the finite sample performance of the proposed

procedures.

Key words and phrases: Diverging parameters, group lasso, polynomial splines,

quasi-likelihood.

1. Introduction

Regression analysis where investigators are interested in the relationships be-

tween a set of predictors and the responses is of utmost importance in statistics,

with linear regression the oldest, the simplest, and the most popular approach.

Generalized linear models (GLM) provide an extension of linear models in dealing

with different types of responses, including for example binary data and count

data (McCullagh and Nelder (1989)). Let Y be a response variable and sup-

pose the (conditional) mean of the response, µ, depends on the p-dimensional

predictors X = (X1, . . . , Xp) through

g(E[Y |X]) = g(µ) = XTβ, (1.1)

where g is a known link function and β = (β1, . . . , βp)
T is a vector of unknown

regression coefficients. The variance of Y is typically a function of the mean,

that is,

V ar(Y |X) = V (µ) = V (g−1(XTβ)).

http://dx.doi.org/10.5705/ss.2010.308
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However, such parametric models are not flexible enough to capture the true un-

derlying relationships between covariates and responses. Of particular interests

to us is the generalized varying-coefficient models (GVCM) (Hastie and Tibshi-

rani (1993); Cai, Fan, and Li (2000)) in which the coefficients β in GLMs are

replaced with smooth nonparametric functions that depends on an index variable

T , resulting in

g(E[Y |X,T ]) = g(µ) = XTα(T ), (1.2)

where α(T ) = (α1(T ), . . . , αp(T ))
T . The index variable T is usually some variable

related to time or age in many applications, and whose interactions with other

predictors is believed to be of importance.

High-dimensionality is an important characteristic of many modern data

sets. However, even with many predictors available to be included in an initial

modeling, many of them may not be significant and their inclusion only decreases

the accuracy of prediction.

Recent challenging topics in statistics include the development of automatic

variable selection procedures intended to automatically find the relevant param-

eters among all candidate parameters and simultaneously estimate them. As

argued in Li and Liang (2008), traditional variable selection methods, such as

stepwise regression and best subset selection, are computationally infeasible when

the number of predictors is large, and this is part of the reason why the penal-

ization based method has gained popularity in recent years. Substantial progress

has been made on the problem of variable selection for linear models and gener-

alized linear models (Tibshirani (1996); Fan and Li (2001); Fan and Peng (2004);

Zou (2006); Zou and Li (2008); Yuan and Lin (2007); Huang, Horowitz, and Ma

(2008); Choi, Li, and Zhu (2010); Li, Peng, and Zhu (2011)). In particular, the

adaptive group lasso was proposed in Wang and Leng (2008) and is the penalty

we use here. More recently, variable selection methods using penalty functions

in nonparametric or semiparametric settings have been developed. For exam-

ple, Xie and Huang (2009) developed variable selection based on penalization for

partially linear models, and Ravikumar et al. (2008); Meier, Van de Geer, and

Bühlmann (2009); Huang, Horowitz, and Wei (2010) independently investigated

the additive models. For generalized varying-coefficient partial linear models,

Li and Liang (2008) used penalization to select the significant predictors in the

parametric components while the nonparametric components were selected by

hypothesis testing. Note that this work is for the fixed p case. Lam and Fan

(2008) studied varying-coefficient partially linear models with a diverging num-

ber of parametric components but they did not investigate the variable selection

problem. For the ordinary varying-coefficients models with quadratic loss func-

tion, Wang, Li, and Huang (2008) and Wang and Xia (2009) each proposed a

group penalization method in the fixed p case, and Wei, Huang, and Li (2011)



HIGH-DIMENSIONAL GENERALIZED VARYING-COEFFICIENT MODELS 1565

recently extended this work to the case of diverging p. These previous works

motivated us to develop a penalization based approach for variable selection in

GVCMs. Thus our work is a natural extension of Wei, Huang, and Li (2011)

to more general types of responses using quasi-likelihood as opposed to varying-

coefficient models with least squares loss. Besides, the theoretical proofs seem

more difficult with quasi-likelihood. Finally, we provide the consistency proof of

eBIC while no corresponding results are stated in their work.

This paper is organized as follows. In Section 2, we propose a penalization

procedure for coefficient estimation and variable selection. Unlike Li and Liang

(2008) and Lam and Fan (2008), which are based on local polynomial regression,

we use polynomial splines to approximate the nonparametric coefficients. This

is computationally easier since it directly reduces the nonparametric model to

a parametric GLM as far as computations are concerned. The regularization

parameter is automatically chosen using the extended Bayesian information cri-

terion (eBIC) (Chen and Chen (2008)). In Section 3, Monte Carlo simulation

studies are carried out for the Poisson regression and logistic regression models

to demonstrate the performance of the proposed method. In addition, a data set

is used as an illustration of varying-coefficient logistic regression models. The

Appendix contains all technical proofs.

2. Spline Estimator and Sampling Properties

The data we observe for the ith subject or unit are (Xi, Ti, Yi), i = 1, . . . , n,

where the Xi = (Xi1, . . . , Xip)
T are the predictors and the Ti are index variables.

The true model is assumed to be that of (1.2) with p potentially much bigger

than n. (As shown at the end of Section 2.2, if the number of nonzero coefficients

is bounded, we can take p = o(exp{nd/(2d+1)}). However, we assume a sparse

model with only s significant predictors, denoted by X(1) = (X1, . . . , Xs), and

the other p−s predictors do not appear in the true model. We denote the nonzero

coefficients by α0 = (α01, . . . , α0s)
T . Note that for simplicity the index variable

T is assumed to be univariate with a distribution supported on the interval [0, 1].

The extension to multi-dimensional T is possible but rarely used in practice due

to the so-called “curse of dimensionality”.

2.1. Estimation and variable selection based on adaptive group lasso

penalty

The (negative) quasi-likelihood function is defined by

Q(µ, y) =

∫ y

µ

y − s

V (s)
ds,
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and the negative quasi-likelihood of the observed n i.i.d. data is

n∑
i=1

Q(g−1(XT
i α(Ti)), Yi).

The attractiveness and popularity of quasi-likelihood largely lies in that estima-

tion is still consistent even if the variance function is misspecified. In this paper,

we take “likelihood” to mean quasi-likelihood.

We use polynomial B-splines to approximate the varying coefficients αj(t),

1 ≤ j ≤ p. To approximate a function on [0, 1], we partition the interval [0, 1]

into K ′ subintervals [(k − 1)/K ′, k/K ′], for k = 1, 2, . . . ,K ′ with K ′ = K ′(n)

being a sequence of natural numbers diverging to infinity as sample size n goes

to infinity. A polynomial spline of order q is a function whose restriction to

each subinterval is a polynomial of degree q − 1 and is globally q − 2 times

differentiable. The collection of such polynomial splines has a normalized B-

spline basis {B1(t), . . . , BK(t)} with K = K ′ + q. As in De Boor (2001), the

basis satisfies Bk ≥ 0, k = 1, . . . ,K,
∑K

k=1Bk(t) ≡ 1, and Bj is supported inside

an interval of length q/K and at most q of the basis functions are nonzero at

any given t. Using spline expansions, we can approximate the coefficients by

αj(t) ≈
∑

k ajkBk(t). It is also possible to construct irregular subintervals based

on observed values of the index variable, or to specify different K for different

coefficient, but we make the above choices for computational and theoretical

simplicity.

