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Abstract: The selection of random effects in linear mixed models is an important

yet challenging problem in practice. We propose a robust and unified framework

for automatically selecting random effects and estimating covariance components

in linear mixed models. A moment-based loss function is first constructed for esti-

mating the covariance matrix of random effects. Two types of shrinkage penalties,

a hard thresholding operator and a new sandwich-type soft-thresholding penalty,

are then imposed for sparse estimation and random effects selection. Compared

with existing approaches, the new procedure does not require any distributional

assumption on the random effects and error terms. We establish the asymptotic

properties of the resulting estimator in terms of its consistency in both random

effects selection and variance component estimation. Optimization strategies are

suggested to tackle the computational challenges involved in estimating the sparse

variance-covariance matrix. Furthermore, we extend the procedure to incorporate

the selection of fixed effects as well. Numerical results show the promising per-

formance of the new approach in selecting both random and fixed effects, and

consequently, improving the efficiency of estimating model parameters. Finally, we

apply the approach to a data set from the Amsterdam Growth and Health study.

Key words and phrases: Hard thresholding, linear mixed model, shrinkage estima-

tion, variance component selection.

1. Introduction

In many applications, it is common practice to collect repeated measurements

on a subject or take serial observations over time on the same unit, resulting in

clustered data, longitudinal data, or spatial data. Linear mixed models (Laird

and Ware (1982)) are a class of tools useful in the analysis of correlated data by

introducing subject-specific random effects to account for the variation among

subjects. The use of random effects models provides a convenient and effective

way of describing the covariance structure of data. Thus, suppose there are

m subjects under study and the number of measurements on subject i is ni.

Typically we assume that m > ni. A general linear mixed model is written as

Yij = XT
ijβ + ZTijγi + εij (i = 1, . . . ,m; j = 1, . . . , ni), (1.1)
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where Yij is the response, Xij = (Xij1, . . . , Xijp)
T are the fixed-effect covariates

for observation j for subject i, β = (β1, . . . , βp)
T is the p × 1 vector of fixed-

effect coefficients, Zij = (Zij1, . . . , Zijq)
T are the random-effect covariates for

observation j for subject i, γi = (γi1, . . . , γiq)
T is the subject-specific q×1 vector

of random-effects coefficients, and the εij ’s are the error terms. Furthermore,

we assume that the γi have mean 0 and variance-covariance matrix Σ = [σjk]

with 1 ≤ j, k ≤ q. The errors εi = (εi1, . . . , εini)
T are iid with mean 0 and

variance-covariance matrix σ2εIni , and the εi’s are independent of the γi’s. When

Xi and Zi are random variables, we also assume that E(γi|Xi, Zi) = 0 and

var(γi|Xi, Zi) = Σ, where the jth row vectors of Xi and Zi are XT
ij and ZTij ,

respectively. These assumptions are made throughout the paper.

The selection of important random effects in (1.1) plays a crucial role in

model estimation and inference. Here, important random effects refer to those

whose coefficients actually vary among subjects. If important random effects

are left out of the model, the covariance matrix of random effects would be

underfitted, which would lead to bias in the estimated variance for fixed effects.

On the other hand, if unnecessary random effects are included in the model, the

covariance matrix of random effects could be nearly singular, which would cause

numerical instability for model fitting. Furthermore, the correct selection of the

important random effects helps to achieve the estimation efficiency for the fixed

effects and the accuracy of future prediction.

Recently the problem of variable selection has received much attention and a

large number of methods have been proposed, including the traditional forward

selection and backward elimination methods (Breiman (1995)), and modern pe-

nalized regression (Tibshirani (1996); Fan and Li (2001); Zou and Hastie (2005);

Zou (2006); Wang, Li, and Jiang (2007); Zhang and Lu (2007); and Bondell and

Reich (2008)). Most of these methods are designed for selecting important fixed

effects. In this paper, our main focus is on the selection of random effects. In

the research literature, various model selection criteria have been proposed to

compare candidate models, including the Akaike Information Criterion (AIC)

(Akaike (1973)), Bayesian Information Criterion (BIC) (Schwarz (1978)), Gener-

alized Information Criterion (GIC) (Rao and Wu (1989)), and conditional AIC

(Vaida and Blanchard (2005)). However, the number of possible models is 2p+q,

which increases exponentially with the number of predictors and hence makes

computation infeasible for large p or q. Some approaches have been proposed

to reduce the number of possible models to 2p + 2q, including the extended GIC

(Niu and Pu (2006)) and the restricted information criterion (Wolfinger (1993);

Diggle, Liang, and Zeger (1994)). Recently, Chen and Dunson (2003) and Kinney

and Dunson (2007) proposed Bayesian approaches for variable selection in linear

mixed models, while Bondell, Krishna, and Ghosh (2010) proposed a likelihood-

based method for jointly selecting fixed and random effects. These approaches
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all require the normality assumption for both the random effects and error terms;

therefore, the validity of their inferences depends heavily on whether the distribu-

tional assumption is correct or not. This motivates us to develop a more robust

and flexible approach for random effects selection in linear mixed models.

We construct a moment-based loss function for the variance components and

then employ adaptive shrinkage and thresholding to achieve random effects selec-

tion and model estimation. The new estimator is robust against non-normality

of the data, and the estimates are valid for any distribution of random effects and

errors. We proved the selection consistency, the root-m consistency, and asymp-

totic normality for the new estimator. Furthermore, the proposed computational

algorithm is fast and the procedure shows promising performance in numerical

studies. The rest of the paper is organized as follows. In Sections 2 and 3 we

propose a new class of procedures for random effects selection. We establish the

theoretical properties of the proposed estimators and discuss computational is-

sues. In Section 4 we extend the procedure to incorporate fixed effects selection.

Section 5 contains numerical results and Section 6 gives concluding remarks. All

the proofs are relegated to the Appendix.

2. Initial Moment-based Covariance Matrix Estimator

In a matrix form, model (1.1) can be written as

Yi = Xiβ + Ziγi + εi, i = 1, . . . ,m, (2.1)

where Yi is the ni × 1 response vector for the observations of subject i, Xi is the

ni × p design matrix for fixed effects, Zi is the ni × q design matrix for random

effects, and εi is the ni×1 vector of errors for the observations of subject i. Then,

var(Yi) = σ2εIni + ZiΣZ
T
i for i = 1, . . . ,m, which naturally incorporates hetero-

geneity among the subjects. Typically the parameters in (2.1) are estimated by

maximum likelihood (ML) and restricted maximum likelihood (REML) methods

by assuming that the γi’s and εi’s are all normally distributed. See Laird and

Ware (1982), Jennrich and Schluchter (1986), and Lindstrom and Bates (1988).

In the following, we use a moment-based approach to estimate the model pa-

rameters, which does not require any specification of the distributions of random

effects and errors.

