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Abstract: Change-point models have been widely applied for segmentation of spatial

or time-series data. Some recent applications in genomics motivate multi-sequence

change-point models for shared changes across multiple aligned sequences. These

applications frequently involve data where the number of change-points can be

large. In a previous paper we derived a Bayes Information Criterion (BIC) for

determining the number of changes in the mean of a sequence of independent normal

observations when the number of change-points m is assumed to remain bounded as

the number of observations increases. Here we extend that result to the case where

m can increase with the sample size and to simultaneous change-points in multiple

sequences. Stochastic terms that enter into the new criteria involve integrals and

maxima of two-sided random walks with negative drift. The new criteria are applied

to the analysis of DNA copy number data.

Key words and phrases: Change-point detection, DNA copy number, segmentation,

model selection.

1. Introduction

With the ubiquity of high-throughput data collection schemes in various sci-

entific disciplines, one frequently sees data of the following structure: For each

of j = 1, . . . , N “subjects,” a linearly ordered sequence of noisy observations

yj = {ytj : t = 1, . . . , T} is collected. Signals in each sequence appear as inter-

vals where the observations exhibit a change in distribution, and these changed

segments may be shared by a subset of the subjects. In this paper our analysis

is motivated by experiments that profile DNA copy number, so each sequence

contains measurements of the quantity of DNA in a biological sample, mapping

to ordered locations along a reference genome. Figure 1 shows a single sample

of (log2) DNA copy number assayed from a breast tumor, while Figure 4 shows,

in the form of a heatmap, data containing N = 62 samples assayed at T =2,000

locations. Both T , the length of each sequence, and N , the number of sam-

ples, may be very large. Signals in Figure 4 are visible as streaks of gray that

are shared across subjects. More background on DNA copy number is given in

Zhang et al. (2010) and in Section 7.

http://dx.doi.org/10.5705/ss.2010.257
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Figure 1. DNA copy number measured by array-based comparative genomic
hybridization for tumor sample BT474. Vertical lines denote chromosome
boundaries.

We assume that, within each sequence, the data can be modeled as inde-

pendent observations from a distribution that occasionally experiences abrupt

changes. Change-point models have been applied to the segmentation of various

types of genome-wide profiles. Earlier models focused on the segmentation prob-

lem for one sequence. If a cross-sequence summary is desired, the results can be

combined post segmentation. Several recent approaches to DNA copy number

analysis advocate pooling data across sequences during the segmentation step

(Lipson et al. (2006), Zhang et al. (2010) , Shah et al. (2007)). In this paper

we propose model selection methods for single- and multi-sequence change-point

problems. Although our methods can be adapted to more complex scenarios, we

limit our analysis to the simple model where, within each sequence, we observe

independent normally distributed observations with piece-wise constant mean

and overall constant variance, and where observations in different sequences are

independent. See Zhang et al. (2010) for a description of data normalization

designed to insure the approximate validity of these model assumptions.

To establish basic notation and review relevant literature, we start by re-

visiting the problem of estimating the number of changepoints in the mean of

a single sequence of independent observations with normal homoscedastic errors

(e.g., Yao (1988), Zhang and Siegmund (2007)). Let

0 = τ0 < τ1 < · · · < τm < τm+1 = T
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be the change-points of the process. Then, suppressing the subject index j,

yt ∼ N(µi, σ
2) for τi < t ≤ τi+1, i = 0, . . . ,m. (1.1)

The segment means, the change-point locations, as well as the number of change-

points m are all unknown. To simplify our theoretical studies we assume that

σ2 is known. In the very large data sets often encountered in CNV analysis, this

parameter can be very accurately estimated, but we also give a slightly more

complex result for cases where variability in the estimated variance may play

an important role. Given m, the change-point locations and the segment means

can be estimated either by maximum likelihood or by Bayesian approaches. The

dimension of the model is controlled by m, and thus the determination of m is a

model selection problem.

The Bayes information criterion (BIC), proposed by Schwarz (1978), has

proved a useful off-the-shelf method for estimating the dimension of parametric

models. The original BIC criterion was derived in a Bayesian framework by

approximating the log of the posterior probability of the model and neglecting

terms that are of constant order when the total number of observations T is

assumed to increase indefinitely. The prior distributions play no role in the final

approximation if certain assumptions are satisfied. In particular (i) the dimension

of each model, as well as the number of possible models must be bounded and

(ii) the log likelihood function must be twice differentiable in the parameters of

the model. The latter assumption fails to hold for change-point models, while

both theoretical considerations and experience suggest that if the number of

observations becomes very large, then the number of change-points might also

be large.

To deal with (ii), Zhang and Siegmund (2007) assumed that there exists a

vector ρ = (ρ0, . . . , ρm+1), with

0 = ρ0 < ρ1 < · · · < ρm+1 = 1

such that τ/T → ρ, and showed that up to terms of constant order

ℓ(τ̂ , µ̂)− 2−1
m+1∑
i=1

log(τ̂i − τ̂i−1)−
(
m− 1

2

)
log T (1.2)

is an approximation to the log of the posterior model probability and thus is

analogous to the original Schwarz criterion. When applied to sequences that

contain a large number of change-points, one finds empirically that (1.2) can be

quite conservative compared to other methods. This motivates the developments

in the first part of this paper, where we consider an approximation to the log of the

posterior model probability when the number of change-points m is assumed to
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increase with the number of observations T , although m ≪ T . We refer to these

situations as high-dimensional change-point models, and in our approximation

to the posterior model probability we keep terms that grow at least as fast as m.

An example motivating our reformulation is provided by the BT474 data

studied in Zhang and Siegmund (2007), where 39 change-points were detected,

while some methods detected more. With the criterion suggested below we now

detect 77. The truth for this example is unknown, so we have relied on related

simulations, reported below, to try to evaluate different methods.

When approximating the Bayes factor for high-dimensional models, the prior

probabilities of some models are necessarily very small and hence are no longer

negligible. In a high-dimensional, but statistically regular, context, Berger,

Ghosh, and Mukhopadhyay (2003) proposed a mixture of Gaussian priors. We

adapt their prior distributions to our change-point setting to treat the large

number of segment mean parameters. This leads to an extra term in the BIC

approximation that involves the prior distribution, but which can be estimated

by empirical Bayes methods. Additional new terms that involve functionals of

random walks also arise in the approximation, due to variability in the estimates

τ̂ of the change-points.

We also consider extensions of the single sequence change-point model to

estimate shared change-points in multiple aligned sequences. Such extensions

have been studied from different points of view in Shah et al. (2007), Lipson et al.

(2006), Wang et al. (2008), Zhang et al. (2010) and Siegmund, Yakir, and Zhang

(2011). At a change-point, a subset of the sequences, the carriers, experience

a shift in mean. The magnitude of the shift is allowed to differ across samples

for the same change-point, and across change-points for the same sample. The

variances of the observations are sequence specific, but constant within sequences.

The locations of the change-points, the sets of carriers, and the mean shift for

each carrier at each change-point are all unknown. Extending the circular binary

segmentation approach (CBS) (Vostrikova (1981), Olshen et al. (2004)) for single

sequence segmentation, Zhang et al. (2010) suggested a recursive algorithm for

partitioning the multi-sequence data into homogeneous regions. The algorithm

contains an ad hoc thresholding step for identifying the carriers of each change-

point, and a p-value based criterion for stopping the recursion. The BIC model

selection procedures derived in this paper can be used with a similar algorithm

that eliminates the need for several user defined tuning parameters.