We start with a model where all coefficients are potentially nonzero, with

negative likelihood given by

n∑
i=1

Q(g−1(

p∑
j=1

K∑
k=1

XijajkBk(Ti)), Yi) =

n∑
i=1

Q(g−1(ZT
i a), Yi),

where Zi = (Xi1B1(Ti), . . . , Xi1BK(Ti), . . . , XipBK(Ti))
T , and a = (aT1 , . . . , a

T
p )

T

= (a11, . . . , a1K , a21, . . . , apK)T . The adaptive group lasso penalty is used to en-

courage shrinkage to zero coefficients. For any 1 ≤ j ≤ p, since
∑

k ajkBk(t) ≡ 0

if and only if ajk = 0, for all 1 ≤ k ≤ K, or equivalently ∥aj∥ = 0 (∥.∥ is

the l2 norm), the group lasso penalty
∑n

j=1 ∥aj∥ can be used to identify zero

coefficients, as done in Yuan and Lin (2006). Thus we propose the estimation

procedure based on penalized negative likelihood,

â = argmin
a

n∑
i=1

Q(g−1(ZT
i a), Yi) + nλ

p∑
j=1

wj∥aj∥, (2.1)

where λ is a regularization parameter controlling the amount of shrinkage, w =

(w1, . . . , wp) is a given vector of weights. Intuitively, wj should be large if αj is
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actually zero to encourage more shrinkage. In this subsection we assume these

weights are given and known, while in practice we estimate them based on an

initial estimator, as discussed in the next subsection.

If we have the knowledge of which coefficients are zeros, we can optimize the

similar penalized functional with all insignificant predictors removed:

â(1) = argmin
a(1)

n∑
i=1

Q(g−1(Z
(1)T

i a(1)), Yi) + nλ

s∑
j=1

wj∥a(1)j ∥, (2.2)

where Z
(1)
i is the sK-dimensional subvector of Zi corresponding to nonzero

coefficients. We take Z
(2)
i , which is associated with zero coefficients, so that

ZT
i = (Z

(1)T
i , Z

(2)T
i ). Other variables with these superscripts are interpreted

similarly.

Since the weights wj , s + 1 ≤ j ≤ p are associated with the zero coeffi-

cients and do not appear in the functional (2.2), it makes sense to take ∥w′∥2 =∑s
j=1w

2
j . A theorem gives the convergence rate of the estimator in (2.2), for

which we need an assumption involving the dimensionality and the smoothing

parameter. The parameter d that appears below is the smoothness parameter

for α0j , 1 ≤ j ≤ s, as stated in condition (c7) in the Appendix.

Assumption (A).

(Ks)3/2
√

Ks

n
+

s2

K2d
+ λ2K∥w′∥2 → 0.

As discussed in Section 2.2, for appropriately chosen weights wj , the term

λ2K∥w′∥2 is no bigger than Ks/n and can be ignored in (A). If s is bounded,

the usual choice K ∼ n1/(2d+1) balances bias and variance in the convergence

rates stated below, and assumption (A) reduces to n4/(2d+1)/n → 0. Thus (A) is

satisfied if d > 3/2, in particular if α0j is twice differentiable.

Theorem 1. Under the regularity conditions (c1)−(c8) in the Appendix, as well

as (A), the estimator â(1) in (2.2) satisfies

s∑
j=1

∥α̂j(t)− α0j(t)∥2 = OP (
Ks

n
+

s2

K2d
+ λ2Ks∥w′∥2), (2.3)

where α̂j(t) =
∑

k â
(1)
jk Bk(t).

The next theorem shows that the estimator from (2.1), which does not as-

sume knowledge of the zero coefficients, is exactly equal to the estimator from

(2.2), with probability converging to 1. Thus the convergence rates for the esti-

mator (2.1) are as stated in Theorem 1. Extra conditions on the weights wj are



1568 HENG LIAN

needed as stated in the assumption below, it can be interpreted as the require-

ment that wj is sufficiently large for zero coefficients.

Assumption (B).

√
n log(p ∨ n) +

√
n

K
(Ks+

ns2

K2d
+ nKλ2∥w′∥2) = o(nλwj), s+ 1 ≤ j ≤ p.

Theorem 2. Under the regularity conditions (c1)−(c9) in the Appendix, as well

as (A) and (B), suppose â(1) is obtained from (2.2) and take â = (â(1), â(2)) with

â
(2)
jk = 0 for s + 1 ≤ j ≤ p, 1 ≤ k ≤ K. Then â is the solution of (2.1) with

probability converging to 1.

2.2. Initial estimator based on the group Lasso

In the adaptive group lasso penalties, the weight wj is generally desired to

be large for zero coefficients and small for nonzero ones. Following Zou (2006),

we can first obtain an initial estimator with the group lasso penalty (all weights

set to be 1),

ã = argmin
a

∑
i

Q(g−1(ZT
i a), Yi) + λ0

p∑
j=1

∥aj∥, (2.4)

and then set wj = 1/∥ãj∥.

Theorem 3. Under (c1)−(c7), (c9), (c10) in the Appendix, if

λ0

max{
√

n log(p ∨ n),
√
ns}

→ ∞,
s2K2λ0

n
→ 0,

then ∥ã−a0∥ = OP (
√
sKλ0/n), where a0 contains the coefficients in the optimal

approximation of α0 in the spline basis expansion, which satisfies ∥
∑

k a0jkBk(t)−
α0j(t)∥ = O(K−d), 1 ≤ j ≤ p. If (c11) holds, all coefficients except Ms of them

are estimated as zeros for some constant M as (c11) in the Appendix.

Now we discuss how condition (B) can be satisfied using the initial estima-

tor (2.4). For simplicity of discussion we assume ∥a0j∥/
√
K is bounded away

from zero for 1 ≤ j ≤ s; this assumption is satisfied if, for example, the true

coefficients α0 = (α01, . . . , α0s)
T do not change with sample size. Choosing

λ0 ∼
√
nbnmax{

√
log(p ∨ n), s} with some bn → ∞ arbitrarily slowly, the con-

vergence rate of the initial estimator is OP (
√
sKmax{

√
log(p ∨ n), s}

√
bn/

√
n).