Denote the total number of observations byN =
∑m

i=1 ni. We further express

(2.1) as

Y = Xβ + Zγ + ε,

where Y = (Y T
1 , . . . , Y

T
m )T is a N ×1 vector, X = (XT

1 , . . . , X
T
m)

T is a N ×p ma-

trix, Z = diag(Z1, . . . , Zm) is a N×mq block diagonal matrix, γ = (γT1 , . . . , γ
T
m)

T

is a mq× 1 vector, and ε = (εT1 , . . . , ε
T
m)

T is a N × 1 vector. The “diag” operator
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is defined as: diag(A) is a vector of diagonal elements of A if A is a matrix, or

a diagonal matrix with elements of A along the diagonal if A is a vector, or a

block diagonal matrix with submatrices along the diagonal being A1, . . . , Aa if A

consists of submatrices A1, . . . , Aa.

Define

Yijk = (Yij −XT
ijβ)(Yik −XT

ikβ), (2.2)

where Yij is the jth entry of Yi and X
T
ij is the jth row of Xi (i = 1, . . . ,m; j =

1, . . . , ni; k = j, . . . , ni). It is easy to show that the expectation of Yijk is the

second-order cross-moment of Ziγi + εi :

E[Yijk|Xi, Zi] = E
{
(ZTijγi + εij)(Z

T
ikγi + εik)

}
=

{
ZTijΣZik + σ2ε if j = k,

ZTijΣZik otherwise,

where ZTij is the jth row of Zi. If β is known, a moment estimator for Σ could

be obtained by minimizing the quantity
∑m

i=1

∑ni−1
j=1

∑ni
k=j+1

(
Yijk − ZTijΣZik

)2
.

Since β is generally unknown, we propose to obtain an unbiased initial estimator

first. A natural choice is the ordinary least squares (OLS) estimator, β̃, obtained

by fitting the simple linear model Y = Xβ + η under the working independence

assumption. Substituting β̃ into (2.2), we get Ỹijk = (Yij − XT
ij β̃)(Yik − XT

ikβ̃).

We propose to obtain an initial estimator of Σ by minimizing

L0(Σ) =
m∑
i=1

ni−1∑
j=1

ni∑
k=j+1

(
Ỹijk − ZTijΣZik

)2
. (2.3)

Let Σ̃ = [σ̃jk] be the solution to (2.3). By substituting Σ̃ into
∑m

i=1

∑
j=k

(
Ỹijk−

ZTijΣZik − σ2ε
)2

and minimizing the quantity with respect to σ2ε , we obtain the

estimator of the error variance σ̃2ε =
∑m

i=1

∑ni
j=1(Ỹijj − ZTijΣ̃Zij)/N .

For convenient notation, we can reformat Σ into its vector form as κ ≡
vech(Σ), a vector consisting of q(q + 1)/2 elements that are on and above the

diagonal of Σ. In this way, L0(Σ) can be written as a function of κ as

L0(κ) =

m∑
i=1

ni−1∑
j=1

ni∑
k=j+1

(
Ỹijk − Z∗T

ijkκ
)2
,

where Z∗
ijk is a q(q + 1)/2×1 vector such that ZTijΣ̃Zik = Z∗T

ijkκ. Correspondingly,

let κ̃ = vech(Σ̃). Throughout the paper, we use the subscript ‘o’ on parameters

to denote the true values of corresponding parameters. In particular, βo denotes

the true fixed-effect coefficients, Σo denotes the true variance-covariance matrix
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of the random effects, and κo ≡ vech(Σo). Define eijk = (Yij − XT
ijβo)(Yik −

XT
ikβo)− Z∗T

ijkκo for i = 1, . . . ,m; j = 1, . . . , ni − 1; k = j + 1, · · · , ni. Let ei be a

column vector consisting of eijk’s, and let Z∗
i be the matrix whose column vectors

are Z∗
ijk’s. In the following two lemmas, we establish the asymptotic normalities

of β̃ and κ̃, respectively.

Lemma 1. Let

A1 = lim
m→∞

1

m

m∑
i=1

XT
i Xi and B1 = lim

m→∞

1

m

m∑
i=1

XT
i (ZiΣZ

T
i + σ2εIni)Xi.

Given that A1 and B1 are finite and nondegenerate, we have

m1/2(β̃ − βo) → N(0, A−1
1 B1A

−1
1 )

in distribution, as m→ ∞.

Lemma 2. Suppose that the assumptions of Lemma 1 hold. Let

A2 = lim
m→∞

1

m

∑
i,j,k

Z∗
ijkZ

∗T
ijk and B2 = lim

m→∞

1

m

m∑
i=1

Z∗T
i cov(ei)Z

∗
i .

Given that A2 and B2 are finite and nondegenerate, we have

m1/2
(
κ̃− κo

)
→ N(0, A−1

2 B2A
−1
2 )

in distribution, as m→ ∞.

The proofs of Lemmas 1 and 2 are straightforward and so are omitted here.

For large samples, Σ̃ is a non-negative definite matrix; however when the sample

size is small, Σ̃ is not guaranteed. In practice, we suggest minimizing (2.3) under

the constraint Σ ≽ 0, i.e.,

min
Σ
L0(Σ) =

m∑
i=1

ni−1∑
j=1

ni∑
k=j+1

(
Ỹijk − ZTijΣZik

)2
subject to Σ ≽ 0. (2.4)

Similarly, to ensure that the estimated error variance is non-negative, we take

σ̃2ε = max
(
0,

m∑
i=1

ni∑
j=1

(Ỹijj − ZTijΣ̃Zij)

N

)
in finite sample situations.

The optimization problem in (2.4) is a nonlinear semi-definite programming

problem, We propose using the MATLAB toolbox YALMIP, which is a modeling



1544 MIHYE AHN, HAO HELEN ZHANG AND WENBIN LU

language for rapid optimization (Löfberg (2004)) that is publicly available for

free. YALMIP provides a convenient interface to convert various optimization

problems into a common format and solve them. Based on our comparison of dif-

ferent solvers in YALMIP for semi-definite programming, we find that the solver

SeDuMi (Sturm (1999)) provides fast and robust performance overall. Therefore,

we chose SeDuMi to solve (2.4).

3. Sparse Covariance Estimator by Thresholding and Shrinkage

The main goal of this paper is to identify the important random effects in

model (1.1). We say the lth (1 ≤ l ≤ q) random effect is not important, if and only

if var(γil) = 0 for all i, or equivalently, if all of the elements in the lth column and

the lth row of Σ are zero. Though the moment-based estimator Σ̃ is consistent,

it does not have the desired sparse structure. In this section, we propose two

effective procedures to achieve sparsity in the covariance estimation by imposing

hard thresholding and shrinkage on the initial moment estimator. Generalized

thresholding has been shown to be a promising technique for estimating the

sample covariance matrix (Rothman, Levina, and Zhu (2009)). We will study

the theoretical and computational properties of new estimators and discuss their

advantages and disadvantages.

3.1. Hard thresholding method

For any ν > 0, we define the hard thresholding estimator Σ̂Hν = [σ̂Hij ] by

σ̂Hij = σ̃ijI(|σ̃ij | > ν), 1 ≤ i, j ≤ q, (3.1)

where I(·) is an indicator function and σ̃ij is the moment-based estimate obtained

from Section 2.1. Here ν ≥ 0 is the parameter that controls the thresholding cri-

terion. Given ν and Σ̃, it is easy to obtain Σ̂Hν , and the computation cost is

minimal. This is one of the main advantages of the hard thresholding estimator.

