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Abstract: The partial area under the ROC curve (partial AUC) summarizes the

accuracy of a diagnostic or screening test over a relevant region of the ROC curve

and represents a useful tool for the evaluation and comparison of tests. In this

paper, we propose a jackknife empirical likelihood method for making inference on

partial AUCs. Following the idea in Jing, Yuan, and Zhou (2009), we combine the

empirical likelihood function with suitable jackknife pseudo-values obtained from a

nonparametric estimator of the normalized partial AUC. This leads to a jackknife

empirical likelihood function for normalized partial AUCs, for which a Wilks-type

result is obtained. Such a pseudo-likelihood can be used, in a standard way, to

construct confidence intervals or perform tests of hypotheses. We also give some

simulation results that indicate that the jackknife empirical likelihood based confi-

dence intervals compare favorably with alternatives in terms of coverage probability.

The proposed method is extended to inference on the difference between two partial

AUCs. Finally, an application to the Wisconsin Breast Cancer Data is discussed.

Key words and phrases: Diagnostic tests, jackknife pseudo-values, nonparametric

statistical methods, pseudo-likelihoods.

1. Introduction

The evaluation of the ability of a diagnostic or a screening test to separate

diseased from non-diseased subjects is a crucial issue in modern medicine. In

fact, before applying a test in a clinical setting, rigorous statistical assessment of

its performance in discriminating the diseased state from the non-diseased state

is required.

The accuracy of a test, at a chosen threshold level c, can be evaluated by

its sensitivity and specificity, defined as the probabilities that the test correctly

identifies the diseased and non-diseased subjects, respectively. Let Y and X

denote the results of a continuous-scale diagnostic (or screening) test for a dis-

eased and a non-diseased subject, respectively. Let G and F be the cumulative

distribution functions of Y and X, respectively, and assume that a value of the

test greater than the threshold c indicate a positive test result, i.e., presence of

disease. Then the sensitivity, or true positive rate, at the threshold c, TPR(c),
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is defined as Pr{Y > c} = 1 − G(c). The corresponding specificity, or 1 minus

the false positive rate, 1−FPR(c), is 1− Pr{X > c} = F (c).

Receiver Operating Characteristic (ROC) analysis is a commonly used method-

ology for representing the trade-offs between FPR and TPR in a two-group classi-

fication task. The ROC curve plots {FPR(c), TPR(c)} for all possible thresholds

c. We can also write the ROC curve as a function of p = 1 − F (c) as follows:

ROC(p) = 1−G(S−1(p)), where S−1(·) denotes the inverse function of 1−F (·).
An uninformative test is then represented by a straight line from the (0, 0) vertex

to (1, 1), while a straight line from the (0, 1) vertex to (1, 1) indicates an ideally

performing test.

Typically, the best threshold is not known when a test is under evaluation,

and it may vary depending on the setting in which the test is implemented.

A commonly used summary measure that aggregates performance information

across a range of possible thresholds is the area under the ROC curve (AUC),

AUC =
∫ 1
0 ROC(t)dt. However, the AUC also summarizes the test performance

over values {FPR(c), TPR(c)} of no practical interest. For instance, when screen-

ing for a certain disease for which the subsequent confirmatory test and/or treat-

ments have large cost, the region of the curve corresponding to low false positive

rates is of primary interest. On the other hand, when testing for a serious disease,

it is critical to maintain a high TPR, because false negative test results may have

serious consequences. Hence, in this case, interest is in the region of the ROC

curve that corresponds to acceptable high TPRs.

A summary index for the ROC curve restricted to a relevant range of false

positive rates is the partial AUC, defined as

θ = θ(p1, p2) =

∫ p2

p1

ROC(t)dt,

where the interval (p1, p2) denotes the false positive rates of interest. For an

uninformative test, the partial AUC is (p2 + p1)(p2 − p1)/2, for a perfect test it

is θ(p1, p2) = p2 − p1. This suggests normalizing the partial area to provide an

index with maximum of 1:

τ = τ(p1, p2) =
θ(p1, p2)

p2 − p1
.

An analogous definition of the partial AUC corresponding to true positive rates

is straightforward, see, e.g. Dodd and Pepe (2003). In what follows we focus

on the partial AUC restricted to relevant FPR values. It is worth noting that

the techniques developed here can be carried over to restrictions on the range of

TPR values.

Methods for estimating and comparing partial AUCs are available, both in a

parametric approach (see, e.g., McClish (1989); Thompson and Zucchini (1989);
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Jiang, Metz, and Nishikawa (1996)) and in a nonparametric one (Dodd and

Pepe (2003); Wieand et al. (1989); Zhang et al. (2002); Liu, Schisterman, and

Wu (2005); He and Escobar (2008)). In particular, given the observations xi,

i = 1, . . . ,m, and yj , j = 1, . . . , n, the test values for m normal and n diseased

subjects, a simple nonparametric estimator of θ(p1, p2) is

θ̂ = θ̂(p1, p2) =
1

nm

m∑
i=1

n∑
j=1

I(yj > xi)I(q̂2 ≤ xi ≤ q̂1),

where I(·) denotes the indicator function and q̂2, q̂1 are the empirical counter-

parts of q2 = S−1(p2) and q1 = S−1(p1). This estimator, generated by the

consideration that

θ(p1, p2) =

∫ S−1(p1)

S−1(p2)
(1−G(y))dF (y) = Pr{Y > X, X ∈ (S−1(p2), S

−1(p1))},

is discussed in Zhang et al. (2002); Dodd and Pepe (2003); Liu, Schisterman,

and Wu (2005); He and Escobar (2008). It is proved to be asymptotically nor-

mal under suitable conditions. Moreover, various estimators of its variance are

proposed. In particular, He and Escobar (2008) derive a simple estimator of the

variance of θ̂, using the fact that θ̂ = (m∗/m)τ̂ . Here, m∗ =
∑m

i=1 I(q̂2 ≤ xi ≤ q̂1)

and

τ̂ =
1

m∗n

∑
xi∈[q̂2,q̂1]

n∑
j=1

I(yj > xi)

is the estimator of the normalized partial area τ . It follows that normal ap-

proximation can be used to obtain nonparametric confidence intervals for (or to

perform nonparametric hypotheses tests on) partial areas or normalized partial

areas, in a simple classical way.