We adopt a simple Bernoulli prior for the carrier sets, and estimate its hyper-

parameters empirically. Such an empirical Bayes approach to the BIC has been

used earlier for regular models by George and Foster (2000) and in a regression

setting by Chen and Chen (2008).

The new BIC criteria proposed in this paper have a convenient modular prop-

erty, in the sense that they are comprised of interpretable terms, each of which
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is attributable to a separate part of the model. This facilitates understanding

of the procedure and generalization to more complex problems, as we illustrate

below.

The paper is organized as follows. After introducing our basic notation

in Section 2, Section 3 focuses on the analysis of a single sequence for high-

dimensional change-point models. After showing that two different priors for the

mean value process lead to slightly different BIC approximations, in Section 4

we show via simulations that the two new versions behave about the same and

outperform the old one. The problem of multiple aligned sequences is treated in

Section 5. After giving in Section 7.1 a more detailed introduction to DNA copy

number data, Sections 7.2 and 7.3 contain applications to the segmentation of

inherited DNA copy number variants and of aberrations in tumor data, respec-

tively. Section 8 contains a discussion, and the Appendix provides some of the

technical details in the derivations of the results in Sections 3 and 5.

Remarks. (i) In the case of multiple sequences, a model with simultaneous

changepoints in different sequences is scientifically plausible for inherited CNV,

many of which arise from mutational events in the history of a population and

indicate distant relatedness of individuals exhibiting the same CNV. The model

is not obviously appropriate for cancer data. There do, however, appear to be

genomic locations more prone to breakage; in cancer data the most interesting

changes for their possible role in the pathology of a cancer are those that are

shared by different individuals. Although our multi-sequence model is based on

the assumption of change-points that are aligned across samples, the iterative

nature of our algorithm achieves a reasonable level of robustness against break-

down of this assumption. See the analysis of a complicated CNV region with

several varying change-points in Section 7.2, and of a tumor sample in Section

7.3.

(ii) A model selection procedure often considered alongside BIC is AIC, for which

a change-point version has been suggested by Ninomiya (2004). Since this version

of AIC (like its analogue in statistically regular problems) penalizes by counting

parameters, but does not take account of the sample size, it can lead to arbitrarily

many false positive errors in very long sequences populated by relatively few

change-points.

2. Notation

In this section we introduce notation that will be used throughout the paper.

Let

τT = (τT,0, . . . , τT,m+1)



1512 NANCY R. ZHANG AND DAVID O. SIEGMUND

denote the true values of the change-points, where τT,0 = 0 and τT,m+1 = T , so

m = mT is the true number of change-points. The number of change-points, as

well as their values, are allowed to change with T , but we usually suppress the

dependence on T in the notation. We always use i to index the change-points.

We use t to index the observations within a sequence. The sequences all have

length T , so t ∈ {1, . . . , T}. We use vectors t = (t0, . . . , tm+1) to denote possible

values for τ .

When there are N > 1 sequences, we use j to index sequences. For example,

yτi,j is the observation at the i-th change-point in the j-th sequence.

Let S = {S0, S1, . . . , ST } denote the cumulative sums process, St = St−1+yt,

with S0 = 0. When there are multiple sequences, {S0j , S1j , . . . , STj} denotes the

process of cumulative sums in the j-th sequence.

We denote vectors in bold face, such as τ , µ, and t.

3. Analysis of a Single Sequence

Consider a single sequence of observations where y1, . . . , yT follow model

(1.1). The vector of change-points, τ = τT , takes value in the set

D = D(m,T ) = {(t0, . . . , tm+1) : 0 = t0 < t1 < · · · < tm < tm+1 = T}.

Note that the cardinality of D is |D(m,T )| =
(
T
m

)
≈ Tm/m! when m ≪ T. We

denote by Mm the model with m change-points. For any δ = (δ1, . . . , δm) ∈ ℜm

and τ ∈ D, let Pτ ,δ be the measure where the means change by magnitude δi
at τi + 1, δi = µi − µi−1. Let P0 denote the measure under the null hypothesis

H0 : yt ∼ N(µ0, σ
2), t = 1, . . . , T , for some unknown µ0 ∈ ℜ, and let Eτ ,δ and

E0 denote expectations under Pτ ,δ and P0, respectively.

Remark. We have parameterized our model by δ, which specifies changes in

the mean value at the change-points. While this initially introduces some com-

plications in computing the likelihood function compared to using the means µi,

for change-point problems the parameterization in terms of δ is more appropri-

ate, since the sizes of the changes, not the means themselves, are critical to the

success of any segmentation method.

For a candidate change-point vector t, it will be convenient to letX(t) denote

the m× 1 vector with elements

Xi(t) = ti
ST

T
− Sti , i = 1, . . . ,m,

and let Σ(t) be the m×m covariance matrix of X(t), so

Σi,j(t) = ti(1−
tj
T
), for 1 ≤ i < j ≤ m. (3.1)
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A tedious but straightforward calculation shows that

Et,δ[X(t)] = Σ(t)δ.

Let V (t) = Σ−1(t)X(t), so Eτ,δ[V (τ )] = δ and E0[V (t)V ′(t)] = Σ−1(t). The log

likelihood ratio of Pt,δ versus P0 can be written

ℓ(t, δ) = log
dPt,δ

dP0
= δ′Σ(t)V (t)− δ′Σ(t)δ/2 = δ′X(t)− δ′Σ(t)δ/2. (3.2)

Maximizing (3.2) with respect to δ gives the likelihood ratio process as a function

of t,

ℓ(t) = max
δ

ℓ(t, δ) =
1

2
X(t)′Σ−1(t)X(t). (3.3)

The maximum likelihood estimates for the change-points are thus

τ̂ = τ̂T = argmax
t∈D

ℓ(t). (3.4)

To proceed, we need prior distributions for the parameters τ , δ, and m.

We assume that the τi are the discrete analogue of uniform order statistics on

[0, T ] although order statistics from any prior of the form T−1p(t/T ), where p

is a continuous density on [0, 1] bounded away from 0 and ∞, would give the

same results. We consider two priors for δ. For the first, conditional on τ = t,

δ ∼ N(0, w−1Σ−1(t)). One can obtain exact formulas for the Bayes factor in

Gaussian regression models, where this prior is frequently used and is called the

g-prior by Zellner (1986). For the second prior we assume that δ ∼ N(0, w−1I);

call this the independence prior for δ.

A complete Bayesian analysis would assign w a prior distribution, say with

a positive continuous density g(w) on [0,∞).

Mixtures of g-priors have been used for high-dimensional Gaussian models

in Berger, Ghosh, and Mukhopadhyay (2003) and were shown to have desirable

properties in Liang et al. (2008). In the computation of the Bayes Factor when

m is large we make a Laplace approximation, so the exact form of g(·) is unim-

portant. In effect, w is replaced by a maximizing value in the approximation

that can be interpreted as an empirical Bayes estimator.

We assume the prior distribution of m decays algebraically, say π(m) ∝ m−α

for some α > 0, so log π(m) = o(m) and hence can be neglected.