In the first theorem, we show that Σ̂Hν is root-m consistent in both the opera-

tor and Frobenius norms. For any symmetric matrix A, we denote its largest

eigenvalue in absolute value by ζmax, its operator norm by ∥A∥2 = ζmax, and the

Frobenius norm by ∥A∥F = (
∑

i,j a
2
ij)

1/2.

Theorem 1 (Root-m Consistency). Under the assumptions of Lemma 2 hold.

If ν → 0 as m → ∞, then the hard thresholding estimator Σ̂Hν = [σ̂Hij ] satisfies

∥Σ̂Hν − Σo∥2 = Op(m
−1/2) and ∥Σ̂Hν − Σo∥F = Op(m

−1/2).

In the next theorem, we show that with probability approaching 1, the hard

thresholding estimator can correctly identify true zero components. Furthermore,
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under certain conditions sgn(σ̂Hij ) matches the sign of the true nonzero σij if the

tuning parameter is chosen properly.

Theorem 2 (Sparsity). Under the assumptions of Lemma 2 suppose that ν → 0

and
√
mν → ∞ as m→ ∞.

(a) With probability approaching 1,

σ̂Hij = 0 for all (i, j) such that σij,o = 0.

(b) With probability approaching 1, we have

sgn(σ̂Hij σij,o) = 1 for all (i, j) such that σij,o ̸= 0.

The proofs of Theorems 1 and 2 are given in the Appendix.

One practical issue with Σ̂H is that the resulting matrix is not guaranteed to

be positive semi-definite in finite sample situations. For example, it is possible

to have nonzero σ̂Hij while either σ̂Hii or σ̂Hjj is zero. This is the main motivation

for proposing a shrinkage estimator.

3.2. Sandwich estimator with shrinkage

We propose a new sandwich estimator for the covariance matrix. A shrink-

age penalty is imposed to achieve a sparse structure. In particular, we propose

minimizing the following objective function

QR(D) =

m∑
i=1

ni−1∑
j=1

ni∑
k=j+1

(
Ỹijk − ZTijDΣ̃DZik

)2
+ λ

q∑
i=1

di subject to all di ≥ 0,

(3.2)

where D = diag(d1, . . . , dq) ≥ 0, and λ ≥ 0 is a tuning parameter which controls

the amount of shrinkage. Let D̂ = diag(d̂1, . . . , d̂q) denote the minimizer of

QR(D). Once we obtain D̂, the final estimate of Σ is Σ̂ = D̂Σ̃D̂. The final

estimate of the error variance is

σ̂2ε = max
(
0,

m∑
i=1

ni∑
j=1

(Ỹijj − ZTijΣ̂Zij)

N

)
.

The sandwich structure of DΣ̃D assures the positive semi-definiteness of the

estimator. In addition, if d̂j = 0, then the entire jth column and row in D̂Σ̃D̂

are zero. That is, the variance of the jth random effect and its covariances with

all the other random effects are zero.
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3.2.1. Theoretical properties of sandwich estimators

For j = 1, . . . , q, take ψj = σ
1/2
jj and similarly, ψj,o = σ

1/2
jj,o, ψ̃j = σ̃

1/2
jj , and

ψ̂j = σ̂
1/2
jj . An equivalent formulation of QR(D) can be written as

QR(D) =

m∑
i=1

ni−1∑
j=1

ni∑
k=j+1

(
Ỹijk −

q∑
r=1

q∑
s=1

ZijrZiksσ̃rsdrds

)2
+ λ

q∑
i=1

di,

where Zijk is the kth element of Zij and σ̃ij is the (i,j)th entry of Σ̃. From

the relationship σ̂ij = σ̃ij d̂id̂j , we have d̂i = ψ̂i/ψ̃i, where σ̂ij is the (i,j)th

entry of Σ̂. Therefore σ̂ij can be expressed as σ̃ij(ψ̂iψ̂j)/(ψ̃iψ̃j). When σ̃ii or

σ̃jj = 0. We define 0/0 as 0 throughout the paper. Accordingly, QR(D) can be

reparameterized as a function of ψ = (ψ1, . . . , ψq)
T ,

QR(ψ) =
m∑
i=1

∑
j<k

(
Ỹijk −

q∑
r=1

q∑
s=1

ZijrZiks
σ̃rs

ψ̃rψ̃s
ψrψs

)2
+ λ

q∑
i=1

ψi

ψ̃i
.

Note that QR(ψ) involves κ̃, and both Ỹijk and κ̃ depend on β̃. To emphasize

this dependence, we write κ̃ = κ̃(β̃) and denote QR(ψ) by QR(ψ; κ̃(β̃), β̃). Then

the objective function QR(D) in (3.2) is

QR(ψ; κ̃(β̃), β̃) ≡ LR(ψ; κ̃(β̃), β̃) + λ

q∑
i=1

ψi

ψ̃i
.

Let ψ̂ denote the minimizer of QR(ψ; κ̃(β̃), β̃). Using the asymptotic normality

of the initial estimators β̃ and Σ̃, we can establish the theoretical properties of

the final estimator. Without loss of generality, assume that the first b diagonal

elements of Σo are nonzero and the remaining q−b elements are zero. Accordingly,

write ψo = (ψT10, 0
T )T and ψ̂ = (ψ̂T1 , ψ̂

T
2 )

T .

Theorem 3 (Root-m Consistency). Under the assumptions of Lemma 2, λ/
√
m→

0 as m→ ∞, then the estimator Σ̂ satisfies ∥κ̂− κo∥ = Op(m
−1/2).

Theorem 4 (Selection Consistency and Asymptotic Normality). Under the as-

sumptions of Lemma 2, suppose λ/
√
m→ 0 and λ→ ∞ as m→ ∞. Then, with

probability approaching 1, the root-m consistent estimator (ψ̂T1 , ψ̂
T
2 )

T satisfies the

following:

(a) Sparsity : ψ̂2 = 0;

(b) Asymptotic normality : m1/2(ψ̂1 − ψ10) → N(0, T ) in distribution as m goes

to infinity, where T as defined at (A.13) in the Appendix.
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The proofs of Theorems 3 and 4 are given in the Appendix.

3.2.2. Computational algorithms

Assume λ is fixed. The estimation of (Σ̂, σ̂2ε) can be implemented by the

following algorithm.

Step 1 (obtain initial estimate of β): Fit a linear regression model Y = Xβ + η

by ordinary least squares. Denote the solution by β̃.

Step 2 (obtain initial estimates of Σ and σ2ε): Compute Ỹijk = (Yij−XT
ij β̃)(Yik−

XT
ikβ̃) for all i, j, k. Then obtain Σ̃ by minimizing L0(Σ) in (2.4), and

compute σ̃2ε .

Step 3 (obtain final estimates of Σ and σ2ε): Obtain D̂ by minimizing QR(D) in

(3.2), and compute Σ̂ = D̂Σ̃D̂ and σ̂2ε .