However, it is well known that normal approximation based confidence inter-

vals have often low accuracy in samples with small to moderate sizes and that,

to overcome this drawback, methods based on such suitable transformations, as

the logit, or methods based on pseudo-likelihoods, are generally used. Methods

based on the empirical likelihood belong to the latter class.

The empirical likelihood function, first introduced by Owen (1988, 1990)

has found many applications. It is a nonparametric tool that allows one to

obtain pseudo-likelihoods in several contexts and, in particular, for parameters

that are determined by estimating equations. By an emulation of its parametric

counterpart, the empirical likelihood function is obtained by maximization of a

nonparametric likelihood supported on the data, subject to some constraints. In

most cases, those constraints are linear; then, the maximization problem is easily
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solved by using Lagrange multipliers. This leads to an explicit expression for the

empirical likelihood function and, hence, for (minus twice) the empirical log like-

lihood ratio, for which a Wilks-type theorem is generally proved. It follows that

the empirical likelihood can be used, in a standard way, to obtain nonparamet-

ric confidence regions or perform hypotheses tests (see Owen (2001)). However,

when the constraints in the underlying maximization problem are not linear,

significant computational difficulties arise that may diminish its attractiveness.

This happens, for example, when one tries to calculate the empirical likelihood

for parameters estimated by U -statistics (see Wood, Do, and Broom (1996)).

To overcome computational difficulties, Jing, Yuan, and Zhou (2009) recently

introduced the so-called jackknife empirical likelihood method, which works by

combining jackknife pseudo-values and empirical likelihood. The method is quite

simple to use in practice, allows one to obtain a family of pseudo-likelihoods for

which a Wilks-type theorem is established, and seems to be effective in handling

inference on parameters estimated by one and two-sample U -statistics. As an

application, Jing, Yuan, and Zhou (2009) consider inference on the AUC, and

simulation results seem to suggest that the jackknife empirical likelihood based

confidence intervals for the AUC compare favorably with intervals obtained by

alternative approaches. As well, Gong and Peng (2010) propose a smoothed

jackknife empirical likelihood technique to construct confidence intervals for the

ROC curve.

In this paper we extend the use of the jackknife empirical likelihood to in-

ference on partial AUCs. Following the idea in Jing, Yuan, and Zhou (2009), in

Section 2 we combine the empirical likelihood function with suitable jackknife

pseudo-values obtained from the estimator τ̂ . This leads to a jackknife empirical

likelihood function for normalized partial AUCs, for which a Wilks-type result

is obtained. In Section 3, this approach is extended to the comparison of two

normalized partial AUCs. The finite-sample accuracy of the confidence intervals

produced by the method is investigated by a simulation study in Section 4, where

a comparison with two alternative methods is also performed. An application to

data is presented in Section 5 and some final remarks are in Section 6.

2. Inference for a Single Partial AUC

Take F andG to be distribution functions with continuous densities. Let f be

the density of F and assume that f(F−1(1−p2)) > 0, f(F−1(p1)) > 0, and that f

is bounded in some neighborhood of F−1(1−p2) and F−1(p1). Moreover, assume

that m/(m+ n) converges to some positive and finite constant κ as N = m+ n

increases to +∞. Let 0 < τ0 < 1 be the true value of τ and let N∗ = m∗ + n.

Then, as N → +∞,
√
N∗(τ̂ − τ0) is asymptotically normal, with zero mean and

some asymptotic variance σ2 (see He and Escobar (2008), Appendix C).
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Starting from the estimator τ̂ , consider the jackknife pseudo-values

V ∗
h = N∗τ̂ − (N∗ − 1)τ̂−h, h = 1, . . . , N∗,

where τ̂−h denotes the estimate derived by deleting the hth observation in the

sample obtained by pooling all the diseased subjects and all those normal sub-

jects for which the test value x lies between q̂2 and q̂1. In what follows, when

convenient, we denote by τ̂−xk
the estimate derived after deleting a normal sub-

ject,

τ̂−xk
=

1

(m∗ − 1)n

∑
xi∈[q̂2,q̂1]

xi ̸=xk

n∑
j=1

I(yj > xi),

and by τ̂−yl the estimate derived after deleting a diseased subject,

τ̂−yl =
1

m∗(n− 1)

∑
xi∈[q̂2,q̂1]

n∑
j=1

j ̸=l

I(yj > xi).

Let A =
∑

xi∈[q̂2,q̂1]
∑n

j=1 I(yj > xi). It is easy to see that

τ̂−xk
=

A−
∑n

j=1 I(yj > xk)

(m∗ − 1)n
, τ̂−yl =

A−
∑

xi∈[q̂2,q̂1] I(yl > xi)

m∗(n− 1)
,

so that
∑n

l=1 τ̂−yl = A/m∗,
∑m∗

k=1 τ̂−xk
= A/n and (1/N∗)

∑N∗
h=1 τ̂−h = τ̂ .