If this convergence rate is o(
√
K) (if s is bounded, this condition just simpli-

fies to K log(p ∨ n)/n → 0), then ∥ãj − a0j∥ is of smaller order than ∥a0j∥
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when 1 ≤ j ≤ s and thus ∥ãj∥/
√
K is also bounded away from zero, leading to

wj = 1/∥ãj∥ = O(1/
√
K). This implies ∥w′∥ = OP (

√
s/K) and wj , s+1 ≤ j ≤ p

is at least of order
√

n/s/(Kmax{
√

log(p ∨ n), s}
√
bn). Thus if

λ = O
(√K

n

)
, (2.5)

the final term in (2.3) is small enough and can be ignored. Furthermore, taking

K ∼ n1/(2d+1), the usual choice that balances bias and variance in nonparametric

regression, assumption (B) is equivalent to

λ

(√
s3K

n
max{

√
log(p ∨ n), s}

√
bn

)−1

→ ∞,

λ

(√
sK
√

log(p ∨ n)

n
max{

√
log(p ∨ n), s}

√
bn

)−1

→ ∞.

Under different rates of divergence of s, with constraint on the size of p and s, λ

can be found that satisfies the above, as well as (2.5). For example, if s = O(1),

then we require that p satisfies log p = o(nd/(2d+1)) in order for such λ to exist.

2.3. Tuning parameters selection and implementation

In practice, we need to choose some parameters including the spline order

q, the number of basis terms K, as well as the regularization parameters λ0

and λ. As is common, we fix q = 4 (cubic splines) in all our numerical results.

When computing the initial group lasso estimator and the adaptive group lasso

estimator, we fix K = 8. This strategy is similar to that commonly used in

functional smoothing/functional data analysis literature where the number of

knots is chosen to be sufficiently large so that approximation error is small and the

overfitting can be effectively controlled by the penalization terms (see for example

Chapter 5 of Ramsay and Silverman (2005)). Nevertheless, we conducted some

simulation studies on the choice of K that suggested that the results are not too

sensitive to its value.

The choice of λ in (2.1) is critical for the performance of the estimators.

In our high-dimensional context, we adopt the extended Bayesian information

criterion (eBIC) of Chen and Chen (2008) that was developed for parametric

models. More specifically, we select λ that minimizes

2

n

n∑
i=1

Q(g−1(Ziâλ), Yi) + d1
log(n/K)

n/K
+

2

n/K
log

(
p

d1

)
, (2.6)
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where âλ is the minimizer of (2.1) for the given λ, and d1 is the number of

coefficients estimated as nonzero, also for the given λ. The final term comes

from, with a total of p predictors, the number of different models with d1 nonzero

coefficients is exactly
(
p
d1

)
(see Chen and Chen (2008) for motivation of this term).

For the initial estimator we use a similar criterion,

2

n

n∑
i=1

Q(g−1(Ziãλ0), Yi) + d1
log(n/K)

n/K
+

2

n/K
log

(
p

d1

)
. (2.7)

In (2.6) and (2.7), if the last term is omitted, we have the ordinary BIC.

We now show that eBIC can correctly separate the nonzero coefficients from

zero ones with probability approaching one. For this we use the simplifying

assumption that s is bounded. Furthermore, for technical reasons, we also assume

we only search over models with at most D (fixed) nonzero coefficients. This

means we should have some a priori knowledge about the complexity of the

true model. In Chen and Chen (2008), where eBIC was first proposed, the

same assumption was made. Note that we are not able to provide corresponding

theoretical analysis on eBIC for the initial estimator (which is not consistent in

variable selection anyway).

Theorem 4. Suppose the number of nonzero coefficients s in the true model

does not diverge with sample size and that we have an a priori upper bound

D for s. Under the conditions of Theorems 1 and 2, K ∼ n1/(2d+1), and that

inf1≤j≤s ||α0j(t)|| is bounded away from zero, the eBIC as (2.6) correctly identifies

the nonzero coefficients and the constant coefficients with probability approach-

ing 1.

The minimization problem (2.1) (as well as (2.4)) is solved by local quadratic

approximation, as adopted by Fan and Li (2001). Given the current estimate a(0),

the local quadratic approximation procedure solves

min
∑
i

Q(g−1(ZT
i a), Yi) + nλ

p∑
j=1

wj
∥aj∥2

∥a(0)j ∥
,

which needs to be minimized by a Newton-Raphson iterative algorithm, resulting

in an inner loop in our algorithm. During the iterations, we need to keep track

of the zero coefficients and remove the corresponding predictor as soon as ∥aj∥ is

smaller than a certain threshold (10−5 in our implementation). The pseudo-code

of our algorithm for solving (2.1) is the following (the algorithm for solving (2.4)

is similar):
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Table 1. Model selection results of different penalized estimators for the
Poisson model based on 100 replications, with n = 150. For adaptive group
lasso estimator (AGL), the label (BIC-BIC), for example, means the ordinary
BIC is used for both the initial estimator as well as the adaptive group lasso
estimator.

Avg # of varying coef.
correct incorrect

p = 50 GL(BIC) 3 25.79
GL(eBIC) 3 24.22

AGL(BIC-BIC) 3 20.83
AGL(eBIC-eBIC) 3 1.25

p = 200 GL(BIC) 3 66.28
GL(eBIC) 3 59.15

AGL(BIC-BIC) 2.98 43.29
AGL(eBIC-eBIC) 2.97 3.61

Algorithm for computing (2.1)

initialize a0.

for k = 1, 2, . . .

Starting from ak,1 := ak−1, iterate until convergence to obtain ak:

ak,l+1 = ak,l − (q2(Z
T
i a

k,l, Yi)ZiZ
T
i + 2nλΩ)−1(q1(Z

T
i a

k,l, Yi)Zi + 2nλΩak,l)

where Ω = diag(w1IK/∥ak−1
1 ∥, . . . , wpIK/∥ak−1

p ∥)
is a pK × pK diagonal matrix (IK denotes K ×K identity matrix)

endfor

3. Numerical Examples

In this section we report on some simulations to evaluate the finite sample

performance of the spline estimator for GVCM and demonstrate the effectiveness

of eBIC for smoothing parameter selection. We also present an application to

cancer classification.

Example 1. In this example, consider the varying-coefficient Poisson regression

model where the true conditional mean function is

µ = exp{XTα(T )}.

The data sets were generated with sample size n = 150 and dimensionality p = 50

and p = 200, respectively. Due to the Newton update within the inner loop

involving inversions of p × p matrices, the computation time was too long for

larger p and thus we did not attempt larger dimensionality in our simulations.

The index variable T was sampled uniformly on [0, 1], and the predictors Xi were

taken to be Xi1 = 1 and Xij ’s marginally standard normal with within subject

correlations Cov(Xij1 , Xij2) = (0.1)|j1−j2|, j1, j2 ̸= 1. We set α1(t) = 4 sin(2πt),
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Figure 1. Boxplots showing MSEs for α1, . . . , α4, for the Poisson model.