The minimization of QR(D) in Step 3 is a nonlinear programming problem

subject to a linear inequality constraint. We use a MATLAB toolbox TOMLAB

for solving the optimization problem (Holmström (1999)). After numerous ex-

periments in comparing the speed and accuracy of various solvers in TOMLAB,

we found that the base module solver “clsSolve” is a good choice for our nonlin-

ear least squares problems. Among seven optimization algorithms in “clsSolve”,

we selected the structured MBFGS method (Wang, Li, and Qi (2010)) because it

is known to be the best theoretically and is expected to be the best in practice.

In our numerical examples, these solvers proved to be stable and to demonstrate

solid performance characteristics in various settings.

3.3. Tuning procedure

The choice of tuning parameters is crucial in practice, for example, of proper

ν for the hard thresholding estimator in (3.1). We consider the value set {0, σ̃11,
σ̃12, . . . , σ̃qq} and select the best value based on BIC. Since our estimator is based

on the moment approach instead of the likelihood approach, we need to modify

the traditional BIC for model selection. Denote the hard-thresholding estimator

as Σ̂Hν . A modified version of BIC is given as follows:

BICR(ν) =
L0(Σ̂

H
ν )

L0(Σ̃)
+

log(N)

N
× df,

where df is the number of nonzeros on the diagonal of Σ̂Hν . The first term in BICR
is the ratio of the loss evaluated for the ν-selected model to the loss evaluated

for the full model, which is an analog to the ratio of the residual sum of squares

(RSS) defined in the standard BIC.
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For the sandwich estimator, we also use the modified BIC method to select

the optimal λ in (3.2) by simply replacing L0(Σ̂
H
ν ) with L0(Σ̂λ). In Section 5,

we examine the performance of this modified BIC.

Here we proposed some data-dependent way of choosing the tuning param-

eters. As pointed out by one referee, these tuning procedures are kind of ad

hoc, and some theoretical results should be useful to justify their choices. A key

question to answer is whether the selected tuning parameters satisfy the desired

convergence rate required to assure the consistency and asymptotic normality of

the estimators. To our best knowledge, this is still an open problem for model

selection via shrinkage, even for simple linear models. This is an excellent topic

for our future research. From a practical viewpoint, our simulation results in

Section 5 suggest that the proposed criteria work quite well in various situations.

4. Fixed Effects Selection

We have focused on the estimation of (Σ̂, σ̂2ε) and the selection of random

effects for (1.1) so far. Next, we further extend our procedure to incorporate the

selection of fixed effects and the estimation of nonzero regression coefficients.

Using a working variance-covariance matrix V , we can define a weighted

estimator of β by

min
β

(Y −Xβ)TV −1(Y −Xβ).

If V = IN , the solution to the above problem produces the ordinary least squares

(OLS) estimator. If V = ZΣZT + σ2εIN , and Σ and σ2ε were known, then we

would obtain the generalized least squares (GLS) estimator. The GLS estimator

is in theory the most efficient for the fixed effects β, but it is usually not prac-

tically available. In practice, since Σ and σ2ε are generally unknown, we have to

use their estimators. In this paper, we use our sparse estimators (Σ̂, σ̂2ε), and

correspondingly, V = ZΣ̂ZT + σ̂2εIN . We call the yielded estimator as the feasi-

ble generalized least squares (FGLS) estimator. The efficiency of these different

estimators are compared via the simulations in Section 5.

The inverse matrix of (ZΣ̂ZT + σ̂2εIN ) can be decomposed into QTQ, where

Q is an upper triangular matrix. Then, the weighted RSS can be written as

LF (β | Σ̂, σ̂2ε) = (Y ∗ −X∗β)T (Y ∗ −X∗β), (4.1)

where Y ∗ = QY and X∗ = QX. By minimizing (4.1), we obtain the FGLS

estimator β̂G. To achieve sparsity in estimating β, we propose minimizing

QF (β) = LF (β | Σ̂, σ̂2ε) + τ

p∑
j=1

wj |βj |, (4.2)
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where τ ≥ 0 is a tuning parameter and wj ’s are data-dependent weights. Here the

subscript ‘F ’ refers to the fixed effects selection. We propose to use wj = 1/|β̂G,j |,
where β̂G,j is the jth component of β̂G. Denote the solution to (4.2) by β̂τ . In

summary, in order to select both random and fixed effects, we add the step of

solving (4.2) into our algorithm proposed in Section 2.3:

Step 4 (final estimate of β): Obtain β̂τ by minimizing QF (β).

To select a proper τ for (4.2), we can use the selection criteria such as CV

(cross-validation), GCV (generalized cross-validation) and BIC. Here we suggest

modifying the BIC in a similar way to BICR in Section 3. Specifically, we use

BICF (τ) =
LF (β̂τ |Σ̂, σ̂2ε)
LF (β̂G|Σ̂, σ̂2ε)

+
log(N)

N
× df,

where df is the number of nonzero β̂τ, i’s.

5. Numerical Studies

5.1. Simulation examples

In this section, we illustrate the performance of the proposed hard threshold-

ing (HARD) and sandwich (SW) estimators under various scenarios and compare

them with the MLE-based method of Bondell, Krishna, and Ghosh (2010) (de-

noted by BKG). We evaluate the performance of all the methods in three aspects:

random effects selection, fixed effects selection, and the median of model errors

(MME). Here the model error (ME) is given by (β̂ − βo)
TE(XXT )(β̂ − βo). In

order to measure the variability of ME, we also present the median absolute de-

viation (MAD), that is, the median of the absolute deviations computed from

the MEs. Four measures are used to assess the variable selection performance:

the number of zero coefficients which are correctly estimated as zero (denoted by

“CZ”), the number of nonzero coefficients which are incorrectly set to zero (de-

noted by “IZ”), the frequency of selecting the correct model (denoted by “C”),

and the frequency of over-selecting variables (denoted by “O”). In each experi-

mental setting, 100 data sets are simulated from the model, and we report the

median performance over the 100 runs. As a baseline for comparison, we also

present the results from the Oracle procedure (denoted by “Oracle”), assuming

the true variance-covariance matrix for random effects is known.

We center the data before implementing each method, therefore it is not

necessary to include a fixed intercept term in the model. For selecting fixed

effects, we examined three different types of weights: wj = 1, 1/|β̃j |, and 1/|β̂G, j |.
Recall that β̃j ’s are the OLS estimates defined in Section 2, and β̂G, j ’s are the

FGLS estimates defined in Section 4. Based on our numerous experiments, the
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Table 1. Fixed and random effects selection and estimation results when
m = 100 for Example 1.

Scenario method Random effect Fixed effect MME MAD
CZ IZ C O CZ IZ C O (ME)

1 HARD 2.80 0.00 82 18 5.38 0.00 72 28 0.011 0.008
SW 2.76 0.00 83 17 5.89 0.00 89 11 0.009 0.005
BKG 2.48 0.00 52 48 5.42 0.00 48 52 0.011 0.006
Oracle 3 0 100 0 6 0 100 0 0.007 0.003

2 HARD 5.44 0.07 55 38 3.64 0.15 33 62 0.079 0.076
SW 5.48 0.06 60 34 5.86 0.00 87 13 0.006 0.004
BKG 5.05 0.00 28 72 5.59 0.00 64 36 0.008 0.005
Oracle 6 0 100 0 6 0 100 0 0.004 0.002

weight 1/|β̂G, j | consistently gives the best performance among the three. For

parameter tuning in random effects selection, we use BICR to choose ν for the

HARD estimator and λ for the SW estimator. For parameter tuning in fixed

effects selection, we compared BICF , 5-fold CV, and various types of GCV and

found that BICF yielded the best performance. Therefore, we report only the

results obtained by using wj = 1/|β̂G, j | and BICF for fixed effects selection in

this paper. In addition, the BKG method applies the standard BIC as a tuning

parameter selector.