To state the main results of this section we need to make some assump-

tions about the configurations of the parameters τ , δ, which we describe here

informally.
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I The δi are bounded away from 0 and the smallest separation between the

change-points must increase with the sequence length, e.g.,

lim inf
T→∞

min
1≤i≤mT

(τT,i − τT,i−1)

[log(T )]2
= ∞.

II The values of δ and τ must ensure the consistency of the maximum likeli-

hood estimator of τ , e.g., that

lim
T→∞

[log(T )]−2 max
1≤i≤mT

|τ̂T,i − τT,i| → 0 in probability.

III The value of the likelihood ratio process ℓ(τ ) is stochastically of order T .

Taken together, these assumptions ensure that the change-points are estimable,

and that, in the limit, the true model can be identified. See the unpublished Stan-

ford University Ph. D. thesis of E. S. Venkatraman, who proved consistency of

a number of different segmentation algorithms under slightly weaker conditions.

In view of the length of this paper and the technical calculations involved,

we have not derived mathematically rigorous results, but have provided heuristic

derivations that illustrate the origins of the various terms in the approximations.

An important application is to copy number data, where the conditions given

above are admittedly not satisfied. In particular, intervals between change-points

can be short. In these problems consistent estimation does not appear to be

possible, and justification for use of such a procedure must be based on empirical

evidence (i) with simulations, where one knows the answer, and (ii) with scientific

data, where one can compare different methods empirically for their consistency

with each other, for their capacity to deal with complex data, and for their

performance on the occasional set of data where laboratory methods provide

some check on the methods’ accuracy.

Strictly speaking, the following calculations presuppose that St is Brownian

motion observed continuously on [0, T ], which we are treating as a convenient

approximation for our discrete time problem. Otherwise the numerical constants

κ1, κ2 defined below would involve functionals of a discrete time random walk

and would depend on δ. We return to this point in the Appendix.

Let {Wt : − ∞ < t < ∞} be Brownian motion with W0 = 0, and define

constants

κ1 = E

[
max

−∞<t<∞
{Wt −

|t|
2
}
]
=

3

2
, (3.5)

κ2 = E

[
log

∫ ∞

−∞
exp{Wt −

|t|
2
}dt
]

(3.6)

= E[log(Y −1
1 + Y −1

2 )] ≈ 2.27, (3.7)
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where Y1, Y2 are independent and exponentially distributed with mean value 1/2

(cf. Pollack and Siegmund (1985)). Define

δ̂1 =
τ̂1Sτ̂2/τ̂2 − Sτ̂1

τ̂1(1− τ̂1/τ̂2)
, (3.8)

δ̂i =
τ̂iSτ̂i+1

/τ̂i+1 − Sτ̂i

τ̂i(1− τ̂i/τ̂i+1)
−
(
τ̂i−1

τ̂i

)
τ̂i−1Sτ̂i/τ̂i − Sτ̂i−1

τ̂i−1(1− τ̂i−1/τ̂i)
, (3.9)

for i = 2, . . . ,m. Let δ̂ = (δ̂1, . . . , δ̂m). By the Law of Large Numbers, it is easy

to verify that assuming I and II, as T → ∞,

max
i

|δ̂i − δi| → 0 (3.10)

in probability, so the δ̂i are consistent estimators of the jump parameters δi.

BIC-like model selection criteria for the single sequence model under the

large m scenario are given in the following proposition, where we evaluate the

Bayes factor for the mth model up to terms that are small compared to m.

Proposition 1. Under assumptions (I−III), the distributional and prior assump-

tions stated above for τ and y, and the g-prior for δ, as T → ∞,

log
P(Mm|y)
P(M0|y)

= ℓ(τ̂ )− m

2

{
log

[
2ℓ(τ̂ )

m

]}+

− m

2

−m(κ1 − κ2)−
m∑
i=1

log δ̂2i − log |D(m,T )|+ op(m), (3.11)

where τ̂ is the maximum likelihood change-point estimate (3.4). For the inde-

pendence prior for δ, as T → ∞,

log
P(Mm|y)
P(M0|y)

= ℓ(τ̂ )− 2−1
m+1∑
i=1

log(τ̂i − τ̂i−1)−
m

2
log

[
m∑
i=1

δ̂2i
m

]
− m

2

−m(κ1 − κ2)−
m∑
i=1

log δ̂2i − log |D(m,T )|+ op(m). (3.12)

Note that in (3.11) and (3.12), the terms m, δ̂, and τ̂ all depend on T , but

we have suppressed the dependence in our notation. We define the right hand

sides of (3.11) and (3.12), without the op(m) remainder terms, to be the modified

Bayes information criteria for the one sequence change-point model. For future

reference we call the criteria BIC1 and BIC2, respectively.

Remark. The use of (3.11) or (3.12) requires some discretion. There is an im-

plicit assumption that the term involving the maximized log likelihood dominates
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the other terms to the extent that the entire expression is positive. Any partic-

ular model for which this fails to be true should not be considered. Presumably

it is unnecessary to add this condition, although one should note that penalty

terms involving the logarithm of the δ̂i provides an incentive to look at models

with many very small values of the δ̂i. In practice the overall expressions increase

with m to a maximum value and then begin to decrease. This local maximum

should be the value of m̂, even though in principle the expressions might begin

to increase again for still larger values of m.

We sketch the derivation of the first approximation in Proposition 1 here to

allow better understanding of the origin of the approximation and an interpreta-

tion of the terms therein. Some of the technical details are given in the Appendix.

To compute the Bayes Factor on the left hand side of (3.11), we integrate the

likelihood ratio dPt,δ/dP0 over the prior for δ and then sum over all possible

values of t to get

P(Mm|y)
P(M0|y)

= |D|−1
∑
t∈D

∫ ∞

0
g(w)

( w

2π

)m/2
|Σ(t)|−1/2

×
∫
ℜm

e−(1/2)δ′Σ(t)δ(1+w)+δ′X(t)dδdw

= |D|−1
∑
t∈D

∫ ∞

0
g(w)

[ w

1 + w

]m/2
e(1/2)X(t)′Σ(t)−1X(t)(1+w)−1

dw

= |D|−1
∑
t∈D

e(1/2)X(t)′Σ(t)−1X(t)

×
∫ ∞

0
g(w)

[ w

1 + w

]m/2
e−

1
2
X(t)′Σ(t)−1X(t)[w/(1+w)]dw (3.13)

Putting η = w/(1 + w), and letting

f(η) = ηm/2 exp
(
− ηX(t)′Σ(t)−1X(t)

2

)
, (3.14)

we see that the integral with respect to w in (3.13) becomes∫ 1

0
g[η(1− η)−1]f(η)(1− η)2dη. (3.15)

Let

η∗ = argmax
0≤η≤1

f(η) = min{m[X(t)′Σ(t)−1X(t)]−1, 1}.