α2(t) = 10t(1 − t), α3 = 3 exp{t − 0.5}, and αj = 0, j = 4, . . . , p. For both

p = 50 and p = 200, 100 data sets were generated and fitted, with smoothing

parameters λ0, λ chosen by either ordinary BIC or eBIC for comparison. In Table

1, we show the number of identified varying coefficients. When BIC was used

(for both group lasso estimator and adaptive group lasso estimator), we generally

saw a large number of false positives, especially when p = 200. When eBIC was

used, although the group lasso estimator still contained many false positives, this

number was effectively controlled in the adaptive group lasso estimator. Thus

we only consider the estimation accuracy when using eBIC next. In Figure 1, we

show the boxplots of the mean squared errors for the coefficients α1, α2, α3 and

α4(= 0), where the calculation of MSE ∥αj(t) − α̂j(t)∥ was based on numerical

approximation on a uniform grid containing 500 points on [0, 1]. The MSEs for

five estimators are shown, including the oracle estimator (ORA, when it is known

which coefficients are zeros, and 10-fold CV is used to choose K), the group lasso

estimators when p = 50 and p = 200 (denoted by GL1 and GL2, respectively, in

the figure), and the adaptive group lasso estimators when p = 50 and p = 200

(denoted by AGL1 and AGL2, respectively, in the figure). It is seen from the

boxplots that the adaptive group lasso estimators performed much better than

the group lasso estimator, and in many cases the performance was close to the

oracle estimator.
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Table 2. Model selection results of different penalized estimators for the
logistic model, based on 100 replications, with n = 150.

Avg # of varying coef.
correct incorrect

p = 50 GL(BIC) 3 18.75
GL(eBIC) 3 16.33

AGL(BIC-BIC) 3 10.29
AGL(eBIC-eBIC) 3 1.56

p = 200 GL(BIC) 3 38.78
GL(eBIC) 3 32.04

AGL(BIC-BIC) 3 25.72
AGL(eBIC-eBIC) 2.96 2.49

Table 3. Mean squared errors for α1, . . . , α4 for the data when some noise
predictors are artificially added to the model. The estimates obtained from
model (2.8) are taken as the truth when calculating the MSEs. GL: group
lasso estimator; AGL: adaptive group lasso estimator.

α1 α2 α3 α4

p = 50 GL 2.43 3.01 2.48 2.42
AGL 0.24 0.97 1.35 1.27

p = 200 GL 4.03 3.80 3.79 3.37
AGL 1.89 1.27 1.92 2.05

Example 2. Consider the varying-coefficient logistic regression model where the

conditional mean function is

µ =
exp{XTα(T )}

(1 + exp{XTα(T )})
.

We set α1(t) = −4(t3 + 2t2 − 2t), α2(t) = 4 cos(2πt), α3 = 3 exp{t − 0.5},
αj(t) = 0, j = 4, . . . , p, and other aspects of the simulation set-up were the same

as in Example 1. Special care was needed with binary data, since it is well-known

that the algorithm does not converge to finite values when the two classes are

completely separable Albert and Anderson (1984)). In our numerical studies

on logistic regression models, we used Firth’s bias correction to deal with this

potential problem (Heinze and Schemper (2002)). The variable selection results

shown in Table 2 demonstrate a similar effect as before, with eBIC effectively

controlling the number of false positives, especially when p > n. The estimation

MSE, shown in Figures 2, also demonstrated the accuracy of the adaptive group

lasso estimators.

Example 3. We used the varying-coefficient logistic regression model example

to study the effect of K, the same setup as in Example 2 with p = 200 and
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Figure 2. Boxplots showing MSEs for α1, . . . , α4, for the logistic model.

K = 5, 7, 9, 11. We also considered using the same criteria, (2.6) and (2.7), to

select λ and K simultaneously (with K ranging over 5, 7, 9, 11). The estimation

results for α1, . . . , α4 are shown in Figure 3. For different K, the results look

very similar, although there seems to be some weak overfitting effects when K

is large. This suggests that the choice of K is not important in our model,

where the overfitting can be reduced by the penalty even though K is relatively

large. Also, automatically choosing K based on eBIC did not provide significant

advantages over a fixed K, while it increased the computational burden. Thus we

suggest fixing a relatively large K that is able to approximate the nonparametric

functions reasonably well in most situations (for example, in Huang, Horowitz,

and Wei (2010) the authors fixed K = 6).

Example 4. We applied the proposed method to a data set from the Guide-

lines for Urinary Incontinence Discussion and Evaluation (GUIDE) study, which

assesses the impact of urinary incontinence (UI) guideline adoption by primary

care providers on patient outcomes (Preisser and Qaqish (1999)). The goal is to

study the factors that are predictive of the response of the 137 patients to the

survey question: “Do you consider this accidental loss of urine a problem that

interferes with your day to day activities or bothers you in other ways?” The

binary responses are recorded as BOTHERED (Y = 1) if the answer is yes and

Y = 0 if no. The predictive factors include the number of leaking accidents per

day on average (DAYACC), the severity of the leaking accidents on a scale from
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Figure 3. Boxplots showing MSEs for α1, . . . , α4, for four choices of K, as
well as for K chosen by BIC-type criteria.

1 to 4 with 4 the most severe (SEVERE), the number of times during the day

they go to the toilet to urinate (TOILET). These three predictors are denoted

by X2, . . . , X4, respectively, while X1 = 1. Using the AGE of the patient as

the index variable T , and with p = 4, our estimation procedure produces the

generalized varying-coefficient logistic regression model

logit(µ) = α1(T ) +X2α2(T ) +X3α3(T ) +X4α4(T ). (2.8)

where the functions α1, . . . , α4 are plotted in Figure 4. That is, all predictors are

significant. It is seen that the response BOTHERED is positively correlated with

DAYACC, SEVERE, and TOILET, as expected, and the correlation increases

rapidly for older people (in the figure the AGE represented on the x-axis is

normalized age on [0, 1]).

Treating the coefficients estimated as truth, we examined the effects of arti-

ficially added predictors on the estimation. The additional noise covariates were

generated as in the previous examples (correlated among themselves but inde-

pendent of the original covariates) and we studied the case p = 50 and p = 200

using eBIC for smoothing parameter selection. When p = 50, only one addi-

tional predictor was incorporated, while for p = 200, six additional predictors
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Figure 4. The estimated α1, . . . , α4 for the GUIDE data set that are used
as the true coefficients.

were incorporated. The MSEs for the group lasso estimator and the adaptive

group lasso estimator are shown in Table 3.

Example 5. We also applied the varying-coefficient logistic regression model to

cancer classification. We considered a subset of the ALL data (Chiaretti et al.

(2004)) representing 79 samples from patients with B-cell acute lymphoblastic

leukemia that were investigated using HG-U95Av2 Affymetrix GeneChip arrays.