Consider the following linear mixed model

Y = Xβ + γ0 + Zγ1 + ε, (5.1)

where γ0 is the random intercept, γ1 is the random slope, β is fixed-effect coef-

ficients, and γ = (γT0 , γ
T
1 )

T has mean 0 and variance-covariance matrix Σ. We

consider two scenarios for sparse fixed and random effects. The second scenario

is more complicated because it involves a larger number of covariates.

In all the examples, we set β = (1,−0.9, 0.8, 0, 0, 0, 0, 0, 0)T . The covariates X

and Z are generated from a normal distribution with mean 0 and an AR(1)

covariance structure with ρ = 0.5; that is, the covariance between the ith and

jth variables is 0.5|i−j|.

Scenario 1: X ̸= Z, ni = 5 for all i, Σ is a 5 × 5 matrix with σ11 = 1, σ22 = 1,

σ12 = σ21 = 0.5, and the remaining entries being 0.

Scenario 2: X = Z, ni = 10 for all i, Σ is a 10×10 matrix with σ11 = 1, σ55 = 1,

σ15 = σ51 = −0.5, σ66 = 0.8, σ77 = 0.6, σ67 = σ76 = 0.2, and the

remaining entries being 0.

We designed three examples which correspond to three different types of error

distributions: Gaussian, t5, and centered exponential.
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Table 2. Fixed and random effects selection and estimation results for Ex-
ample 2.

Scenario m method Random effect Fixed effect MME MAD
CZ IZ C O CZ IZ C O (ME)

1 100 HARD 2.82 0.00 84 16 5.55 0.02 78 21 0.019 0.011
SW 2.72 0.00 80 20 5.87 0.00 89 11 0.013 0.008
BKG 2.32 0.00 42 58 5.46 0.00 54 46 0.018 0.011
Oracle 3 0 100 0 6 0 100 0 0.011 0.006

200 HARD 2.79 0.00 81 19 5.88 0.00 91 9 0.006 0.004
SW 2.81 0.00 84 16 5.94 0.00 95 5 0.007 0.004
BKG 2.39 0.00 50 50 5.66 0.00 68 32 0.011 0.007
Oracle 3 0 100 0 6 0 100 0 0.005 0.003

2 100 HARD 5.50 0.06 63 32 4.48 0.09 52 45 0.029 0.025
SW 5.59 0.13 58 29 5.90 0.00 90 10 0.008 0.005
BKG 4.91 0.00 29 71 5.62 0.00 73 27 0.013 0.006
Oracle 6 0 100 0 6 0 100 0 0.005 0.003

200 HARD 5.62 0.00 68 32 5.65 0.00 85 15 0.005 0.002
SW 5.65 0.00 73 27 5.96 0.00 96 4 0.004 0.002
BKG 5.16 0.00 39 61 5.45 0.00 57 43 0.007 0.005
Oracle 6 0 100 0 6 0 100 0 0.003 0.002

Example 1. (Gaussian Example) Let ε have a standard Gaussian distribu-

tion. Table 1 summarizes the simulation results for the Gaussian distribution

example in the case of m = 100. In both scenarios, the SW estimator gives the

highest selection frequency in identifying the nonzero random effects and fixed

effects. The BKG approach never misses any important random or fixed effects,

but it tends to retain some unimportant variables in the model. With regard

to the model estimation, the SW estimator and BKG method work similarly in

both scenarios. The HARD estimator works quite well in Scenario 1, but gives

a large MME in Scenario 2. Recall that the variance-covariance matrix given

by the HARD estimator is not guaranteed to be non-negative definite which can

lead to unreliable selection and estimation for the fixed effects.

Example 2. (t5 Example) In this example, we let ε follow a t distribution with

5 degrees of freedom. Table 2 shows the results from the t5 distribution when

m = 100 and 200 for both scenarios. Again, the SW estimator gives the highest

selection frequency in identifying the nonzero random effects and fixed effects.

The BKG method tends to produce a larger-sized model but never misses any

important term. In terms of model estimation, the SW estimator overall gives

the best MME under all the settings, the BKG method is the second best when

m = 100, and the HARD estimator is the second best when m = 200. It is

observed that the variance matrix estimate given by the HARD estimator tends
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Table 3. Fixed and random effects selection and estimation results for Ex-
ample 3.

Scenario m method Random effect Fixed effect MME MAD
CZ IZ C O CZ IZ C O (ME)

1 100 HARD 2.70 0.02 75 24 5.10 0.03 63 36 0.017 0.012
SW 2.58 0.00 72 28 5.86 0.00 88 12 0.010 0.005
BKG 2.33 0.00 42 58 5.49 0.00 58 42 0.013 0.007
Oracle 3 0 100 0 6 0 100 0 0.006 0.004

200 HARD 2.80 0.00 83 17 5.64 0.00 85 15 0.005 0.004
SW 2.78 0.00 83 17 5.90 0.00 90 10 0.005 0.004
BKG 2.41 0.00 45 55 5.72 0.00 76 24 0.004 0.003
Oracle 3 0 100 0 6 0 100 0 0.003 0.002

2 100 HARD 5.53 0.05 61 34 3.55 0.18 34 60 0.144 0.142
SW 5.57 0.05 64 31 5.84 0.00 85 15 0.006 0.004
BKG 4.92 0.00 26 74 5.58 0.00 67 33 0.008 0.005
Oracle 6 0 100 0 6 0 100 0 0.004 0.003

200 HARD 5.59 0.01 67 32 4.27 0.00 55 45 0.007 0.006
SW 5.55 0.00 65 35 5.92 0.00 93 7 0.003 0.002
BKG 5.18 0.00 41 59 5.27 0.00 47 53 0.004 0.002
Oracle 6 0 100 0 6 0 100 0 0.002 0.001

to suffer from being negative definite, but the results improve when the sample

size increases.

Example 3. (Centered Exponential Example) In this example, we assume

that ε has a centered exponential distribution with mean 0 and variance 1; that is,

ε ∼ Exp(1)−1. Table 3 summarizes the results from this example when m = 100

and 200. Overall, the performance of the three methods is consistent with that

in the previous two examples. The SW estimator is the best for model selection,

giving the highest selection frequency in identifying the nonzero random effects

and fixed effects. The BKG method tends to produce a larger model. In terms

of model estimation, the SW estimator overall gives the best MME under all the

settings, the BKG method is the second best when m = 100, and the HARD

estimator is the second best when m = 200.

