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Abstract: In this article, we study a direct receiver operating characteristic (ROC)

curve regression model with completely unknown link and baseline functions. A

semiparametric procedure is proposed to estimate both the parametric and non-

parametric components of the model. The resulting parameter estimates and ROC

curve estimates are shown to be consistent and asymptotically normal with a n−1/2

convergence rate. With arbitrary link and baseline functions, our model is more

robust than existing direct ROC regression models that require either complete or

partially complete specification of the link and baseline functions. Moreover, the

robustness of our new method is gained at little cost to efficiency, as evidenced by

the parametric convergence rate of our estimators and by the simulation study. An

illustrative example is given using a hearing test data set.
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1. Introduction

The diagnostic accuracy of a medical test is often assessed using a receiver

operating characteristic (ROC) curve (Zhou, Obuchowski, and McClish (2002)).

ROC regression methodology offers a useful means of investigating how patient

characteristics influence test accuracy. Several approaches to ROC regression

have been developed during the past decade. Tosteson and Begg (1988) proposed

regression models for ROC curves of ordinal-scale tests using ordinal regression

models. Thompson and Zucchini (1989) proposed regression models for a sum-

mary measure, such as the area under the ROC curve. More recently, Pepe (1997,

2003) proposed to directly model covariate effects on the ROC curve using the

model

ROC(t,X) = F{θ′X +H(t)}, (1.1)

where t is a false positive rate varying from 0 to 1, X is a p0-dimensional covariate

vector, F is a link function, representing the way covariates affect the ROC
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curve, H is a baseline function that satisfies H(0) = −∞ and H(1) = +∞,
essentially defining the location and shape of the ROC curve, and θ is a vector
of unknown regression coefficients, quantifying covariate effects. Model (1.1)
includes the classic binormal model when F (·) = Φ(·) and H(·) = α0+α1Φ

−1(·).
Assuming that F and H are known, Alonzo and Pepe (2002) and Pepe (2003)
proposed to estimate the regression parameters using estimating equations. Cai
and Pepe (2002) and Cai (2004) studied a more flexible direct ROC model by
assuming a parametric form for the link function together with a nonparametric
baseline function H. The direct ROC regression approach has some appealing
features. First of all, it directly models the effects of covariates on the test
accuracy, and hence the results are easy to interpret. Secondly, the direct ROC
regression model only makes assumptions on a functional form of the ROC curve
and hence enjoys a certain degree of robustness (Hanley (1998), Metz, Herman,
and Shen (1998)). Thirdly, the direct regression model preserves the property of
invariance to monotone data transformations, a fundamental property of an ROC
curve. Finally, direct modeling of ROC curves allows one to make inference on
ROC curves in a restricted range of false-positive rates, incorporate interactions
between covariates and false-positive rates, and compare ROC curves of tests
with different numerical scales.

Since parametric or single semiparametric methods with a misspecified link
or baseline function can lead to biased ROC curve estimates, the purpose of
this paper is to study a more robust direct ROC regression model by allowing
arbitrary link and baseline functions in the model (1.1). We propose a semipara-
metric method to estimate H, θ, and F , based on the observation that our model
is equivalent to a transformation model with unknown transformation and error
distribution functions. We show that the proposed estimators for the ROC curve
and the regression parameters are consistent and asymptotically normal with the
parametric convergence rate of n−1/2. This result suggests that robustness of our
method, realized by allowing nonparametric link and baseline functions, is ob-
tained at little cost to efficiency. This asymptotic result is supported empirically
by the simulation studies presented in Section 4.

The article is organized as follows. In Section 2, we describe our procedure
for estimating θ, F (·), H(·), and ROC curves. Section 3 gives the asymptotic
distribution theory for the proposed estimators. In Section 4, we report a sim-
ulation study to evaluate the robustness and efficiency of the ROC curve and
regression parameter estimates. An illustration is given in Section 5 using a data
set from a hearing study.