Of particular interest is the classification of 37 samples with the BCR/ABL

fusion gene resulting from a translocation of the chromosomes 9 and 22 and

42 normal samples. Many of the genes represented by the 12,625 probesets on

the array are not expressed. Thus we removed the probesets with expression

measurements less than 100 fluorescence units in at least 75% of the samples,

and the interquartile range (IQR) across the samples on the log base 2 scale

smaller than 0.5, leaving 2401 probesets for analysis. Then we performed a t-test

to rank the probesets and used the top 300 most differentially expressed ones.

For classical logistic regression, we fit the data using the glmnet package in R and

selected the tuning parameter by eBIC (we also used an adaptive lasso penalty).

Besides the gene expressions, we can used the age information of the individuals.

We were especially interested in a more general model where age can interact with

gene expression levels, this is where our varying-coefficient logistic regression

model comes in with age acting as the index variable. In the 79 samples, 3
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samples have missing age information and were removed. We used leave-one-

out-cross-validation to examine the classification accuracy of the two models,

with 75 training samples and 1 test sample in each split. The cross-validation

errors for parametric logistic regression and the more general varying-coefficient

model were 6 (47 probesets selected on average) and 4 (69 probesets selected),

respectively. There were on average about 35 probesets selected by both models,

thus both methods identified many common probesets and our model identified

more.
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Appendix. Technical Proofs

We introduce some notation. Let ql(x, y) = (∂l/∂xl)Q(g−1(x), y), l = 1, 2, 3.

We have q1(x, y) = −(y− g−1(x))ρ1(x) and q2(x, y) = ρ2(x)− (y− g−1(x))ρ′1(x),

with ρl(x) =
[
dg−1(x)/dx

]l
/V (g−1(x)). For logistic and Poisson regression with

canonical link function, we actually have ρ1(x) ≡ 1. Denote the true varying

coefficients by α0 = (α01, . . . , α0s)
T . Let a0j = (a0j1, . . . , a0jK)T , 1 ≤ j ≤ s, be

the coefficients in spline approximation of α0j that satisfies the approximation

property ∥
∑

k a0jkBk(t)−α0j(t)∥ = O(K−d) and set a0 = (aT01, . . . , a
T
0s)

T . With

an abuse of notation, α0 and a0 also denote all coefficients including the zero

ones. In the proofs we use a simple property of subdifferentials. For a vector b,

the subdifferential of its l2 norm is

∂||b|| =

{
b

||b|| if b ̸= 0,

some a with ||a|| ≤ 1 if b = 0.

Note that when b = 0, the subdifferential is not unique but we still use ∂||b|| to
denote some subdifferential since its specific value plays no roles in our proofs.

Finally, for any matrix A, PA denotes the projection matrix onto the column

space of A. The following regularity conditions are used in the proofs.

(c1) The covariates Xj , 1 ≤ j ≤ p are bounded random variables.

(c2) The function V is twice continuously differentiable, and g is three times

continuously differentiable.

(c3) The eigenvalues of
∑

iX
(1)
i X

(1)T
i /n (note X

(1)
i = (Xi1, . . . , Xis)

T ) are

bounded away from zero and infinity.
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(c4) The index variable T has a continuous density with support on [0, 1].

(c5) q2(x, y) > 0 and q1(X
Tα0, Y ), q2(X

Tα0, Y ), and q3(X
Tα0, Y ) have finite

second moments.

(c6) Eq23(Y, Z
Ta) is bounded for a inside a large enough neighborhood of a0.

(c7) For 1 ≤ j ≤ s, α0j(t) satisfies a Lipschitz condition of order d > 1/2:

|α(⌊d⌋)
0j (t)−α

(⌊d⌋)
0j (s)| ≤ C|s− t|d−⌊d⌋, where ⌊d⌋ is the biggest integer strictly

smaller than d and α
(⌊d⌋)
0j (t) is the ⌊d⌋-th derivative of α0j(t). The order of

the B-spline used satisfies q ≥ d+ 2.

(c8) The eigenvalues of
∑

i q2(Zia0, Yi)Z
(1)
i Z

(1)T
i /(n/K) are bounded away from

zero and infinity.

(c9) For all 1 ≤ k ≤ K, E[|Bm
k (T )qm1 (XTα0(T ), Y )|] ≤ (m!/2)Jm−2/K,m =

2, 3, . . ., for some constant J > 0.

The following additional conditions are used in Theorem 3 for the initial esti-

mator. For simplicity we assume k1 and c∗, defined below, are bounded away

from zero, while k2 and c∗ are bounded. However we keep these constants in the

proofs for generality.

(c10) (Restricted eigenvalue condition) Let S := {1, . . . , s} be the indices of

nonzero coefficients. For some γ > 0,

inf
∥v∥=1,

∑
j∈Sc ∥vj∥≤(1+γ)

∑
j∈S ∥vj∥

∑
i q2(Yi, Z

T
i a0)v

TZiZ
T
i v

n/K
=: k1 > 0,

sup
∥v∥=1,

∑
j∈Sc ∥vj∥≤(1+γ)

∑
j∈S ∥vj∥

∑
i q2(Yi, Z

T
i a0)v

TZiZ
T
i v

n/K
=: k2 < ∞.

(c11) (Zhang and Huang (2008)) The sparse Riesz condition (SRC) holds with

rank s∗ and spectrum bounds 0 < c∗ < c∗ < ∞, that is,

c∗∥v∥2 ≤
∑

i q2(Yi, Z
T
i a0)v

TZiAZ
T
iAv

n/K
≤ c∗∥v∥2, ∀A with |A| ≤ s∗ and v ∈ R|A|,

where ZiA is the subvector of Zi containing only components associated

with predictors in A. Let M = (1 + 2γ)2c∗k2/k
2
1, s

∗ ≥ Ms+ 1.

Most of the conditions imposed are quite standard in the literature, in partic-

ular in Lam and Fan (2008). The condition (c6) is similar to that assumed in Lam

and Fan (2008) for the third derivative of the loss function and, although stronger

than usually assumed in likelihood theory, it facilitates the technical derivations.

For (c3), it is well-known that it implies eigenvalues of
∑

i Z
(1)
i Z

(1)T
i /(n/K) are

bounded away from zero and infinity (Lemma A.1 in Huang, Wu, and Zhou
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(2004)). It is also possible to assume eigenvalues of EX(1)X(1)T to be bounded

away from zero and infinity, and then the eigenvalues for the sample version∑
iX

(1)
i X

(1)T
i /n will have the same property under some constraint on the size

of s. However, we choose to put assumptions on the sample version so that it

is directly applicable in the proofs. Since q1(x, y) = −(y − g−1(x))ρ1(x), (c9) is

an assumption on the moments of the noise and, since EBm
k (T ) = O(1/K), the

appearance of 1/K in the bound is natural. The condition (c10) is a variant of

ones in Bickel, Ritov, and Tsybakov (2009), and (c11) follows Zhang and Huang

(2008).