As m → ∞, T → ∞, the integrand in (3.15) is dominated by ηm/2 for η → 0

and exp(−ηX(t)′Σ(t)−1X(t)/2) = Op[exp(−ηT )] for η → 1. Hence (3.15) is
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asymptotically equivalent to f(η∗) exp(E1), where E1 is an Op(1) random factor

that can be ignored. Since

f(η∗) = exp
[
− m

2
− (

m

2
) log

(X(t)′Σ(t)−1X(t)

m

)]
, (3.16)

substituting in (3.13) and taking logs leads to

log
P(Mm|y)
P(M0|y)

=
1

2
X(τ̂ )′Σ(τ̂ )−1X(τ̂ )− m

2
− m

2
log
[X(τ̂ )′Σ(τ̂ )−1X(τ̂ )

m

]
− log |D|+A(τ ) +B(τ ) + E2, (3.17)

where

A(τ ) =
1

2
[X(τ )′Σ(τ )−1X(τ )−X(τ̂ )′Σ(τ̂)−1X(τ̂ )], (3.18)

B(τ ) = log

{∑
t∈D

exp

[
1

2
(X(t)′Σ(t)−1X(t)−X(τ )′Σ(τ )−1X(τ ))

]}
,

(3.19)

and E2 is an Op(1) error term. The proposition then follows from the approxi-

mations

A(τ ) = −mκ1 + op(m), (3.20)

B(τ ) = mκ2 −
m∑
i=1

log(δ̂2i ) + op(m). (3.21)

As noted above, in (3.20) and (3.21) we have replaced functionals of discrete

time random walks by the corresponding Brownian functionals. The derivations

of these results are given in the Appendix.

Compared to the classic BIC and the modified BIC in equation (1.2) for

low-dimensional change-point models, the leading terms of BIC1 and BIC2 are

still the maximized log-likelihoood. The differences between these criteria are in

the penalty terms for δ and τ . Comparing BIC2 given in (3.12) to (1.2), we see

that the penalty for each δi, log(τ̂i − τ̂i−1), can be interpreted as the effective

sample size for estimating δi. The additional term −m log(
∑

i δ̂
2
i /2) − m/2 in

(3.12) comes from the mixture prior for δ, and effectively arises from plugging in

an empirical estimate for w, the variance of δ. This term is negligible when m is

assumed to remain bounded. A similar analysis applies in the case of BIC1 and

the g-prior.

The term log |D(m,T )|, which comes directly from the prior distribution of

τ , penalizes for the uncertainty about the m-dimensional change-point param-

eter over the range {1, . . . , T}. In (1.2), this term was replaced by m log T , its
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asymptotic equivalent if m were of constant order. An additional penalty of

−κ1 + κ2 − log δ̂2i (3.22)

for each change-point parameter τi comes from a more careful analysis of the

terms A(τ ) and B(τ ) that were ignored in Zhang and Siegmund (2007) because

they do not grow with T . Since these terms are of order m, which is now assumed

to be large, they are included here.

Note that BIC1 and BIC2 differ only in the penalty terms attributable to δ

(i.e., the terms in the first lines of (3.11) and (3.12)). This modularity makes it

easy to generalize these approximations to more complex models, as we will see

in Section 5.

Proposition 1 can be extended to handle the case where the noise variance σ2

is unknown. To describe the result extended to this case, we assume that σ has

an improper uniform prior. This assumption is not necessary for the result, as

any smooth prior with support on [0,∞) would give the same asymptotic approx-

imation. Given σ, we still assume that δ is a mixture of Gaussian distributions,

but with its variance scaled by σ2.

Regarding the sample partitioned by t as a one-way analysis of variance and

writing the total sum of squares as the sum of within-group and between-group

sums of squares, we have, in obvious notation,

SSall =

T∑
i=1

(yi − ȳ)2, (3.23)

SSbg(t) = X(t)′Σ−1(t)X(t) =
m∑
i=0

ni(t)[ȳi(t)− ȳ]2, (3.24)

where

ni(t) = ti+1 − ti, ȳi(t) = ni(t)
−1(Sti+1 − Sti), i = 0, . . . ,m,

SSwg(t) = SSall − SSbg(t) =

m∑
i=0

ti+1∑
j=ti+1

[yj − ȳi(t)]
2. (3.25)

Given a change-point estimate t, the maximum likelihood estimate of σ2 is

σ̂2 = (T − 1)−1SSwg(t).

The generalized log likelihood ratio of the measure Pt,δ,σ for the model with

change-points at t versus the measure Pσ of the null model is

ℓ(t) = log
maxδ,σ dPt,δ,σ

maxσ dPσ
=

T − 1

2
log

(
1 +

SSbg

SSwg

)
. (3.26)
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As before, take τ̂ = argmax t ℓ(t). Then the appropriately modified BIC is

given by (3.11), with the form (3.26) for ℓ(t), and with the term involving
∑

i δ̂
2
i

replaced by
∑

i δ̂
2
i /σ̂

2. A sketch of the derivation of this result is given in the

online Supplementary Material.

4. Simulations

We have conducted simulations to study (i) the effect of the choice of prior

distribution for δ and (ii) the effect of the number of change-points.

In the first simulation we compared BIC1 and BIC2 from Proposition 1 under

a g-prior for δ and under the independent prior. In both cases both procedures

gave very similar results, which suggests that the nominal dependence on the prior

has little impact on the conclusion. Details are given in the online Supplementary

Material.

In the second simulation we compared BIC1 with the version of BIC at (1.2)

when m is small and when m is large. In both cases the approximation (3.11)

achieved more sensitivity when the signal was weak and higher specificity when

the signal was strong. We also compared the case of unknown variance with the

case where the variance is assumed known. The results are virtually the same.

Details are again available online.

5. Analysis of Multiple Sequences

We now consider models for change-points that are shared across multiple

sequences. First, we consider an extension of (1.1) to the multi-sequence case.

As an additional example of the BIC method, we consider a model in which

the sequences need to return to a “baseline state” after every excursion into a

changed state.

Since the two approximations derived from Proposition 3.1 are similar, both

in form and in performance, we show extensions of only the first case (g-prior).

5.1. Multiple sequence mixture model

As before let Mm be the model where there are m change-points. For each

i = 1, . . . ,m, let Ji be the carriers of the ith change-point, defined as the subset

of sequences that have a change in mean at τi + 1. For j ∈ Ji, let δij be the

change in mean of sample j. The segment means, change-points, and carrier sets

J = (J1, . . . , Jm) are all unknown and must be estimated from the data. The

dimension of δ in the model is equal to

M =

m∑
i=1

|Ji|. (5.1)
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The set of models under consideration is now

M = {(m,J1, . . . , Jm) : m = 0, 1, 2, . . . ; Ji ∈ {0, 1}N , i = 1, . . . ,m}

and, since its cardinality can be very large, the choice of prior probabilities is

potentially important. For a simple prior on J , we assume that within each

interval, each sample becomes a carrier independently of the other samples with

probability π. Let P (J) = Pπ(J) = π|J |(1 − π)(N−|J |). The contribution to the

log likelihood of the m carriers J1, . . . , Jm is

m∑
i=1

logP (Ji) =

m∑
i=1

[|Ji| log π + (N − |Ji|) log(1− π)]

=M log π + (Nm−M) log(1− π).

The analysis can be easily adapted to the case where each interval is assigned a

different carrier probability πi. An alternative that seems to have some advan-

tages when we are confident that the proportion of carriers of each individual

change is not too large is the Poisson prior Pπ(J) = π|J | exp(−Nπ).

For each i = 1, . . . ,m, and j ∈ Ji, define

sij = min{k > i : j ∈ Jk},

that is, tsij is the last time after the ith change-point before the j-th sample

changes again. For each i = 1, . . . ,m, j ∈ Ji, and t ∈ D, define

Xi,j(t) =
tiStsij ,j

tsij
− Sti,j

and

δi,j = µi,j − µi−1,j .