Hence,

1

N∗

N∗∑
h=1

V ∗
h = τ̂ . (2.1)

Moreover, the jackknife variance

s2∗ =
1

N∗ − 1

N∗∑
h=1

(V ∗
h − τ̂)2 = (N∗ − 1)

N∗∑
h=1

(τ̂ − τ̂−h)
2

is a consistent estimator of the asymptotic variance of
√
N∗τ̂ , since it asymptot-

ically equals the estimator derived in He and Escobar (2008) (see, in particular,

Appendix B of the paper).

If the jackknife is performed on the sample obtained by pooling all the N =

n + m diseased and normal subjects, only some of the above given quantities

change. In particular, for the pseudo-values we have

Vh = Nτ̂ − (N − 1)τ̂−h, h = 1, . . . , N,
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and τ̂−xk
= τ̂ when deleting a normal subject for which xk /∈ [q̂2, q̂1]. Therefore,

we still have (1/N)
∑N

h=1 τ̂−h = τ̂ and

1

N

N∑
h=1

Vh = τ̂ . (2.2)

Moreover, since
∑N

h=1(τ̂ − τ̂−h)
2 =

∑N∗
h=1(τ̂ − τ̂−h)

2, the jackknife variance

s2 =
1

N − 1

N∑
h=1

(Vh − τ̂)2 = (N − 1)

N∑
h=1

(τ̂ − τ̂−h)
2 =

N − 1

N∗ − 1
s2∗

is a consistent estimator for the asymptotic variance of
√
Nτ̂ . Note that in both

jackknife schemes, the sample quantiles q̂1 and q̂2 are kept as fixed quantities,

i.e., they do not change with the jackknife samples. Therefore, strictly speaking,

these are not “genuine” jackknife schemes.

Equations (2.1) and (2.2) provide the estimating functions

N∗∑
h=1

(V ∗
h − τ), (2.3)

N∑
h=1

(Vh − τ), (2.4)

for inference about τ0, based on jackknife pseudo-values. Then, following the

idea in Jing, Yuan, and Zhou (2009), by combining (2.3) or (2.4) with Owen’s

empirical likelihood, we obtain a jackknife empirical likelihood function for τ that

can be used to construct confidence intervals or perform hypotheses tests.

To explain the method, in the following we refer to the estimating function

(2.4) for the jackknife scheme performed on N units. This scheme is more general

since it is useful also when the method is extended to the comparison of two

partial areas. However, the jackknife empirical likelihood for τ works also when

obtained from (2.3). See Remark 1 below.

Let

L(τ) = max
w1,...,wN

N∏
h=1

wh, subject to

N∑
h=1

wh = 1 and

N∑
h=1

(Vh − τ)wh = 0,

be the empirical likelihood function for τ based on (2.4). Here (w1, . . . , wN )

denotes a generic multinomial distribution on the pseudo-sample V1, . . . , VN . Let

V(1) = minh Vh and V(N) = maxh Vh. It is well known that L(τ) attains its

maximum N−N at τ = τ̂ . Moreover, when τ ∈ (V(1), V(N)), an explicit expression
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for L(τ) can be obtained via Lagrangian multipliers. More precisely, when τ ∈
(V(1), V(N)), we have

L(τ) = N−N
N∏

h=1

1

1 + λ(Vh − τ)
,

where the multiplier λ satisfies

1

N

N∑
h=1

Vh − τ

1 + λ(Vh − τ)
= 0.

Outside the interval bounded by V(1) and V(N) it is necessary to set L(τ) = 0. The

function l(τ) = −2 log{L(τ)/N−N}, that is (minus twice) the jackknife empirical

log likelihood ratio function, represents a pseudo-log likelihood ratio function for

inference about τ . It remains to check whether a Wilks-type theorem still holds.

Since τ̂ is not an ordinary two-sample U -statistic, Theorem 2 in Jing, Yuan,

and Zhou (2009) does not apply here. However, our Theorem 1 below gives

a theoretical justification to the jackknife empirical likelihood method. More

precisely, Theorem 1 shows that l(τ0)
d−→χ2

1. Therefore, for instance, the set

C = {τ : l(τ) ≤ cγ} is an approximate confidence interval for τ0, with nominal

coverage 1 − γ, if cγ is such that Pr{χ2
1 > cγ} = γ. Clearly, the corresponding

approximate confidence interval for θ0 can be readily obtained from C.

Theorem 1. Under the assumptions made at the beginning of the section, as

N → +∞,

(i) maxh=1,...,N |Vh| = Op(1);

(ii) Pr{V(1) < τ0} → 1 and Pr{V(N) > τ0} → 1;

(iii) l(τ0)
d−→χ2

1.

Proof. (i) Clearly, Vh = τ̂−h + N(τ̂ − τ̂−h). Thus |Vh| ≤ |τ̂−h| + N |τ̂ − τ̂−h|.
Moreover,

τ̂ − τ̂−h =
j/n− τ̂

m∗ − 1
for some suitable integer j such that 0 ≤ j ≤ n,

or τ̂ − τ̂−h = 0, if τ̂−h is obtained by deleting a normal subject. Alternatively,

τ̂ − τ̂−h =
j/m∗ − τ̂

n− 1
for some suitable integer j such that 0 ≤ j ≤ m∗,

if τ̂−h is obtained by deleting a diseased subject. It follows that

|τ̂ − τ̂−h| ≤ max{ 1

m∗ − 1
,

1

n− 1
}.
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Hence, we have maxh=1,...,N |Vh| = Op(1).