Proof of Theorem 1. For the proof of Theorem 1 we write Z
(1)
i as Zi and â(1)

as â. Since â minimizes∑
i

Q(g−1(ZT
i a), Yi) + nλ

s∑
j=1

wj∥aj∥

with respect to a, â satisfies the first-order condition∑
i

q1(Z
T
i â, Yi)Zi + nv(â) = 0, (A.1)

where v(â) = (v1(â)
T , . . . , vs(â)

T )T is the Ks dimensional vector with vj(â) =

λwj∂∥âj∥, 1 ≤ j ≤ s. Obviously ∥v(â)∥2 = OP (λ
2∥w′∥2). Using a Taylor expan-

sion at ZT
i a0 for the first term in (A.1), we get

∥
∑
i

q1(Z
T
i a0, Yi)Zi + q2(Z

T
i a0, Yi)ZiZ

T
i (â− a0) +

1

2
q3(., Yi)Zi(Z

T
i (â− a0))

2∥

+OP (n
√

λ2∥w′∥2) = 0,

or, ∣∣∣∑
i

q1(Z
T
i a0, Yi)Z

T
i (â− a0) + q2(Z

T
i a0, Yi)(â− a0)

TZiZ
T
i (â− a0) (A.2)

+
1

2
q3(., Yi)(Z

T
i (â− a0))

3
∣∣∣+OP (n

√
λ2∥w′∥2∥â− a0∥) = 0, (A.3)

where q3(., Yi) is evaluated at some point between ZT
i a0 and ZT

i â.

Using the notation

q1(Za0, Y ) =

 q1(Z
T
1 a0, Y1)
...

q1(Z
T
n a0, Yn)


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and Z = (Z1, . . . , Zn)
T , the first term in (A.3) can be written as |q1(Za0, Y )T

Z(â− a0)|, and is of order O(
√
Ks+ ns2K−2d ·

√
n/K∥â− a0∥) by Lemma A.1

below.

Using (c8), we have

c1
n

K
∥â− a0∥2 ≤ q2(Z

T
i a0, Yi)(â− a0)

TZiZ
T
i (â− a0) ≤ c2

n

K
∥â− a0∥2 (A.4)

for two positive constants c1, c2, with probability converging to 1.

Finally, the third term in (A.3) is bounded by

OP (n∥Zi∥3∥â− a0∥2) = OP (ns
3/2∥â− a0∥3). (A.5)

The plan for the rest of the proof is as follows. First we consider the op-

timization of (2.2) inside the ball B = {∥a − a0∥ ≤ bn} where the sequence bn
satisfies Ks3/2bn → 0 and

√
K2s/n+ s2/K2d−1 + λ2∥w′∥2K2/bn → 0 (such a

sequence bn exists due to (A)). We show that with probability converging to 1,

this constrained optimization problem has a minimizer in the interior of the ball

B which satisfies (2.3). By convexity this local minimizer is the global minimizer

of (2.2) and the theorem is proved.

In fact, with the constraint ∥a − a0∥ ≤ bn, it is easy to see that the third

term in (A.3) is of smaller order than the second term (see (A.4) and (A.5)),

and thus (A.3) implies that ∥â− a0∥ = OP (
√

K2s/n+ s2/K2d−1 + λ2∥w′∥2K2),

which is of smaller order than bn and thus â is indeed in the interior of the ball

B with probability approaching 1.

Lemma A.1. |q1(Za0, Y )TZ(â−a0)|2 = OP

(
(n/K)(Ks+ ns2/K2d)∥â− a0∥2

)
.

Proof of Lemma A.1. We use |q1(Za0, Y )TZ(â − a0)|2 ≤ ∥PZq1(Za0, Y )∥2 ·
∥Z(â− a0)∥2. Obviously ∥Z(â− a0)∥2 = OP ((n/K)∥â− a0)∥2) by (c3), and

∥PZq1(Za0, Y )∥2 ≤ 2∥PZq1(Xα0(T ), Y )∥2+2∥PZ(q1(Za0)−q1(Xα0(T ), Y ))∥2.

The first term here is of order OP (tr(PZ)) = OP (Ks), since q1(Xα0(T ), Y ) has

mean zero conditional on the predictors. The second term is bounded by, using

a Taylor expansion, ∥q2(Xα0(T ), Y )(Za0 −Xα0(T ))∥2 + smaller order terms =

OP (ns
2/K2d). Note that q2 is an n-dimensional vector defined similar to q1 and

that the product of two n-dimensional vectors is taken to mean the component-

wise product.

Proof of Theorem 2. As before we take

Zi = (Xi1B1(Ti), . . . , Xi1BK(Ti), . . . , XipBK(Ti))
T ,
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Zj =

X1jB1(T1) . . . X1jBK(T1)
...

...
...

XnjB1(Tn) . . . XnjBK(Tn)


n×K

.

We also let Z = (Z1, . . . , Zi, . . . , Zn)
T = (Z1, . . . , Zj , . . . , Zp), and partition it as

Z = (Z(1), Z(2)).

Since â(1) solves (2.2), we have that

ZT
j q1(Z

(1)â(1), Y ) + nλwj∂||â(1)j || = 0, j = 1, . . . , s. (A.6)

This means that “there exists some subdifferential that makes the left hand side

zero” in case the subdifferential is not unique.

In order to show that the pK-dimensional vector â = (â(1), â(2)) with â
(2)
jk =

0, j = s+1, . . . , p, k = 1, . . . ,K, solves (2.1), we need only verify the correspond-

ing KKT conditions,

ZT
j q1(Z

(1)â(1) + Z(2)â(2), Y ) + nλwj∂||âj || = 0, j = 1, . . . , p. (A.7)

First, for 1 ≤ j ≤ s, (A.7) trivially follows from (A.6), since Z(2)â(2) = 0. Next,

for s + 1 ≤ j ≤ p, by the property of subdifferential stated at the beginning of

the Appendix, (A.7) is implied by

(∗) ||ZT
j q1(Z

(1)â(1) + Z(2)â(2), Y )|| ≤ nλwj .

which is shown in Lemma A.2.

Lemma A.2. ∥ZT
j q1(Z

(1)â(1) + Z(2)â(2), Y )∥ ≤ nλwj , as used in the proof of

Theorem 2.

Proof of Lemma A.2. Using a Taylor expansion, we have

max
s+1≤j≤p

∥ZT
j q1(Z

(1)â(1) + Z(2)â(2), Y )∥

≤ max
s+1≤j≤p

∥ZT
j q1(m, Y )∥+ max

s+1≤j≤p
∥ZT

j [q2(m, Y )(Zâ−m)]∥

+smaller order terms, (A.8)

where m = (m1, . . . ,mn)
T with mi = XT

i α0(Ti).