We introduce the mapping

ζ(i, j) =
i−1∑
l=1

|Jl|+
j∑

l=1

I{l ∈ Ji}, for j ∈ Ji; i = 1, . . . ,m.

Let X and δ be vectors of length M , with

Xk = Xζ−1(k), δk = δζ−1(k), k = 1, . . . ,M. (5.2)

The covariance matrix of X, Σ(t), now has values

Σζ(i,j),ζ(i′,j)(t) =

{
ti(1− ti/ti′), 1 ≤ i < i′ ≤ m; j ∈ Ji ∩ Ji′ ,

0, otherwise.
(5.3)
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The log-likelihood ratios ℓ(δ, t) and ℓ(t) for this new model have the same form as

(3.2) and (3.3), with the new definitions for X(t) and Σ(t). As before, we make

the uniform prior assumption for τ , and a hierarchical Gaussian prior assumption

for δ. Let Mm,J denote the model with m change-points and carrier sets J , and

M0 denote the model with no change-points. It is not difficult to generalize (3.11)

to yield the approximation (for the g-prior for δ)

log
P (Mm,J |y)
P (M0|y)

= BICπ
1 (m,J) + op(m), (5.4)

where

BICπ
1 (m,J) = ℓ(τ̂ )− 1

2
M{log [2ℓ(τ̂ )/M ]}+ − M

2
− log |D(m,T )|

−m(κ1 − κ2)−
m∑
i=1

log

∑
j∈Ji

δ̂2i,j

+
m∑
i=1

logPπ(Ji). (5.5)

An outline of the derivation of (5.4)-(5.5) is given in the Appendix.

Since the carrier probability π is not known a priori, we estimate it empiri-

cally by

π̂ = π̂(m,J) = argmax
π

BICπ
1 (m,J) =

M

Nm
.

If, instead of a global value, we assigned to each change-point τi its own carrier

probability πi, the last term of (5.5) would be replaced by
∑m

i=1 logPπi(Ji),

where the empirical estimate of πi would be π̂i = |Ji|/N. For the Poisson prior,

the maximized term would be |J | log(M/Nm) − |J |. Substituting the empirical

estimate π̂ for π in (5.5), we estimate J,m by

(m̂, Ĵ) = argmax
m,J

BIC
π̂(m,J)
1 (m,J).

Under this mixture model, the BIC criterion (5.5) compares models by weighing

the total gain in log-likelihood against penalties incurred by the new δ and τ

parameters, as well as by the uncertainty regarding which new δ parameters to

introduce.

Given m, finding the optimal Ĵ requires that we search 2mN models. Since

this is not feasible in practice if either m or N is moderately large, we designed

a greedy approach that seems to work well; it is described in Supplementary

Methods.

5.2. Baseline model

The baseline model is a slight variation that can be useful when the intervals

of changed mean values are relatively few and short within a largely stable set of
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sequences, and between intervals of change the mean level reverts to a “baseline.”

With a slight change in notation, we take the intervals of changed mean values

to be {(τi,1, τi,2] : i = 1, . . . ,m}, where for t = τi,1 + 1, . . . , τi,2,

yt,j ∼ N(µ0,j + δi,j , σ
2
j ) if j ∈ Ji ⊆ {1, . . . , N}.

Otherwise, yt,j ∼ N(µ0,j , σ
2
j ). In this model the process is assumed to return

to the baseline after visiting a changed state. For simplicity, we assume that

the baseline mean values {µ0,j : j = 1, . . . , N} are all 0. Within every changed

interval, we allow each carrier to have its own mean value.

The log-likelihood ratio function ℓ(t, δ) for this model is the same as (3.2),

but with X(t) changed to

Xi,j(t) = Sti,2,j − Sti,1,j , i = 1, . . . ,m; j ∈ Ji, (5.6)

and Σ(t) = Cov[X(t)] adjusted appropriately. Then X and δ can be vectorized

as in (5.2) with the same definition of the function ζ. The estimates for δ are

δ̂i,j = Xi,j(t)/(ti,2 − ti,1), i = 1, . . . ,m; j ∈ Ji. (5.7)

As before, let τ follow a uniform prior over Dm and let δ follow the mixture of

Gaussians prior. Then, the approximation for the log of the Bayes factor replaces

(5.5) by

BICπ
1 (m,J) = ℓ(τ̂ )− 1

2
M{log [2ℓ(τ̂ )/M ]}+ − M

2
− log |D(2m,T )|

−2m(κ1 − κ2)− 2
m∑
i=1

log[
∑
j∈Ji

δ̂2i,j ] +
m∑
i=1

logPπ(Ji). (5.8)

A brief outline of the derivation is given in the Appendix. Comparing (5.8) to

(5.5), the only difference is that m is replaced by 2m in the penalty for τ ,

− log |D(2m,T )| − 2m(κ1 − κ2)− 2
m∑
i=1

log[
∑
j∈Ji

δ̂2i,j ].

The reason is that in the baseline model m is the number of changed intervals,

and there are 2m change-points. Note that there is still only one jump parameter

per carrier per interval, and thus the penalty for δ remains unchanged.

6. Multi-sequence Simulation Study

We call our method MSCBS-MBIC for Multi-sample CBS with Modified

BIC model selection. The supplementary materials contains more details on the
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Figure 2. Examples of simulated multi-sequence data sets. The uppermost
plot shows the signal matrix with no added noise. The center and bottom
plots show the simulation data sets obtained by adding noise with standard
deviations 0.2 and 0.4, respectively.

implementation of this method. We first examine the accuracy of the MSCBS-

MBIC using simulations. Instead of simulating data from scratch, for more ob-

jectivity we used a segmented version of the experimental data described below

in Section 7.2 to obtain a matrix of signals. Then, we perturbed that matrix by

adding independent Gaussian noise, with varying intensity, to obtain simulated

data with varying levels of difficulty. Figure 2 shows the signal matrix and sim-

ulated data obtained by adding to the signal matrix independent Gaussian noise

with standard deviations 0.2 and 0.4, respectively. The error standard deviation

for actual DNA copy number data is typically between 0.1 and 0.3. We exper-

imented with noise standard deviations from 0.05 to 0.4. At 0.05, almost all of

the change-points (and carriers) are visibly obvious, whereas we see from Figure

2 that at 0.4 only the strongest signals can be visually identified.

We are interested in the accuracy of both the detection of change-points and
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Figure 3. Accuracy of change-point detection and carrier identification on
simulated multi-sequence simulation data. The top left and right plots show,
respectively, the number of false positives and the number of true positives
among the detected change-points. The bottom left and right plots show,
respectively, the FDR and power of carrier identification.

the identification of carriers. The signal matrix contains m = 10 change-points

shown as inverted black triangles in the top plot of Figure 2. For estimated

change-points t = (t1, . . . , tm̂), we let τ̂i = ti∗ , where i∗ = argmin1≤j≤m̂|tj − τi|.
For each i, the true change-point τi was considered detected if |τi − τ̂i| ≤ h.

We used a threshold of h = 5 because we found the estimation of change-point

boundaries to be fairly accurate for both methods, and usually within 5 of the

true change-point. Once we have a mapping between the estimated and true

change-points, we have an estimated carrier set Ĵi for the true carrier set Ji of

every change-point i = 1, . . . ,m. We can then define true and false positives for

change-point detection and carrier identification following standard definitions.