(ii) Let τ̂min
− and τ̂max

− denote, respectively, the smallest and the largest among

the τ̂−h’s values, with h = 1, . . . , N . Clearly, we have V(1) = Nτ̂ − (N − 1)τ̂max
−

and V(N) = Nτ̂ − (N − 1)τ̂min
− . Therefore,

V(1) − τ̂min
− =N(τ̂ − τ̂max

− ) + (τ̂max
− − τ̂min

− ) ≤ N(τ̂ − τ̂max
− ),

V(N) − τ̂max
− =N(τ̂ − τ̂min

− ) − (τ̂max
− − τ̂min

− ) ≥ N(τ̂ − τ̂min
− ),

where the equalities hold only if τ̂min
− = τ̂max

− = τ̂ , i.e., only if τ̂ = 0 or

τ̂ = 1. Since 0 < τ0 < 1 by assumption, we have that Pr{0 < τ̂ < 1} → 1

as N → +∞. It follows that V(1) < τ̂min
− and V(N) > τ̂max

− , with probability

tending to one as N → +∞. Let ε0 > 0 and β > 0 be fixed and suppose that

Pr{τ̂min
− < τ0 + ε0} → 1− β, as N → +∞. Then, for any 0 < ε ≤ ε0, one would

have limN→+∞ Pr{τ̂min
− ≥ τ0 + ε} ≥ β, so that limN→+∞ Pr{τ̂ ≥ τ0 + ε} ≥ β.

This contradicts the consistency of τ̂ . Hence, limN→+∞ Pr{τ̂min
− ≤ τ0} = 1, as

N → +∞. Analogously, it is possible to show that limN→+∞ Pr{τ̂max
− ≥ τ0} = 1.

(iii) It is easy to see that

1

N

N∑
h=1

(Vh − τ0)
2 =

s2(N − 1)

N
+Op(

1

N
).

Since s2(N−1)/N is a consistent estimator of the asymptotic variance of
√
N(τ̂−

τ0), the result follows by (i), (ii), and an application of Theorem 2.1 in Adimari

and Guolo (2010).

Remark 1. Starting from the relation V ∗
h = τ̂−h + N∗(τ̂ − τ̂−h), with h =

1, . . . , N∗, the proof of Theorem 1 can be easily adapted to show that the χ2
1

calibration is adequate even if the jackknife empirical likelihood for the partial

AUC is derived from the estimating function (2.3) and, hence, is based on the

“parsimonious” jackknife scheme performed only over N∗ units. In this case,

when V ∗
(1) < τ < V ∗

(N∗),

L(τ) = N
∗−N∗

N∗∏
h=1

1

1 + λ(V ∗
h − τ)

,

where λ satisfies

1

N

N∗∑
h=1

V ∗
h − τ

1 + λ(V ∗
h − τ)

= 0,

and l(τ) = −2 log{L(τ)/N∗−N∗}.
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3. Comparing Two Partial AUCs

The method described in Section 2 can be easily extended to the comparison
of two diagnostic or screening tests, when the comparison is requested in terms
of some relevant portion of the AUC and paired data are available.

Consider two continuous-scale tests, both performed on the same n diseased
and m non-diseased subjects. We use the superscripts a and b to distinguish the
two tests. Let Y a and Y b denote the results of the tests for a diseased subject
and Xa and Xb the results for a normal subject. In such an experimental setting,
for each of the N = n + m subjects two observations are available: yaj and ybj
for the diseased subject j, j = 1, . . . , n, and xai and xbi for the non-diseased
subject i, i = 1, . . . ,m. For the two tests, let τ̂a and τ̂ b be the estimates of
the normalized partial AUCs τa(p1, p2) and τ b(p1, p2), both referred to the same
range of false positive rates. Such estimates are derived from the observations
xa1, . . . , x

a
m, ya1 , . . . , y

a
n and xb1, . . . , x

b
m, yb1, . . . , y

b
n, respectively.

Let δ denote the difference between the normalized partial AUCs, that is
δ = τa − τ b. Such a difference can be estimated by

δ̂ = τ̂a − τ̂ b =
1

N

N∑
h=1

(V a
h − V b

h ), (3.1)

where the values V a
h and V b

h , h = 1, . . . , N , are the jackknife pseudo-values
derived from τ̂a and τ̂ b, respectively. If the distribution functions F a, F b, Ga,
Gb, and the densities fa and f b satisfy regularity conditions such as those given
at the beginning of Section 2 for the case of a single test, then

√
N(δ̂ − δ0)

is asymptotically normal, as N → +∞. Here, δ0 = τa0 − τ b0 denotes the true
parameter value, with 0 < τa0 < 1 and 0 < τ b0 < 1. Moreover, the asymptotic
variance of

√
N(δ̂ − δ0) is consistently estimated by

s2δ =
1

N − 1

N∑
h=1

(V a
h − V b

h − δ̂)2,

because

s2δ =
1

N − 1

N∑
h=1

(V a
h − τ̂a)2+

1

N − 1

N∑
h=1

(V b
h − τ̂ b)2− 2

N − 1

N∑
h=1

(V a
h − τ̂a)(V b

h − τ̂ b),

and (1/(N − 1))
∑N

h=1(V
a
h − τ̂a)(V b

h − τ̂ b) is a consistent estimator of the asymp-
totic covariance of τ̂a and τ̂ b (see also He and Escobar (2008)).