For fixed s+ 1 ≤ j ≤ p, 1 ≤ k ≤ K, we have

P (|
∑
i

XijBk(Ti)q1(mi, Yi)| > c) ≤ 2 exp
{
− c2

(2Jc+ 2n/K)

}
, ∀c > 0,
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by Bernstein’s Inequality (using condition (c9) and Lemma 5.7 in van der Geer

(2000)). Using a simple union bound, we have

P
(

max
s+1≤j≤p

∥ZT
j q1(m, Y )∥>c

√
K
)
≤ pKmax

j,k
P
(
|
∑
i

XijBk(Ti)q1(mi, Yi)|>c
)

≤ 2pK exp
{
− c2

(2Jc+ 2n/K)

}
.

Taking c = C
√

(n/K) log(p ∨ n) for some C > 0 large enough, we get

P ( max
s+1≤j≤p

∥ZT
j q1(m, Y )∥ > c

√
K) → 0,

and thus

max
s+1≤j≤p

∥ZT
j q1(m, Y )∥ = OP (

√
n log(p ∨ n)). (A.9)

Furthermore, using Theorem 1, we have

max
s+1≤j≤p

∥ZT
j q2(m, Y )(ZT â−m)∥ = OP

(√
n

K
(Ks+

ns2

K2d
+ nKλ2∥w′∥2)

)
.

(A.10)

Combining (A.8), (A.9), (A.10) and (B) shows

∥ZT
j q1(Z

(1)â(1) + Z(2)â(2), Y )∥ = o(nλwj).

Proof of Theorem 3. The proof uses similar techniques as in Bickel, Ritov,

and Tsybakov (2009); Zhang and Huang (2008) only dealt with quadratic loss.

Step 1. Let δ = ã − a0, where a0 = (a01, . . . , a0p) is the coefficient in the spline

basis approximation of α0 = (α1, . . . , αp) that satisfies ∥
∑

k a0jkBk(t)−α0j(t)∥ =

O(K−d) (for j > s this approximation error is actually 0). We show that∑
j∈Sc

∥δj∥ ≤ (1 + γ)
∑
j∈S

∥δj∥, (A.11)

with probability converging to 1, for any γ > 0, where S = {1, . . . , s}.
By the definition of ã, we have

∑
i

Q(ZT
i ã, Yi)−

∑
i

Q(ZT
i a0, Yi) ≤ λ0

p∑
j=1

∥a0j∥ − λ0

p∑
j=1

∥ãj∥. (A.12)

On the other hand, by the convexity of Q,∑
i

Q(ZT
i ã, Yi)−

∑
i

Q(ZT
i a0, Yi) ≥

∑
i

q1(Z
T
i a0, Yi)Z

T
i δ.
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Combining, we get

−(

p∑
j=1

∥δj∥) · max
1≤j≤p

∥
∑
i

q1(Z
T
i a0, Yi)Zij∥ ≤ λ0

p∑
j=1

∥a0j∥ − λ0

p∑
j=1

∥ãj∥, (A.13)

where Zij = (XijB1(Ti), . . . , XijBK(Ti))
T is a subvector of Zi.

Using the arguments of Lemma A.2, we have

max
1≤j≤p

∥
∑
i

q1(Z
T
i a0, Yi)Zij∥ = Op(

√
n log(p ∨ n)) +OP (

√
n

K

ns2

K2d
) = oP (λ0).

(A.14)

Using (A.13), (A.14), together with

p∑
j=1

∥δj∥ =
∑
j∈S

∥δj∥+
∑
j∈Sc

∥δj∥, (A.15)

λ0(

p∑
j=1

∥a0j∥ −
p∑

j=1

∥ãj∥) = λ0(
∑
j∈S

∥a0j∥ −
∑
j∈S

∥ãj∥ −
∑
j∈Sc

∥ãj∥)

≤ λ0(
∑
j∈S

∥δj∥ −
∑
j∈Sc

∥δj∥), (A.16)

we obtain ∑
j∈Sc

∥δj∥ ≤ (1 + oP (1))
∑
j∈S

∥δj∥ ≤ (1 + γ)
∑
j∈S

∥δj∥.

Finally, we note that this step is an extension of the similar ones obtained for

the Lasso estimate with quadratic loss function. It was shown in Bickel, Ritov,

and Tsybakov (2009) that (A.11) plays a critical role in showing the convergence

of the estimate.

Step 2. We have ∥ã − a0∥ ≤ (1 + γ)(
√
sKλ0/nk1), with probability converging

to 1.

We show that with probability converging to 1, there exists a local minimizer

a∗ of (2.4) in the interior of the ball {a : ∥a−a0∥ ≤ bn}, where
√
sKλ0/(bnnk1) →

0 and (bnK
√
s3)/k1 → 0 (such a sequence bn exists since we assume s2K2λ0/(nk

2
1)

→ 0), and this local minimizer satisfies ∥a∗ − a0∥ ≤ (1 + γ)(
√
sKλ0/nk1). Then

by the convexity of the problem, this local minimizer is the global minimizer ã.

Let δ = a∗ − a0. Combining (A.12) and (A.16), we get∑
i

Q(ZT
i a

∗, Yi)−
∑
i

Q(ZT
i a0, Yi) ≤ λ0(

∑
j∈S

∥δj∥ −
∑
j∈Sc

∥δj∥).
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Using Taylor’s expansion for the left hand side here results in∑
i

q1(Z
T
i a0, Yi)Z

T
i δ +

1

2
q2(Z

T
i a0, Yi)δ

TZiZ
T
i δ +

1

6
q3(z

∗
i , Yi)(Z

T
i δ)

3

≤ λ0(
∑
j∈S

∥δj∥ −
∑
j∈Sc

∥δj∥), (A.17)

where z∗i lies between ZT
i ã and ZT

i a0.

As shown in Step 1, ∥
∑

i q1(Z
T
i a0, Yi)Z

T
i δ∥ = oP (λ0)

∑p
j=1 ∥δj∥. Condition

(c10) implies
∑

i q2(Z
T
i a0, Yi)δ

TZiZ
T
i δ ≥ nk1∥δ∥2/K and

∑
i

q3(z
∗
i , Yi)(Z

T
i δ)

3 = OP (nE[q3(z
∗
1 , Y1)( max

1≤j≤p
∥Z1j∥)3(

p∑
j=1

∥δj∥)3])

= OP (n(

p∑
j=1

∥δj∥)3).

Since
∑p

j=1 ∥δj∥ ≤ (2 + γ)
∑

j∈S ∥δj∥ ≤ (2 + γ)
√
s(
∑

j∈S ∥δj∥2)1/2 ≤ (2 +

γ)
√
s∥δ∥ by Step 1, and using the assumption on bn, it is easily seen that

n(
∑p

j=1 ∥δj∥)3 = oP (nk1∥δ∥2/K), and thus (A.17) becomes

∥δ∥2 ≤ (1 + oP (1))
λ0K

nk1

∑
j∈S

∥δj∥.