In summary, the SW estimator is consistently the best in terms of both model

selection and parameter estimation in all the three examples. The BKG method

gives comparable performance with SW estimator in Example 1 where the error

variable follows a Gaussian distribution, but when the error is not Gaussian,

the BKG method misspecifies the likelihood function so its MME is worse than

the SW estimator in Examples 2 and 3. The HARD estimator works well when

the sample size is large. In addition, another advantage of the moment-based

procedure is the computational cost. Based on our experience, the computation
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Table 4. Median of mean squared errors (MMSE) of the estimated fixed-
effect coefficients. MADs of the MSEs are given in parentheses.

Example# method Scenario 1 Scenario 2
m=100 m=200 m=300 m=100 m=200 m=300

1 OLS 0.079 0.039 0.030 0.082 0.041 0.027
(0.024) (0.015) (0.012) (0.028) (0.014) (0.009)

FGLS 0.040 0.021 0.013 0.038 0.019 0.013
(0.014) (0.007) (0.005) (0.016) (0.008) (0.006)

GLS 0.040 0.020 0.014 0.037 0.019 0.013
(0.012) (0.007) (0.005) (0.015) (0.008) (0.006)

2 OLS 0.093 0.048 0.036 0.084 0.047 0.029
(0.029) (0.013) (0.013) (0.037) (0.017) (0.011)

FGLS 0.058 0.029 0.022 0.053 0.026 0.017
(0.021) (0.010) (0.008) (0.019) (0.009) (0.007)

GLS 0.057 0.029 0.022 0.056 0.027 0.016
(0.020) (0.011) (0.008) (0.020) (0.010) (0.007)

3 OLS 0.077 0.042 0.025 0.084 0.043 0.030
(0.033) (0.014) (0.010) (0.036) (0.013) (0.010)

FGLS 0.044 0.019 0.012 0.037 0.018 0.013
(0.020) (0.007) (0.004) (0.015) (0.007) (0.005)

GLS 0.039 0.019 0.012 0.038 0.019 0.014
(0.018) (0.007) (0.005) (0.014) (0.007) (0.005)

speed of the HARD and SW estimators is much faster than that of the BKG

method which employs the EM algorithm for computation.

One ultimate purpose of selecting random effects in linear mixed models is to

improve the estimation efficiency of the fixed-effect β in the final model. In order

to show that the efficiency is gained in fixed-effect estimation due to a proper

random-effects selection, we consider the measure mean squared error (MSE)

MSE(β̂) = (β̂ − βo)
T (β̂ − βo),

where β̂ is any estimator and βo is the true parameter, which can be used to

compare different estimators in estimating fixed effects. In Table 4, we report

the median of MSE (MMSE) and the corresponding MAD (median absolute de-

viation) for three weighted estimators under both scenarios with m = 100, 200,

and 300. The OLS estimator is the standard ordinary least squares obtained by

assuming working independence, which is essentially the model fit without ran-

dom effects selection. The FGLS estimator is obtained by using the SW estimate

Σ̂ and its corresponding σ̂2ε to construct the weight. Finally, the GLS estimator

is computed by using the true underlying variance-covariance matrix and true

error variance. All estimators are computed without fixed effects selection and

defined in Section 4. From Table 4, we observe that our FGLS estimator gives
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Table 5. Estimates for the selected model for the Amsterdam Growth and
Health Study data. Standard errors for fixed effects are given in parentheses.

Random effect
Variable REML Moment-based HARD SW

estimate initial estimate estimate estimate
var(γ0i) 0.522 0.405 0.405 0.347
var(γ1i) 0.014 0.026 0 0.006
var(γ2i) 0.042 0.005 0 0
var(γ3i) 0.073 0.149 0.149 0
var(γ4i) 0.961 0.668 0.668 0.624
var(γ5i) 0.037 0.016 0 0
var(εi)=σ

2
ε 0.197 0.220 0.268 0.253

Fixed effect
Variable REML OLS HARD SW

estimate estimate estimate estimate
X1 -0.027 (0.050) 0.018 (0.030) 0 0
X2 0.190 (0.035) 0.270 (0.029) 0.174 0.165
X3 -0.106 (0.060) -0.007 (0.067) 0 0
X4 0.126 (0.072) -0.017 (0.044) 0 0
X5 0.169 (0.023) 0.149 (0.027) 0.156 0.167

great improvement in terms of MSE than the OLS, and its performance is very
close to the oracle procedure GLS in most examples. These findings suggest that
our random effect selection procedure is effective in producing efficiency gain for
the fixed-effect estimation in linear mixed models.

5.2. Real example

For illustration, we consider a real data example: the Amsterdam Growth
and Health Study (Kemper (1995)). The goal of this study is to investigate the
relationship between lifestyle and health in adolescence and young adulthood.
The response variable Y is the total serum cholesterol measured over six time
points. There are five explanatory variables: X1 is the fitness level at baseline
measured as maximum oxygen uptake on a treadmill, X2 is body fatness esti-
mated by the sum of the thickness of four skinfolds, X3 is smoking behavior
(0=no,1=yes), X4 is gender (0=female, 1=male), and X5 is the measurement
time coded as (1, 2, . . . , 6). The number of subjects is 147, and the total num-
ber of observations is 882. Twisk (2003) analyzed this data set using regression
techniques for longitudinal data. Azari, Li, and Tsai (2006) conducted the fixed
effects selection by including some quadratic and interaction terms as fixed ef-
fects. We fit the linear mixed model with all the five covariates for both fixed
and random effects. We compare the new estimators with the REML estimator.

We centered the response variable Y and standardized all the inputs, so the
fitted model does not include an intercept for the fixed effects, but a random
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intercept is allowed. The BICR and BICF were used to choose the tuning pa-

rameters for random and fixed effects selection, respectively. In Step 4, we used

the FGLS estimates β̂G for constructing the weights in (4.2). For comparison,

we also fitted the full model by including all explanatory variables as fixed and

random effects. We used the lmer function from lme4 package in R, which used

the REML estimation based on the normality assumption.

The real data analysis results are summarized in Table 5. Both HARD and

SW estimators identify X2 and X5 as important fixed effects, which is consistent

with the results from the REML estimation. In the analysis of REML, X2 and

X5 have t-statistics of 5.50 and 7.26, respectively, which are the only two highly

significant fixed effects. The fitted coefficients of the HARD and SW estimates

are also similar to those obtained using OLS and REML methods. For random

effects selection, the HARD estimator selects the random intercept, X3 and X4,

and SW estimator selects the random intercept, X1 and X4. Due to a smaller

number of random effects in the final model, the remaining unexplained variance

is absorbed into the error variance, and therefore the error variances given by the

HARD and SW estimators are slightly larger than that of the REML estimator.

Though the HARD estimator performs well in general for random effects

selection, we note that the estimated covariance matrix is

Σ̂H =



0.41 0.07 −0.03 −0.05 −0.39 0

0.07 0 0 0.03 −0.11 0

−0.03 0 0 0 0 0

−0.05 0.03 0 0.15 −0.09 −0.04

−0.39 −0.11 0 −0.09 0.67 0.07

0 0 0 −0.04 0.07 0


,

which is not an appropriate variance-covariance matrix. For example, even

though σ̂22 is zero, the entries σ̂21 and σ̂12 are not. Obviously, this matrix is

not positive semi-definite. In practice, we recommend using the SW method for

estimating the sparse variance-covariance matrix for random effects.