Observe that (3.1) provides an estimating function for inference on δ based
on the jackknife pseudo-values

N∑
h=1

(V a
h − V b

h − δ). (3.2)
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Then, by combining (3.2) with the empirical likelihood, we easily obtain a jack-

knife empirical likelihood function for the difference between two normalized

partial AUCs. Let Wh = V a
h − V b

h . As in Section 2, we have

L(δ) = N−N
N∏

h=1

1

1 + λ(Wh − δ)
,

where λ satisfies

1

N

N∑
h=1

Wh − δ

1 + λ(Wh − δ)
= 0

when W(1) < δ < W(N). Outside (W(1),W(N)), we have L(δ) = 0. Moreover,

a Wilks-type result can be proved for (minus twice) the jackknife empirical log

likelihood ratio function l(δ) = −2 log{L(δ)/N−N}.

Theorem 2. Under the assumptions made in this section, as N → +∞,

l(δ0)
d−→χ2

1.

Proof. Since |Wh| ≤ |V a
h |+ |V b

h |, by Theorem 1 (i) we have that

max
h=1,...,N

|Wh| = Op(1). (3.3)

On the other hand, Wh = N(τ̂a − τ̂ b)− (N − 1)(τ̂a−h − τ̂ b−h) = Nδ̂ − (N − 1)δ̂−h.

Thus, denoting by δ̂min
− and δ̂max

− the smallest and the largest among the δ̂−h’s

values, respectively, we have W(1) − δ̂min
− ≤ N(δ̂ − δ̂max

− ) and W(N) − δ̂max
− ≥

N(δ̂ − δ̂min
− ), where the equalities hold only if τ̂a = 0 or τ̂a = 1 and τ̂ b = 0 or

τ̂ b = 1. It follows that W(1) < δ̂min
− and W(N) > δ̂max

− , with probability tending

to one as N → +∞. Then, similarly to the proof of Theorem 1 (ii), we can show

that

lim
N→+∞

Pr{W(1) < δ0} = 1 and lim
N→+∞

Pr{W(N) > δ0} = 1 (3.4)

as N → +∞. Finally, we have (1/N)
∑N

h=1(Wh−δ0)
2 = s2δ(N−1)/N+Op(1/N).

Since s2δ(N−1)/N is a consistent estimator of the asymptotic variance of
√
N(δ̂−

δ0), the result follows by (3.3), (3.4), and an application of Theorem 2.1 in Adi-

mari and Guolo (2010).

As a consequence of Theorem 2, the set {δ : l(δ) ≤ cγ} is an approximate

confidence interval for δ0, with nominal coverage 1−γ, if cγ is such that Pr{χ2
1 >

cγ} = γ. The derivation of the corresponding confidence interval for the difference

between the (non normalized) partial AUCs is immediate.

It is, of course, the case that other strategies are available to compare diag-

nostic tests, for example based on the comparison of the entire ROC curves or
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of the total AUCs. For the case of paired data, we refer the interested reader to

Venkatraman and Begg (1996) and references therein.

4. Simulation Results

In this section, we report the results of a simulation study carried out to

assess the finite-sample accuracy of the confidence intervals for partial AUCs

obtained by using the technique discussed in Section 2. In the study, we also

compare the performance of the proposed jackknife empirical likelihood method

with the normal approximation method and the normal approximation method

after logit transformation.

To fix the simulation setting, we took the area under the ROC curve of

relevance to extend up to some defined maximum value of FPR. Thus we fixed

p1 at 0 and considered various values of p2.

We took two models for the data: a Gaussian model, N(α, ω), and a Gamma

model, Ga(α, ω). Random samples for the Y and the X values were generated,

respectively, from a N(α, 4) and a N(0, 1) in the first case, and from a Ga(α, 5)

and a Ga(1, 1) in the second, for some values of the parameter α. The simulation

study used the “parsimonious” jackknife scheme performed over N∗ units, and

each simulation experiment was based on 5,000 replications.

Simulation results are given in Tables 1−6. For three levels of the nominal

coverage 1 − γ, Tables 1−6 report the estimated coverage probabilities of the

(two-sided) confidence intervals for the (normalized) partial AUC, obtained by

three methods: (minus twice) the jackknife empirical log likelihood ratio l(τ)

(JEL), the asymptotic normality of τ̂ (AN), and the asymptotic normality of

t(τ̂), with t(·) being the logit transformation (ANL). In this last case, we set

ρ = t(τ) = log(τ/(1− τ)), ρ̂ = t(τ̂) and ρ0 = t(τ0), so that
√
N∗(ρ̂−ρ0) is asymp-

totically normally distributed with mean zero and variance σ2/[τ20 (1− τ0)
2]. This

asymptotic distribution was used to construct confidence intervals on the ρ scale,

then converted back to the τ scale by the inverse transformation t−1.

Tables 1−3 refer to the Gaussian model, whereas Tables 4-6 refer to the

Gamma model. Each table corresponds to a chosen value for the parameter α.

For each considered pair (α, p2), the tables give the corresponding “true” partial

AUC θ0 = θ(0, p2) and the “true” normalized partial AUC τ0 = τ(0, p2). Then,

for each target pair (θ0, τ0), the simulation results are shown for two different

settings for the sample sizes. The setting with the smallest sample sizes has been

chosen so as to always present actual coverage probabilities reasonably close to

the nominal ones. Clearly, sample sizes matching this criterion strongly depend

on the target pair (θ0, τ0). In particular:
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Table 1. Estimated coverage probabilities of the confidence intervals for the
partial AUC, obtained by the jackknife empirical likelihood method (JEL),
the normal approximation method (AN), and the normal approximation
method after logit transformation (ANL). Gaussian model, α = 1. Figures
in bold do not differ from the nominal level by more than simulation error.