The only comparable method for simultaneous change-point estimation for

data of this size and complexity is our previous algorithm (acronym MSCBS,
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Zhang et al. (2010)), which uses a recursive circular binary segmentation ap-

proach with p-value based stopping criterion and thresholding-based carrier iden-

tification. That method relies on, and is quite sensitive to, several user specified

parameters: the p-value threshold for stopping the recursion and thresholds for

the absolute difference in estimated mean values and related χ2 test statistics for

calling the carriers. Thus, we evaluated the accuracy of MSCBS-MBIC, which is

almost hands free, to MSCBS for different threshold values.

Figure 3 shows the results of the simulations. For change-point detection,

results for MSCBS-MBIC and MSCBS with p-value stopping criterion at thresh-

olds 0.01 and 0.0001 are shown. We see that when the noise variance is low

or moderate (between 0.05 and 0.25), the p-value stopping criterion often over-

segments, whereas the modified BIC criterion is able to estimate exactly the

number of change-points and produces no false positives. As a trade-off, when

the error variance is relatively large (at 0.25-0.35), BIC incurs a slight loss in

power. For estimation of the carrier set, results for the MBIC and two different

thresholds for the absolute difference in estimated mean values (|δ̂ij | > 0.05 and

|δ̂ij | > 0.1) are shown. The trend is the same: the modified BIC criterion sig-

nificantly reduces the number of false positives with only a slight loss of power

when the data are noisy.

7. Cross-sample Summary of DNA Copy Number Data

7.1. Background of application

The DNA copy number of a genomic location is defined as the number of

copies of the DNA in that location within the genome of the sample. Advances in

microarray and high throughput sequencing technologies within the last decade

have enabled the genome-wide fine scale profiling of DNA copy number in high

throughput experiments (Pinkel et al. (1988); Pollack et al. (1999); Snijders et

al. (2001); Bignell et al. (2004); Peiffer et al. (2006)), leading to systematic stud-

ies aimed at using copy number polymorphisms to track distant relationships in

population genetics and at understanding the possible role of DNA copy number

changes in human disease. For each biological sample, these experiments produce

a sequence of intensity measurements for probes that can be mapped to unique

locations along the chromosomes. The intensities quantify the average copy num-

ber of the corresponding probe’s target DNA over the cells in the sample, which

can then be compared to that from a control sample. In our model, yit is the

normalized intensity for the t-th probe in the i-th sample. See Bengtsson et al.

(2008), Peiffer et al. (2006), and Zhang et al. (2010) for normalization methods

involved in the pre-processing of raw DNA copy number data.

Changes in DNA copy number can be either inherited or somatic. Inherited

changes, often called copy number variants (CNV), comprise a large category
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of genetic polymorphism in the human population. Carriers of a given CNV

in a population often share the same change-points in their measured intensity

profiles, presumably because they are carrying a mutation that occurred in the

ancestral history of their DNA. Many inherited CNV are short and spaced far

apart, so the base-line model described in Section 5.2 is appropriate. However,

some inherited CNV reside in highly mutable regions of the genome, e.g., regions

containing segmental duplications (Sharp et al. (2005)). In these cases different

breakpoints are often observed among carriers of CNV in the region. In Section

7.2 we analyze one such complex region, that contains different overlapping or

nested copy number variants. Other methods have been proposed for multisample

segmentation of copy number data (Shah et al. (2007); Lipson et al. (2006)), but

unlike our methods they do not allow nested changes or variants that change in

opposite directions (i.e., simultaneous gains and deletions) across the cohort.

We also analyze a region from a set of 44 pediatric leukemia samples studied

in Schiffman et al. (2009). In tumor samples, most copy number changes are due

to somatic mutation events that occur during the growth of the tumor. Since

copy number aberrations from different biological samples are due to different

somatic mutations, we do not expect a priori to find shared breakpoints across

samples. However, there is empirical evidence that copy number aberrations

occur at unevenly distributed “hot spots,” where they often re-use the same

breakpoint junctions (Korbel et al. (2007)). In the analysis of tumor samples,

it is of interest to find common deleted or amplified regions across samples, as

these regions may harbor genes related to the growth of the tumor. Most of

the existing approaches for cross-sample modeling of tumors focus on finding

significant “overlaps” between samples after segmentation (Newton et al. (1998);

Newton and Lee (2000); Diskin et al. (2006); Beroukhim et al. (2007); Guttman

et al. (2007); Rouveirol et al. (2006)).

Thus, in the analysis of both inherited and somatic copy number changes,

it is useful to obtain a sparse cross-sample summary of the data as a dimension

reduction device for downstream analyses.

7.2. Complex inherited structural variation on chromosome 22

As a first example, we analyze the region on cytoband 11 on the q-arm of

chromosome 22. Although small, this region makes a good test case because of its

complexity. As documented in the Database of Genomic Variants by Iafrate et

al. (2004), the region harbors nested deletions with varying break-points between

individuals in the population. Our data come from a set of 62 Illumina 550K

Beadchips described in Zhang et al. (2010). We focus on a 2,000 marker segment

of the data covering the region of interest, shown in the top panel of Figure 4.
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Figure 4. Region of chromosome 22 containing a complex structural varia-
tion.

The MSCBS-MBIC algorithm described above was applied to yield the summary

shown in the bottom panel of Figure 4.

The segmentation in Figure 4 captures all of the obvious variant regions,

with no obvious false positives, as all of the break-points match records in the

database of genomic variants.

To assess the accuracy in the identification of carriers, we use the method

described in Zhang et al. (2010). The 62 samples represent 10 parent-parent-child

trios and 16 pairs of technical replicates. As a result we can make comparisons

within nuclear families and between technical replicates to assess the concordance

of carriers. A break-point in one of the replicate pairs is counted as concordant

if it is shared by the other sample in the pair. Similarly, a break-point in a child

is counted as concordant if it is carried by one or both of the child’s parents.

Thus, we can tally the number of concordant calls among the total number of

calls made in the child and replicate samples; see Zhang et al. (2010) for more

details. Out of the 153 changes in mean identified over all of the samples, 130
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Figure 5. Chromosome 9p in 44 Leukemia samples.

(85%) are concordant. These 153 mean shifts are distributed over 10 change-

points. Thus, on average, the carrier proportion at each change-point is 8%. In

comparison, the segmentation given in Zhang et al. (2010), which relies on user

selected median and p-value thresholds to identify carriers, contains 764 mean

shifts distributed over 17 change-points. At most of the change-points, over half

of the samples were labeled as carriers. Out of these 764 mean shifts, 533 (70%)

are concordant. Hence in comparison with our earlier method, our suggested

BIC increases accuracy at the cost of detecting far fewer variant regions.