Using again
∑

j∈S ∥δj∥ ≤
√
s∥δ∥, we get ∥δ∥ ≤ (1 + γ)

√
sλ0K/(nk1). Finally,

since
√
sλ0K/(nk1) = o(bn), a

∗ is indeed an interior point of the ball with prob-

ability converging to 1.

Step 3. Under (c11), we have ŝ ≤ Ms with probability approaching 1, where ŝ

is the number of estimated nonzero coefficients. In particular, if c∗ and k2 are

bounded, and k1 is bounded away from zero, then ŝ is of the same order as s.

Define more generally c∗(m) = sup|A|=m,∥v∥=1

∑
i q2(Z

T
i a0, Yi)v

TZiAZ
T
iAv/n,

and define c∗(m) similarly. Let A1 = {j : ãj ̸= 0} be the set of indices of

estimated nonzero coefficients, and thus ŝ = |A1|. By the first order condition of

the minimization problem (2.4), we know that for j ∈ A1,∑
i

q1(Ziã, Yi)Zij = −λ0∂∥ãj∥. (A.18)

Let A2 be the set of indices j that satisfies (A.18) and thus A1 ⊆ A2. Suppose Ã

satisfies A1 ⊆ Ã ⊆ A2 (the precise choice of Ã is only important toward the end

of the proof). Let s̃ = |Ã| ≥ ŝ.



HIGH-DIMENSIONAL GENERALIZED VARYING-COEFFICIENT MODELS 1585

Using (A.18) for j ∈ Ã (taking sum of squares) and setting δ = ã − a0, we

have

√
s̃λ0 =

∥∥∥∑
i

q1(Ziã, Yi)ZiÃ

∥∥∥
=
∥∥∥∑

i

q1(Z
T
i a0, Yi)ZiÃ + q2(Zia0, Yi)ZiÃZ

T
i δ +

1

2
q3(z

∗
i , Yi)ZiÃ(Z

T
i δ)

2
∥∥∥.

The first term satisfies ∥
∑

i q1(Z
T
i a0, Yi)ZiÃ∥≤

√
s̃maxj ∥

∑
i q1(Z

T
i a0, Yi)Zij∥ =

oP (
√
s̃λ0) as in Step 1. The second term can be bounded by ∥

∑
i q2(Zia0, Yi)ZiÃ

ZT
i δ∥ ≤ n

√
c∗(s̃)k2∥δ∥/K by the Cauchy-Schwartz Inequality. Similar to the

proof in Step 2, the third term is of smaller order than the second term if

s2K2λ0

nk1
√
c∗(s̃)k2)

→ 0. (A.19)

Then we have, with probability converging to 1,

√
s̃λ0 ≤ (1 + oP (1))

n

K

√
c∗(s̃)k2∥δ∥ ≤ (1 + 2γ)n

√
sc∗(s̃)k2

λ0

nk1
,

which is equivalent to

s̃ ≤ (1 + 2γ)2c∗(s̃)k2
k21

s. (A.20)

By the continuity of ã in λ0, we can choose Ã such that its size jumps at most

one each time that λ0 decreases, beginning from λ0 = ∞ to the lower bound. We

show s̃ ≤ Ms by contradiction. In fact, suppose for some λ0 we have |Ã| > Ms,

then we are able to find λ0 such that in fact Ms < |Ã| ≤ Ms+1 since we change

the size of Ã one at a time. For this λ0, since |Ã| ≤ s∗, we have c∗(s̃) ≤ c∗ and

c∗(s̃) ≥ c∗, so that (A.19) is satisfied. Thus from (A.20), s̃ ≤ Ms, leading to a

contradiction.

Proof of Theorem 4. For any given regularization parameter λ, we denote by

âλ the minimizer of (2.1), and by â the minimizer when the optimal sequence

of regularization parameter is chosen such that â results in a consistent model

selection. We separately consider the overfitting and underfitting cases below.

Underfitting. Assume some nonzero coefficients are estimated as zero coef-

ficients in âλ and look to establish some contradiction. Similar to the proof of
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Theorem 1, we have

1

n

∑
i

Q(g−1(ZT
i âλ), Yi)−

1

n

∑
i

Q(g−1(ZT
i â), Yi)

=
1

n

∑
i

q1(Z
T
i â, Yi)Z

T
i (âλ − â) +

1

2n

∑
i

q2(Z
T
i â, Yi)(âλ − â)ZiZ

T
i (âλ − â)

+ smaller order terms

≥ −C1

n
||PZq1(Zâ, Y )||2 + C2

n
||Z(â− âλ)||2,

for some constants C1, C2 > 0, where we used the Cauchy-Schwartz Inequality∣∣∣∑
i

q1(Ziâ, Yi)Z
T
i (âλ − â)

∣∣∣ ≤ 1

C
||PZq1(Zâ, Y )||2 + C

4
∥Z(â− âλ)∥2

(with a small enough constant C > 0), as well as (c8).
Since there is some j for which âj represents a truly varying coefficient with

convergence rate given by Theorem 1, while âλj = 0, it is easy to show that
||Z(â − âλ)||2/n is bounded away from zero. Besides, ||PZq1(Zâ, Y )||/n = o(1)
(using the same arguments as in Lemma A.1, as well as the proof of convergence
rate in Theorem 1) and the penalty terms in eBIC are all of order o(1), thus the
eBIC when λ is used is bigger than the eBIC when the optimal regularization
sequence is used, leading to a contradiction.

Overfitting. Here we assume some zero coefficients are estimated as nonzero
in âλ. Let â∗ be the minimizer of

∑
iQ(g−1(ZT

i a), Yi) under the additional
constraint that the model identified by âλ is used when minimizing the negative
likelihood (without penalty). We have that

1

n

∑
i

Q(g−1(ZT
i âλ), Yi)−

1

n

∑
i

Q(g−1(ZT
i â), Yi)

≥ 1

n

∑
i

Q(g−1(ZT
i â

∗), Yi)−
1

n

∑
i

Q(g−1(ZT
i â), Yi)

≥ 1

n

∑
i

q1(Z
T
i â, Yi)Z

T
i (â

∗ − â), (A.21)

by the convexity of Q. Using the definition of â∗ and the fact that we only search
over models with size at most D, the convergence rate of â∗ can be obtained using
similar arguments as Theorem 1 (although the third term in (2.3) involving λ
does not appear for the unpenalized estimator). Arguments similar to those used
in the proof of Lemma A.2 can be used to show that (A.21) is bounded below by
a negative term whose absolute value is of order

1

n

√
n log(p ∨ n)(

K2

n
+

1

K2d−1
),
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which is of order smaller than the BIC penalty term log(n/K)/(n/K) + log

p/(n/K). Thus BIC cannot have selected such a λ.
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