1− γ
0.99 0.95 0.90

JEL 0.988 0.944 0.902
m = 110, n = 15 AN 0.966 0.930 0.875

ANL 0.999 0.983 0.930
p2 = 0.05
θ0 = 0.020, τ0 = 0.396 JEL 0.990 0.946 0.894

m = 135, n = 50 AN 0.985 0.942 0.893
ANL 0.995 0.956 0.906
JEL 0.988 0.949 0.898

m = 60, n = 15 AN 0.969 0.928 0.885
ANL 0.993 0.970 0.931

p2 = 0.10
θ0 = 0.043, τ0 = 0.426 JEL 0.991 0.953 0.905

m = 85, n = 50 AN 0.987 0.947 0.899
ANL 0.993 0.959 0.911
JEL 0.993 0.955 0.907

m = 30, n = 15 AN 0.979 0.926 0.881
ANL 0.999 0.973 0.921

p2 = 0.25
θ0 = 0.118, τ0 = 0.473 JEL 0.992 0.955 0.906

m = 55, n = 50 AN 0.988 0.949 0.899
ANL 0.994 0.959 0.913
JEL 0.994 0.954 0.910

m = 20, n = 15 AN 0.974 0.927 0.883
ANL 0.998 0.972 0.920

p2 = 0.50
θ0 = 0.260, τ0 = 0.520 JEL 0.993 0.956 0.901

m = 45, n = 50 AN 0.988 0.948 0.896
ANL 0.993 0.960 0.906

• small values of p2 require a high value of m, as each method needs to estimate

an extreme quantile q2 of the distribution of the test result for non-diseased

subjects. This requirement holds regardless of the “true” value of the partial

AUC. In fact, when p2 = 0.05, the value of m in the tables is at least 110;

• both m and n tend to be larger when the “true” normalized partial AUC τ0
approaches 1. For example, in the Gaussian case with p2 = 0.10, the smallest

sample sizes are m = 60 and n = 15 when τ0 = 0.426, but they are m = 110

and n = 70 for τ0 = 0.94.
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Table 2. Estimated coverage probabilities of the confidence intervals for the
partial AUC, obtained by the jackknife empirical likelihood method (JEL),
the normal approximation method (AN), and the normal approximation
method after logit transformation (ANL). Gaussian model, α = 5. Figures
in bold do not differ from the nominal level by more than simulation error.

1− γ
0.99 0.95 0.90

JEL 0.986 0.938 0.900
m = 115, n = 20 AN 0.957 0.935 0.867

ANL 0.995 0.972 0.919
p2 = 0.05
θ0 = 0.038, τ0 = 0.768 JEL 0.989 0.943 0.896

m = 135, n = 50 AN 0.977 0.958 0.889
ANL 0.993 0.959 0.909
JEL 0.991 0.952 0.885

m = 60, n = 25 AN 0.971 0.911 0.878
ANL 0.993 0.967 0.920

p2 = 0.10
θ0 = 0.079, τ0 = 0.790 JEL 0.989 0.947 0.899

m = 85, n = 50 AN 0.980 0.936 0.889
ANL 0.993 0.958 0.910
JEL 0.986 0.950 0.899

m = 35, n = 25 AN 0.956 0.925 0.865
ANL 0.994 0.963 0.931

p2 = 0.25
θ0 = 0.206, τ0 = 0.823 JEL 0.989 0.952 0.901

m = 55, n = 50 AN 0.974 0.933 0.887
ANL 0.991 0.959 0.912
JEL 0.988 0.945 0.901

m = 25, n = 35 AN 0.961 0.919 0.872
ANL 0.990 0.960 0.910

p2 = 0.50
θ0 = 0.425, τ0 = 0.851 JEL 0.988 0.947 0.900

m = 45, n = 50 AN 0.968 0.927 0.880
ANL 0.991 0.956 0.915

In the tables, figures in bold indicate that the estimated coverage probabilities

1 − γ̂ do not differ from the corresponding nominal levels by more than the

simulation error, in the sense that the nominal coverages lie in the intervals with

limits (1− γ̂)± 2
√

γ̂(1− γ̂)/5000.

Overall, simulation results indicate that, in terms of coverage probabilities,

the jackknife empirical likelihood method outperforms the normal approximation

method and the normal approximation method after logit transformation. In

fact, for the JEL approach, only 29% of the estimated coverage levels differ
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Table 3. Estimated coverage probabilities of the confidence intervals for the
partial AUC, obtained by the jackknife empirical likelihood method (JEL),
the normal approximation method (AN), and the normal approximation
method after logit transformation (ANL). Gaussian model, α = 8. Figures
in bold do not differ from the nominal level by more than simulation error.

1− γ
0.99 0.95 0.90

JEL 0.987 0.941 0.900
m = 155, n = 70 AN 0.953 0.904 0.859

ANL 0.991 0.964 0.924
p2 = 0.05
θ0 = 0.047, τ0 = 0.930 JEL 0.989 0.953 0.903

m = 200, n = 125 AN 0.973 0.931 0.884
ANL 0.992 0.961 0.917
JEL 0.981 0.953 0.890

m = 110, n = 70 AN 0.939 0.908 0.875
ANL 0.988 0.954 0.922

p2 = 0.10
θ0 = 0.094, τ0 = 0.940 JEL 0.989 0.951 0.900

m = 150, n = 125 AN 0.996 0.926 0.884
ANL 0.992 0.962 0.916
JEL 0.986 0.944 0.899

m = 70, n = 110 AN 0.957 0.913 0.866
ANL 0.986 0.956 0.907

p2 = 0.25
θ0 = 0.238, τ0 = 0.952 JEL 0.988 0.945 0.897

m = 120, n = 125 AN 0.955 0.913 0.870
ANL 0.998 0.958 0.907
JEL 0.982 0.949 0.893

m = 55, n = 130 AN 0.951 0.911 0.869
ANL 0.985 0.954 0.904

p2 = 0.50
θ0 = 0.481, τ0 = 0.962 JEL 0.988 0.950 0.898

m = 110, n = 150 AN 0.955 0.915 0.874
ANL 0.989 0.963 0.900

from the corresponding nominal levels by more than the simulation error. This

percentage increases to roughly 62% for the ANL method and to 87% for the AN

approach. As expected, results get uniformly better as sample sizes increase.