7.3. Somatic aberrations in chromosome 9p in leukemia

As a second example, we consider the chromosome 9p region in 44 pediatric

leukemia samples, that were analyzed using Molecular Inversion Probe technol-

ogy in Schiffman et al. (2009). Figure 5 shows this region, which was covered by
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276 probes in the assay. It is visually obvious that this region contains overlap-

ping deletions, and in some samples there seems to be a sub-region of homozy-

gous deletion nested within a larger hemizygous deletion. Signatures such as

this, where multiple samples carry deletions that overlap a small genomic region,

often point to key driver genes in the overlapped region. We see that MSCBS-

MBIC reconstructs this region quite well, catching both the hemizygous deletion

and the nested homozygous deletion. The homozygous deletion centering on

probe number 140 encompasses 15,027 bp in length and maps to chr9:21,962,445-

21,977,472 (NCBI Build 35.1). This region belongs to the CDKN2A locus, which

encodes a tumor suppressor gene. The clinical significance of CDKN2A deletion

in childhood leukemia has been reported previously (Okuda (1995), Heyman et

al. (1996)) and its detection in multiple studies of childhood leukemia argues to

its importance. Many of the hemizygous and homozygous deletions of CDKN2A

found in these data have been validated by RT-PCR. See Schiffman et al. (2009)

for a complete analysis of these data, including downstream analyses involving

disease subtype and age of onset.

8. Discussion

The original BIC method of Schwarz (1978) has both a philosophical aspect

and a technical calculation. In the approximation to the (log) posterior proba-

bility suggested by Schwarz, terms that depend on the data dominate terms that

depend on the prior, and thus the latter are ignored in the BIC. This makes the

BIC attractive from both frequentist and Bayesian points of views. The method

has come to be viewed as a penalized likelihood method with a particular penalty

function. This viewpoint suggests that the BIC might be applied to a wider range

of problems, which may not satisfy the original assumptions of Schwarz, with the

possibility that these applications will give disappointing or misleading results.

In Zhang and Siegmund (2007) we observed that Schwarz’s assumptions are

not satisfied for change-point models; and we calculated an appropriate BIC

criterion while keeping the dimension of the model bounded as the number of

observations increased. In this paper we have derived a BIC criterion for high-

dimensional change point models that may also involve multiple sequences. In

this new setting the role of the prior cannot be neglected entirely, since a large

model space means that some models inevitably have small prior probability.

However, we showed that some features of the prior can still be neglected, and

some prior parameters can be estimated by empirical Bayes methods.

In the BIC for high-dimensional, multi-sequence change point models, many

terms can be understood as penalties associated with certain parameters. This

viewpoint is helpful for interpreting the criterion. It is important to remember
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that they are derived from the posterior model probability and thus are not user-
tunable regularization terms as appear in ad hoc penalties, except to the limited
extent that the penalties vary with the prior distribution used.

In Zhang et al. (2010) and Siegmund, Yakir, and Zhang (2011), we treated
multi-sample segmentation as a hypothesis testing problem, and proposed p-value
approximations which can also be used to determine the number of change-points
in the data. In those papers we focused on genome-wide scans for inherited CNVs,
where almost all of the data are null. In this case, concepts of “null distribution”
and “false positive rate” are useful. However, the two examples we analyzed in
Section 7 involve complex, nested signals that make up a large proportion of the
entire data set. In this case, a global false positive rate is difficult to interpret,
and the problem falls more naturally into an estimation framework.

In a direct comparison with p-value based stopping rules (Olshen et al.
(2004); Zhang et al. (2010); Siegmund, Yakir, and Zhang (2011)), the modified
BIC method is virtually always more conservative in the number of change-points
detected. Whether this is a virtue may depend on the goals of a specific study.
It is worth noting, however, that as originally observed by Olshen et al. (2004),
copy number data tend to have “local trends,” which are oscilations that even
elaborate pre-processing fails to remove completely. These local trends show up
in the data as intervals of change in level, although biologically they are not
intervals of CNV.

In this paper, we focus on detecting changes in mean with independent Gaus-
sian errors. This simple set up allows us to focus on the fundamental issues in
high-dimensional change-point models and in multi-sequence change-point de-
tection. The framework we develop can be generalized to more complicated
change-point models, and other types multi-sequence signal detection schemes.

Appendix

A.1. Derivation of (3.20) and (3.21)

Let U(t) = Σ(t)−1/2X(t), so U(t) is an m-dimensional random process in-
dexed by D with elements

Ui(t) =
tiSti+1/ti+1 − Sti

[ti(1− ti/ti+1)]1/2
, i = 1, . . . ,m. (A.1)

Let Z(r) = U(τ )′[U(τ + rT )− U(τ )]. Conditional on U(τ ), Z(r) is a Gaussian
process with mean

m(r) = −U(τ )′[I −B(r,0)]U(τ ), rT ∈ D (A.2)

and covariance

σ(r, s) = U(τ )′[B(r, s)−B(r,0)B(s,0)′]U(τ ), rT, sT ∈ D, (A.3)
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where B(r, s) = Cov[U(τ + Tr), U(τ + T s)] is an m×m covariance matrix. Let

ρ = τ/T . To describe B(r, s), for notational simplicity we define ai = ρi + ri,

bj = ρj + sj . The entries Bi,j(r, s) are 0 if (ai, ai+1) ∩ (bj , bj+1) = ∅, otherwise
they take values

(ai ∧ bj)

(
1− ai ∨ bj

ai+1 ∧ bj+1

)[
aibj

(
1− ai

ai+1

)(
1− bj

bj+1

)]−1/2

.

Let

ϵ = min
i

(ρi+1 − ρi)

2
. (A.4)

We can verify that B(r, s) satisfies the following properties:

(i) For r, s satisfying maxi ri < ϵ, maxi si < ϵ, Bi,j(r, s) = 0 for all |i− j| > 1.

(ii) For r, s satisfying mini ri < ϵ, mini si < ϵ, only one of the entries Bi−1,i(r, s)

and Bi,i−1(r, s) can be non-zero, with value

ai(1−
bi+1

ai+1
)[aibi+1(1−

ai
ai+1

)(1− bi+1

bi+2
)]−1/2 = O(ϵ).

(iii)At r = 0, the left- and right- partial derivatives of the entries of B(r, 0) exist,

are equal in absolute value, but have opposite signs.

We approximate the terms in B(r, s) and B(r, 0) by their Taylor series ex-

pansion at r = s = 0. Let the absolute value of the left- and right- partial

derivatives of Bj,k(r,0) with respect to ri be Mi,j,k, and let M be the array

{Mi,j,k : i, j, k = 1, . . .m}. It helps to think of M as a “matrix of vectors” where

each element is the absolute directional gradient of the corresponding element of

B with respect to r, evaluated at r = 0. We denote by M i the i-th “slice” of M ,

M i = {Mi,j,k : j, k = 1, . . . ,m}.

We use the following notations for the two types of multiplication of M by a

vector,

(Mv)i,j =
m∑
k=1

Mj,i,kvk, for v ∈ ℜm,

(M · u)i,j =
m∑
k=1

Mk,i,juk, for u ∈ ℜm.

It is worth noting a useful property involving these two types of multiplication:

(M · u)v = (Mv) · u. (A.5)
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Now, we can express B(r, 0) and B(r, s) in their Taylor expansions as

B(r,0) = I +M · r + o(∥r∥),

B(r, s) = I +M · r +M · s+ o(∥r∥+ ∥s∥).