6. Discussion

We propose a new class of robust thresholding and shrinkage approaches

for random and fixed effects selection in linear mixed models. Compared with

existing methods, the new procedures do not rely on any distributional assump-

tions for random effects and errors, and are hence more robust for non-normal

correlated data. The theoretical and numerical results suggest that the proposed

methods provide a promising tool for the analysis of clustered data in practice.
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The implementation of the proposed methods requires solving nonlinear op-

timization problems. We suggest some feasible strategies and solvers for com-

puting the solutions, but the computation efficiency could be further improved.

We also tried a quadratic approximation to the nonlinear objective function and

iteratively solved the quadratic programming problem. Our preliminary analysis

suggests that this approximation technique can greatly speed up the computation

for our procedure and deserves further investigation in the future.
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Appendix

Proof of Theorem 1. For a q×q symmetric matrix A, the following inequalities

are satisfied:

∥A∥2 ≤ max
1≤i≤q

q∑
j=1

|aij | and ∥A∥F ≤ q max
1≤i,j≤q

|aij |.

Based on these inequalities, to prove the results in Theorem 1, it only needs to

show the component-wise root-m consistency of Σ̂Hν . Note that

√
m|σ̂Hij − σij,o|
=

√
m|σ̂Hij |I(σij,o = 0) +

√
m|σ̂Hij − σij,o|I(σij,o ̸= 0)

≤
√
m|σ̃ij |I(σij,o = 0) +

√
m|σ̃ij − σij,o − σ̃ijI(|σ̃ij | ≤ ν)|I(σij,o ̸= 0)

≤ Op(1) +
√
m|σ̃ij − σij,o|I(σij,o ̸= 0) +

√
m|σ̃ij |I(|σ̃ij | ≤ ν)I(σij,o ̸= 0)

= Op(1) +
√
m|σ̃ij |I(|σ̃ij | ≤ ν)I(σij,o ̸= 0).

In addition, for σij,o ̸= 0, P (
√
m|σ̃ij |I(|σ̃ij | ≤ ν) = 0) = P (|σ̃ij | > ν). Without

loss of generality, assume σij,o > 0. Then

P (|σ̃ij | > ν) = P (
√
m(σ̃ij − σij,o) >

√
m(ν − σij,o)) + P (

√
m(σ̃ij − σij,o)

<
√
m(−ν − σij,o)) → 1.

Therefore,
√
m|σ̃ij |I(|σ̃ij | ≤ ν)I(σij,o ̸= 0) = op(1). The same result also holds

for σij,o < 0. Then it follows
√
m|σ̂Hij − σij,o| = Op(1) for any i, j.

Proof of Theorem 2. We follow similar steps to prove Theorem 2 from Roth-

man, Levina, and Zhu (2009). If σ̂Hij ̸= 0 and σij,o = 0, then |σ̃ij − σij,o| > ν
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holds. Using Chebyshev’s inequality and Lemma 2, we have

P
{ q∑
i=1

q∑
j=1

I
(
σ̂Hij ̸= 0, σij,o = 0

)
> 0

}
≤ P

{∑
i,j

I
(
|σ̃ij − σij,o| > ν

)
> 0

}
≤ P

{
max

1≤i,j≤q

∣∣σ̃ij − σij,o
∣∣ > ν

}
≤ ϕ

mν2
→ 0,

where ϕ is the maximum diagonal element of A−1
2 B2A

−1
2 . Hence, with probability

approaching 1, σ̂Hij = 0 for all (i, j) such that σij,o = 0.

If σ̂Hij and nonzero σij,o have different signs, then we have |σ̃ij−σij,o| > δ−ν
for some δ > 0. Using Lemma 2, we have

P
{∑

i,j

I
(
σ̂Hij ≤ 0, σij,o > 0 or σ̂Hij ≥ 0, σij,o < 0

)
> 0

}
≤ P

{∑
i,j

I
(
|σ̃ij − σij,o| > δ − ν

)
> 0

}
≤ P

{
max

1≤i,j≤q

∣∣σ̃ij − σij,o
∣∣ > δ − ν

}
≤ ϕ

m(δ − ν)2
→ 0.

Hence, with probability approaching 1, nonzero σij,o and σ̂
H
ij have the same sign.

Proof of Theorem 3. To prove Theorem 3, it is sufficient to show that for any
given ϵ > 0, there exists a large constant C such that

pr
[

inf
ψ∈Bm(C)

QR(ψ; κ̃(β̃), β̃) > QR(ψo; κ̃(β̃), β̃)
]
≥ 1− ϵ, (A.1)

where the C-ball Bm(C) = {ψ : ψ = ψo +m−1/2u, ∥u∥ ≤ C}. The derivatives
of QR and LR with respect to ψ or κ̃(β̃) are the right derivatives because ψ is
defined in the set of non-negative real q-vectors, denoted by Rq+.

From the Taylor expansion of LR around ψ = ψo, we have

QR(ψo +m−1/2u; κ̃(β̃), β̃)−QR(ψo; κ̃(β̃), β̃)

= LR(ψo +m−1/2u; κ̃(β̃), β̃)− LR(ψo; κ̃(β̃), β̃) + λ

q∑
i=1

(ψi,o +m−1/2ui

ψ̃i
− ψi,o

ψ̃i

)
=

( u√
m

)T
SR(ψo; κ̃(β̃), β̃) +

1

2

( u√
m

)T
∇SR(ψo; κ̃(β̃), β̃)

( u√
m

)
+ λ

q∑
i=1

ui

ψ̃i
√
m
,

(A.2)

where

SR(ψo; κ̃(β̃), β̃) =
∂LR(ψ; κ̃(β̃), β̃)

∂ψ

∣∣∣∣∣
ψo

,∇SR(ψo; κ̃(β̃), β̃) =
∂2LR(ψ; κ̃(β̃), β̃)

∂ψ∂ψT

∣∣∣∣∣
ψo

.
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By the law of large numbers,

1

m

∑
i,j,k

eijk → 0. (A.3)

Therefore, we can obtain

1

m

( ∂

∂κ̃T
SR(ψo; κ̃(β̃), β̃)

∣∣∣
κo,βo

)
→ E and

1

m

( ∂

∂β̃T
SR(ψo; κ̃(β̃), β̃)

∣∣∣
κo,βo

)
→ 0,

(A.4)

where E is a q × q(q + 1)/2 matrix.