Methods for the construction of confidence intervals may be also compared in

terms of the average length of the produced intervals. Clearly, such a comparison

requires that intervals have almost exactly the desired coverage. However, the

methods here are first-order asymptotically equivalent, so that similar average

lengths are to be expected when the estimated coverage probabilities are close to
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Table 4. Estimated coverage probabilities of the confidence intervals for the
partial AUC, obtained by the jackknife empirical likelihood method (JEL),
the normal approximation method (AN), and the normal approximation
method after logit transformation (ANL). Gamma model, α = 0.8. Figures
in bold do not differ from the nominal level by more than simulation error.

1− γ
0.99 0.95 0.90

JEL 0.988 0.956 0.903
m = 110, n = 15 AN 0.974 0.935 0.886

ANL 0.999 0.979 0.932
p2 = 0.05
θ0 = 0.018, τ0 = 0.362 JEL 0.989 0.953 0.911

m = 135, n = 50 AN 0.985 0.948 0.907
ANL 0.994 0.961 0.923
JEL 0.988 0.949 0.901

m = 60, n = 15 AN 0.973 0.934 0.887
ANL 0.998 0.973 0.932

p2 = 0.10
θ0 = 0.043, τ0 = 0.425 JEL 0.988 0.954 0.911

m = 85, n = 50 AN 0.985 0.948 0.905
ANL 0.993 0.961 0.918
JEL 0.994 0.960 0.911

m = 30, n = 15 AN 0.978 0.939 0.892
ANL 0.999 0.974 0.932

p2 = 0.25
θ0 = 0.132, τ0 = 0.529 JEL 0.988 0.954 0.902

m = 55, n = 50 AN 0.986 0.947 0.897
ANL 0.991 0.960 0.908
JEL 0.990 0.959 0.912

m = 20, n = 15 AN 0.974 0.934 0.890
ANL 0.996 0.970 0.931

p2 = 0.50
θ0 = 0.315, τ0 = 0.630 JEL 0.991 0.954 0.906

m = 45, n = 50 AN 0.987 0.947 0.900
ANL 0.993 0.960 0.912

the nominal one. This expectation is matched in our simulation study. For ex-

ample, in the normal case with α = 1, p2 = 0.5, m = 45, and n = 50, the average

length of the 90% confidence intervals is 0.2199 (standard deviation: 0.0044) for

JEL, 0.2225 (standard deviation: 0.0045) for AN, and 0.2190 (standard devia-

tion: 0.0042) for ANL. Analogously, in the Gamma case with α = 0.8, p2 = 0.25,

m = 55, and n = 50, the average length of the 90% confidence intervals is 0.2275

(standard deviation: 0.0129) for JEL, 0.2301 (standard deviation: 0.0115) for
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Table 5. Estimated coverage probabilities of the confidence intervals for the
partial AUC, obtained by the jackknife empirical likelihood method (JEL),
the normal approximation method (AN), and the normal approximation
method after logit transformation (ANL). Gamma model, α = 1.5. Figures
in bold do not differ from the nominal level by more than simulation error.

1− γ
0.99 0.95 0.90

JEL 0.983 0.943 0.899
m = 115, n = 20 AN 0.969 0.921 0.880

ANL 0.996 0.968 0.927
p2 = 0.05
θ0 = 0.033, τ0 = 0.663 JEL 0.986 0.942 0.887

m = 135, n = 50 AN 0.979 0.933 0.881
ANL 0.993 0.955 0.902
JEL 0.985 0.944 0.895

m = 60, n = 25 AN 0.968 0.930 0.888
ANL 0.997 0.974 0.929

p2 = 0.10
θ0 = 0.073, τ0 = 0.727 JEL 0.987 0.950 0.900

m = 85, n = 50 AN 0.978 0.937 0.890
ANL 0.993 0.960 0.907
JEL 0.982 0.949 0.900

m = 35, n = 25 AN 0.959 0.922 0.881
ANL 0.992 0.963 0.926

p2 = 0.25
θ0 = 0.203, τ0 = 0.813 JEL 0.991 0.952 0.903

m = 55, n = 50 AN 0.973 0.934 0.886
ANL 0.994 0.961 0.914
JEL 0.981 0.949 0.903

m = 25, n = 35 AN 0.957 0.921 0.878
ANL 0.992 0.960 0.918

p2 = 0.50
θ0 = 0.438, τ0 = 0.876 JEL 0.988 0.947 0.896

m = 45, n = 50 AN 0.965 0.921 0.876
ANL 0.992 0.957 0.903

AN, and 0.2262 (standard deviation: 0.0108) for ANL.

5. An Illustration

To illustrate the application of the method developed in the previous sec-

tions, we utilize the Wisconsin Breast Cancer Data, publicy available at the UCI

Machine Learning Repository (Asuncion and Newman (2007)). The construction

of the dataset was motivated by the need to accurately diagnose breast masses

on the basis, solely, of a Fine Needle Aspiration (FNA). The dataset collects
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Table 6. Estimated coverage probabilities of the confidence intervals for the
partial AUC, obtained by the jackknife empirical likelihood method (JEL),
the normal approximation method (AN), and the normal approximation
method after logit transformation (ANL). Gamma model, α = 2.3. Figures
in bold do not differ from the nominal level by more than simulation error.