Substituting the above in (A.2) and (A.3) and using property (A.5), we have the

following first order approximations to the variance and covariance functions of

the process Z(r) conditioned on U(τ ).

m(r) = −U(τ )′[M · r]U(τ )[1 + E1(r)]

= −C(τ )′r[1 + E1(r)], (A.6)

σ(r, r) = 2U(τ )′[M · r]U(τ )[1 + E2(r)]

= 2C(τ )′(t− τ )[1 + E2(r)], (A.7)

σ(r, s) = 2U(τ )′[M · (r − s)]U(τ )[1 + E3(r, s)]

= 2C(τ )′(r − s)[1 + E3(r ∧ s)], (A.8)

where C(τ ) is an m dimensional vector with entries

Ci(τ ) = [U(τ )′MU(τ )]i

= U(τ )′M iU(τ ), i = 1, . . . ,m,

and E1(r), E2(r), and E3(r) are random variables that satisfy

lim
∥r∥→0

Ei(r) = 0 i = 1, 2, 3.

Using properties (i) and (ii) of B(r, s), we see that M i(j, k) is only non-zero

in the two by two sub-matrix i− 1 ≤ j, k ≤ i, with values

M i(i, i) = T−1[2τi(1−
τi
τi+1

)]−1, (A.9)

M i(i− 1, i− 1) = T−1(
τi−1

τi
)2[2τi−1(1−

τi−1

τi
)]−1 (A.10)

and, between M i(i− 1, i) and M i(i, i− 1), only one can be non-zero with value

T−1(
τi−1

τi
)[τi−1τi(1−

τi−1

τi
)(1− τi

τi+1
)]−1/2. (A.11)

This yields

Ci =
δ̂2i
2
, i = 1, . . . ,m, (A.12)
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where δ̂i is defined in (3.8) and (3.9). Thus, for ϵ satisfying (A.4), within a small

ϵ neighborhood of 0 the process Z(r), conditioned on U(τ ), has the same mean

and covariance functions as the process

{δ̂iWi,ri − δ̂2i
|ri|
2

, i = 1, . . . ,m}, (A.13)

where for i = 1, . . . ,m,

{Wi,t : −∞ < t < ∞} (A.14)

are independent Brownian motions.

We look at continuous versions of the cumulative sums process

{Si : i = 1, . . . , T}

which, for large T , can be embedded into a Brownian motion on the positive real

line. Let

Eτ ,t =
[U(τ )− U(t)]

[2U(τ )]
.

Let {cT } be a sequence satisfying cT → 0, TcT → ∞, and

lim
T→∞

mini(τi+1 − τi)

TcT
> 1. (A.15)

Note that, since U(τ ) = O(T ), for ∥t − τ∥ < TcT , ∥Eτ ,t∥/cT = O(1). Then,

using the distribution of (A.13) as an approximation to the distribution of Z(r),

we have∫
∥t−τ∥<TcT

eU(τ )′U(τ )−U(t)′U(t)dt

=

∫
∥t−τ∥<TcT

eU(τ )′[U(t)−U(τ )](1+Eτ ,t)dt

=d (1 + e1)

[
m∏
i=1

δ̂2i

]∫
∥r∥<cT

exp

[
m∑
i=1

(Wi,ri −
|ri|
2

)

]
dr1 . . . drm, (A.16)

where e1 is O(cT ). Since, as ∥t− τ∥ → ∞,

U(τ )′U(τ )− U(t)′U(t) = Op(∥t− τ∥)

and

P [U(τ )′U(τ )− U(t)′U(t) < 0] → 1,

we have, for the sequence cT defined above,

lim
T→∞

∑
∥t−τ∥>TcT

eU(τ )′U(τ )−U(t)′U(t) = 0. (A.17)



1534 NANCY R. ZHANG AND DAVID O. SIEGMUND

Combining (A.16) and (A.17) gives

log

[∫
D(m,T )

eU(τ )′U(τ )−U(t)′U(t)dt

]
=d

m∑
i=1

log δ̂2i +

m∑
i=1

f(Wi) + op(1), (A.18)

where

f(Wi) = log

(∫ ∞

−∞
eWi,t−|t|/2dt

)
.

By the Law of Large Numbers,

m∑
i=1

f(Wi) = mκ2 + 0p(m). (A.19)

This proves (3.21). For the proof of (3.20), observe that, with probability con-

verging to 1,

1

2
max
t∈D

[U(τ )′U(τ )− U(t)′U(t)] =
1

2
max

∥t−τ∥<TcT
[U(τ )′U(τ )− U(t)′U(t)]

= max
∥t−τ∥<TcT

U(τ )′[U(τ )− U(t)][1 + Et,τ ]

=d

m∑
i=1

max
ri

(δ̂iWi,ri − δ̂i
2 |ri|
2

) + op(1)

=
m∑
i=1

max
ri

(Wi,ri −
|ri|
2

) + op(1), (A.20)

so (3.20) follows by the Law of Large Numbers.

Remarks about (A.18)–(A.20). Let Y1, Y2, . . . be independent standard normal

and put Vn = Y1+. . .+Yn for n = 0, 1, . . . . In (A.18) and (A.20) we have simplified

some computations by introducing functionals of Brownian motion in the place

of functionals of discrete time random walks. The connecting link is the weak

convergence as δ → 0 of

log
{∑

n

exp[δVn − δ2
|n|
2
]δ2
}

(A.21)

and

max
n

[δVn − δ2
|n|
2
] (A.22)

to

log
{∫ ∞

−∞
exp[Wt −

|t|
2
]dt
}

(A.23)
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and

max
t

[Wt −
|t|
2
], (A.24)

respectively. Ultimately we are interested in the expectations of these quantities,

which are easily computed.

Simulations, which could be used in place of the approximations based on

Brownian motion, indicate that the approximation of the expectation of (A.21)

by that of (A.23) is very accurate for small δ and reasonably accurate for |δ| less
than about 2.75, where the relative error reaches 10%. Standard calculations

show that the expected value of (A.24) is 3/2. The approximation of the expec-

tation of (A.22) by that of (A.24) can be substantially improved for δ different

from 0, by appealing to Siegmund (1979), which suggests using 2ν(δ)− ν2(δ)/2,

where the function ν is easily evaluated numerically and, for small δ, is approxi-

mately exp(−0.583δ) Siegmund (1985). Even with this improved approximation,

the relative error reaches 10% at about δ = 1.4, where the true value is about

0.71.

A.2. Derivation of results for multi-sequence models

The derivations of (5.4) and (5.8) for the multi-sequence models follow the

same logic as for a single sequence. Here, we outline the places where the deriva-

tions differ. For each model, let M be the total number of shifts in mean. In

the unanimous change-point model M = mN , and in the mixture models, M is

defined in (5.1). For all three models, the expansion of the Bayes factor follows

steps (3.13)-(3.17), except with m replaced by M in all places. In the terms A(τ )

and B(τ ), the definition of the process X(t) changes to (5.2) or (5.6) under each

appropriate model.

In the proofs of (3.20) and (3.21), the definitions of the processes U(t) and

Z(r) do not need to be changed, as long as the definition for X(t) is adjusted

appropriately. We can show using the same, albeit more technically cumber-

some steps, that Z(r), conditioned on U(τ ), has the same mean and covariance

functions as

{∆iWi,ri −∆2
i

|ri|
2

, i = 1, . . . ,m}, (A.25)

where

∆2
i =

∑
j∈Ji

δ̂2i,j . (A.26)

The proof of (3.20) then follows steps (A.16)-(A.18), with δ̂i replaced by ∆i. For

the proof of (3.21), note that for each i, maxri(∆iWi,ri −∆2
i |ri|/2) has the same

distribution as maxri(Wi,ri − |ri|/2), and so (A.20) does not change.
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