Using (A.3), (A.4), and Lemmas 1 and 2, the first-order Taylor expansion

around κ̃(β̃) = κo and β̃ = βo yields

SR(ψo; κ̃(β̃), β̃)

= SR(ψo;κo, βo) +
( ∂

∂κ̃T
SR(ψo; κ̃(β̃), β̃)

∣∣∣
κo,βo

)
(κ̃(βo)− κo)

+
( ∂

∂κ̃T
SR(ψo; κ̃(β̃), β̃)

∣∣∣
κo,βo

)( ∂

∂β̃T
κ̃(β̃)

∣∣∣
βo

)
(β̃ − βo)

+
( ∂

∂β̃T
SR(ψo; κ̃(β̃), β̃)

∣∣∣
κo,βo

)
(β̃ − βo) + op(∥κ̃(β̃)− κo∥) + op(∥β̃ − βo∥)

= SR(ψo;κo, βo) + op(m
1/2) (A.5)

and

∇SR(ψo; κ̃(β̃), β̃) = ∇SR(ψo;κo, βo) + op(m
1/2). (A.6)

The tth component of SR(ψo;κo, βo) is

−2
∑
i,j,k

eijk

q∑
l=1

(ZijtZikl + ZijlZikt)
σtl,o
ψt

,

where σtl,o is the (t, l)th element of Σo. Hence, SR(ψo;κo, βo) can be expressed

as
∑m

i=1W
T
i ei, where ei is a column vector consisting of eijk’s. By the central

limit theorem, we have

1√
m
SR(ψo;κo, βo) → N(0, F ) as m→ ∞, (A.7)

where F = limm→∞
∑m

i=1W
T
i cov(ei)Wi/m and is a q × q positive semi-definite

matrix. This implies that SR(ψo;κo, βo)/
√
m = Op(1). In addition, by the law

of large numbers, it follows that

1

m
∇SR(ψo;κo, βo) = H + op(1), (A.8)
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where H is a q × q positive semi-definite matrix. Then, using (A.5) and (A.6),

the first and second terms of (A.2) become

uT√
m

(
SR(ψo;κo, βo) + op(m

1/2)
)
+

1

2

uT√
m

(
∇SR(ψo;κo, βo) + op(m

1/2)
) u√

m

= uTOp(1) +
1

2
uT

(
H + op(1)

)
u. (A.9)

We assume that the first b diagonal elements of ψo are nonzero. For i = 1, 2, . . . , b,

we have

1

ψ̃i
=

1

ψi,o
− 1

ψ2
i,o

(ψ̃i − ψi,o) + op(|ψ̃i − ψi,o|) =
1

ψi,o
+Op(m

−1/2).

Hence, if λ/
√
m = o(1), then

λ√
m

q∑
i=1

ui

ψ̃i
≥ λ√

m

b∑
i=1

ui

ψ̃i
=

λ√
m

b∑
i=1

ui

( 1

ψi, o
+Op(m

−1/2)
)
=

b∑
i=1

uiOp(1).

(A.10)

Combining (A.9) and (A.10), it follows that

QR(ψo +m−1/2u; κ̃(β̃), β̃)−QR(ψo; κ̃(β̃), β̃)

≥ uTOp(1) +
1

2
uT

(
H + op(1)

)
u+

b∑
i=1

uiOp(1).

If we choose a sufficiently large constant C, the second term dominates the other

terms. Therefore, (A.1) holds. This means that m1/2(ψ̂i − ψi, o) = Op(1). By

the Delta method, it is easy to show that m1/2(ψ̂i − ψi, o) = Op(1). Since σ̂ij =

σ̃ij(ψ̂iψ̂j/(ψ̃iψ̃j), the root-m consistency also holds for the off-diagonal elements

of Σ̂. Hence, m1/2(σ̂ij − σij, o) = Op(1) for i, j = 1, . . . , q.

Proof of Theorem 4. We first prove that ψ̂2 = 0 with probability approach-

ing 1. It is enough to show that for any sequence ψ1 satisfying ∥ψ1 − ψ10∥ =

Op(m
−1/2) and for any constant C,

QR
(
(ψ1, 0); κ̃(β̃), β̃

)
= min

∥ψ2∥≤Cm−1/2
QR

(
(ψ1, ψ2); κ̃(β̃), β̃

)
.

From (A.5), (A.6), (A.8), and the second-order Taylor expansion around ψ = ψo,

we obtain

LR(ψ; κ̃(β̃), β̃) = LR(ψo; κ̃(β̃), β̃) + (ψ − ψo)
TSR(ψo;κo, βo)

+
1

2
(ψ − ψo)

T∇SR(ψo;κo, βo)(ψ − ψo) + op(1).
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For t = b+ 1, . . . , q,

∂

∂ψt
QR(ψ; κ̃(β̃), β̃) =

∂

∂ψt
LR(ψ; κ̃(β̃), β̃) + λ

1

ψ̃t

= [SR(ψo;κo, βo)]t + [∇SR(ψo;κo, βo)]tψt +
m1/2λ

|Op(1)|

=m1/2
(
Op(1) +

λ

|Op(1)|

)
,

where [A]t denotes the tth element if A is a vector, and the tth row vector if A is

a matrix. Since λ→ ∞, ∂QR(ψ; κ̃(β̃), β̃)/∂ψt > 0. Hence, QR((ψ1, 0); κ̃(β̃), β̃) <

QR((ψ1, ψ2); κ̃(β̃), β̃). This completes the proof.

Next we prove part (b) of Theorem 4, which deals with the asymptotic

normality of ψ̂1. Define S1R(ψ; κ̃(β̃), β̃) be the first b elements of SR(ψ; κ̃(β̃), β̃).

From part (a), we can write ψ̂ = (ψ̂T1 , 0
T )T . Hence, we have

0 =
∂

∂ψ1
QR(ψ; κ̃(β̃), β̃)

∣∣∣
ψ=(ψ̂T

1 ,0
T )T

= S1R(ψ̂; κ̃(β̃), β̃) + λ
( 1

ψ̃1

, . . . ,
1

ψ̃b

)T
.

From the first-order Taylor expansion around (ψ̂, κ̃(β̃), β̃) = (ψo, κo, βo), we have

S1R(ψ̂; κ̃(β̃), β̃)

= S1R(ψo;κo, βo) +
( ∂

∂ψ̂T1
S1R(ψ̂; κ̃(β̃), β̃)

∣∣∣
ψo,κo,βo

)
(ψ̂1 − ψ10)

+
( ∂

∂κ̃T
S1R(ψ̂; κ̃(β̃), β̃)

∣∣∣
ψo,κo,βo

)(
κ̃(βo)− κo

)
+
( ∂

∂β̃T
S1R(ψ̂; κ̃(β̃), β̃)

∣∣∣
ψo,κo,βo

)
(β̃ − βo)

+
( ∂

∂κ̃T
S1R(ψ̂; κ̃(β̃), β̃)

∣∣∣
ψo,κo,βo

)( ∂

∂β̃T
κ̃(β̃)

∣∣∣
βo

)
(β̃ − βo) + op(m

1/2). (A.11)

Since λ/
√
m→ 0 and ψ̃i

p−→ ψi,o ̸= 0 for i = 1, . . . , b, we have

1√
m
λ
( 1

ψ̃1

, . . . ,
1

ψ̃b

)T
→ 0. (A.12)

Putting (A.3), (A.4), (A.7), (A.8), (A.12), and Lemmas 1 and 2 into (A.11), we

have, by Slutsky’s theorem,

m1/2(ψ̂1 − ψ10) → N
(
0, T

)
, (A.13)

where T = H−1
1 (F1 +E1A

−1
2 B2A

−1
2 ET1 )H

−1
1 with E1, F1, and H1 being the first

b× q(q + 1)/2, b× b, and b× b submatrices of E, F , and H, respectively.
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