1− γ
0.99 0.95 0.90

JEL 0.988 0.951 0.904
m = 155, n = 70 AN 0.967 0.927 0.885

ANL 0.996 0.964 0.917
p2 = 0.05
θ0 = 0.043, τ0 = 0.868 JEL 0.991 0.947 0.898

m = 200, n = 125 AN 0.975 0.930 0.889
ANL 0.993 0.956 0.902
JEL 0.990 0.952 0.906

m = 110, n = 70 AN 0.965 0.924 0.878
ANL 0.992 0.962 0.916

p2 = 0.10
θ0 = 0.090, τ0 = 0.905 JEL 0.988 0.948 0.901

m = 150, n = 125 AN 0.970 0.932 0.884
ANL 0.993 0.954 0.905
JEL 0.984 0.946 0.897

m = 70, n = 110 AN 0.959 0.913 0.867
ANL 0.989 0.954 0.903

p2 = 0.25
θ0 = 0.236, τ0 = 0.945 JEL 0.984 0.940 0.887

m = 120, n = 125 AN 0.958 0.912 0.868
ANL 0.989 0.946 0.894
JEL 0.975 0.936 0.888

m = 55, n = 130 AN 0.946 0.902 0.859
ANL 0.986 0.952 0.899

p2 = 0.50
θ0 = 0.484, τ0 = 0.968 JEL 0.981 0.940 0.891

m = 110, n = 150 AN 0.957 0.914 0.876
ANL 0.990 0.946 0.893

various features (markers) which are computed from a digitized image of a FNA

of a breast mass, describing characteristics of the cell nuclei present in the image.

A total of 30 nuclear markers are computed on each of 569 samples, of which

357 are benign and 212 malignant. The dataset has been extensively used in the

literature. The interested reader can refer to the UCI Machine Learning Repos-

itory documentation for retrieving information about the dataset creation, the

description of its attributes, and a list of relevant papers using or citing this data

set.
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Figure 1. Boxplots of the distribution of the two markers in the groups (left:
benign, right: malignant).

Here, we limit ourself to the comparison of two markers, i.e., the worst

radius (mean of distances from center to points on the perimeter) and the worst

concave points (mean number of concave portions of the contour) observed on

each sample. Both markers behave, marginally, in a very similar fashion in the

two classes (see Figure 1 for a boxplot of the distribution of the markers in the

two groups). Moreover, they show a very similar discriminating capability: a

simple linear discriminant analysis shows a predicted mean diagnostic accuracy

(with leave-one-out cross-validation) of 89% for the first marker and of 93% for

the second marker.

Figure 2 reports the ROC curves, which look quite comparable. In fact,

the estimated AUCs are 0.970 for the worst radious, and 0.967 for the worst

concave points, confirming the similarity of the two markers. Nevertheless, if

discrimination between the markers has to be based only on their performances

for specificities of at least 0.95, then one has to look at the normalized partial

AUCs τa(0, 0.05) and τ b(0, 0.05). In this case, nonparametric point estimates are

0.789 for the first marker and 0.767 for the second marker. Figure 3 shows the

jackknife empirical log likelihood ratio function l(δ) for the difference δ between

the two normalized partial AUCs τa(0, 0.05) and τ b(0, 0.05). The plot highlights

the set {δ : l(δ) ≤ 3.84}, the approximate confidence interval for δ with nominal

coverage 0.95. Note that the value 0 is not included in the interval, so that

the hypothesis of no difference between the two parameters, i.e., H0 : δ = 0,

is rejected at the 5% approximate level of significance. Therefore, the markers’

performance over the region of the ROC space of interest is statistically different.
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Figure 2. ROC curves for the markers.

Figure 3. Minus twice jackknife empirical log likelihood ratio function l(δ),
for the difference δ = τa(0, 0.05) − τ b(0, 0.05). Vertical bars define the ex-
tremes of the approximate confidence interval for δ, with nominal coverage
0.95.
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6. Conclusion

The partial AUC summarizes the accuracy of a diagnostic or screening test

over a relevant region of the ROC curve and represents a useful tool for the

evaluation and the comparison of tests.

In this paper, we propose a jackknife empirical likelihood method for mak-

ing inference on partial AUCs. We combine the empirical likelihood function

with suitable jackknife pseudo-values obtained from a nonparametric estimator

of the normalized partial AUC, and derive a pseudo-likelihood that can be used

to construct confidence intervals or perform tests of hypotheses. A theoretical

justification of the proposed method is given. Moreover, our simulation results

indicate that the jackknife empirical likelihood based confidence intervals com-

pare favorably with alternatives in terms of coverage probability. Finally, the

approach discussed in the paper is extended to inference on the difference be-

tween two partial AUCs, so that the method can also be used for comparing

tests.

Overall, results in the paper seem to confirm that the jackknife empirical like-

lihood is a potentially useful tool in ROC analysis and, more generally, that is

worthy of serious consideration in statistical inference, due to its relative simplic-

ity. However, we remark that the jackknife empirical likelihood is not a genuine

empirical likelihood function, but it is a pseudo-likelihood function which can be

used as a surrogate to markedly reduce the computational burden. As a con-

sequence, the jackknife empirical likelihood does not retain all features of the

empirical likelihood function. In general, for example, the jackknife empirical

likelihood based confidence intervals are not range preserving. Therefore, fur-

ther studies, in particular comparing theoretical properties of jackknife empirical

likeliood and empirical likelihood, would be highly desirable.
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