2. Estimation Methods

2.1. Notation and model

Throughout the paper, subscripts d̄ and d denote terms related to the non-
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diseased and diseased subjects, respectively. Let Yd̄ and Yd denote test results,

Z be the covariates that are relevant to both diseased and non-diseased subjects,

and Zd be the covariates that are specific to diseased subjects, such as disease

severity. Take X = (Z ′, Z ′
d)

′. Let ROC(·, X) be the ROC curve of the test

in the subpopulation of diseased subjects with covariates Z and Zd and the

subpopulation of non-diseased subjects with the same covariates Z. We then

model the effects of covariates X on the ROC curves by (1.1), where H is an

unknown monotone increasing function satisfying H(0) = −∞ and H(1) = +∞,

and F is an unknown cumulative distribution function.

Our data consist of nd diseased subjects with multiple observations per sub-

ject, {Yd,ik, Zik, Zd,ik}, k = 1, . . . ,mi, i = 1, . . . , nd, and nd̄ non-diseased subjects

{Yd̄,ik, Zik}, where k = 1, . . . ,mi, i = nd + 1, . . . , nd + nd̄. Here mi is the number

of repeated observations for the ith subject. In our data example, each patient

has two observations, one from each of his/her two ears. Let Nd =
∑nd

i=1mi,

Nd̄ =
∑n

i=nd+1mi, and n = nd̄+nd. Observations are correlated if they are from

the same subject and are independent otherwise. Let (t0, t1) be a region of false

positive rates of interest. In the paper, we focus on the estimation of the ROC

curve on (t0, t1), 0 < t0 < t1 < 1.

To estimate the parameters and nonparametric functions, we first need to

estimate Sd̄,Z(y) = Pr(Yd̄ ≥ y|Z), the survival function of test results of non-

diseased subjects given covariates Z. Following Cai and Pepe (2002), we use the

semiparametric location model for Sd̄,Z(y): Sd̄,Z(y) = Sd̄(y − γ′Z), where Sd̄ is

the unknown survival function. A more general choice for modeling Sd̄,Z(y) is

provided in Section 6, with similar results obtained. Denote the estimator of

Sd̄,Z(y) by Ŝd̄,Z(y).

We consider the estimation of θ,H(·), and F (·). It is easy to show that

E
{
I{Yd ≥ S−1

d̄,Z
(t)}|X

}
= F{θ′X +H(t)} (2.1)

is equivalent to the transformation model

H(T ) = −θ′X + ε, (2.2)

where T = Sd̄,Z(Yd), and ε is a random error with the distribution function F .

When F is specified up to a finite-dimensional vector of parameters, Cai (2004)

extended the procedure proposed by Cheng, Wei, and Ying (1995) to estimate the

ROC curve based on Model (2.2). When the observations of T are independent,

Horowitz (1996) and Zhou, Lin, and Johnson (2009) proposed a semiparametric

method to estimate H and F . However, there are several problems with a direct

application of their methods to estimate the ROC curve. First, subjects may

have multiple data records, so the original data are correlated. Second, since
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the distribution of Yd̄ is usually unknown, Sd̄ needs to be estimated in order

to apply these methods to observations of T = Sd̄,Z(Yd) and, as a result, the

independence assumption on observations of T , required by these methods, no

longer holds. As a result, the issue of correlation is more complicated than that

caused by the multiple records of subjects. In this paper, we extend the Zhou,

Lin, and Johnson (2009) method to estimate the ROC curve. However, because

of the complicated correlation between T̂ = Ŝd̄,Z(Yd), it is more involved when

establishing asymptotic properties.

2.2. Estimation methods

Due to identification concerns, we set E[ε] = 0, V ar[ε] = 1, H(t0) = 0 and

X includes an intercept term. Under the restrictions of E[ε] = 0 and V ar[ε] = 1,

F is identifiable, so the effect of X (excluding the intercept) is. Hence the

estimated θ can be regarded as covariate effects under the standardized link

function, defined as a distribution function of standardized random variable. As

a result, θ in our model has the same interpretation as in the models proposed

by Alonzo and Pepe (2002), Pepe (2003), Cai and Pepe (2002) and Cai (2004).

For the estimation of H, we observe that in the transformation model (2.2),

T depends on X only through the index W = θ′X. Let G(·|w) be the cumulative

distribution function (CDF) of T conditional on W = w. Assume that H,F , and

G are differentiable with respect to all their arguments. Let h(t) = dH(t)/dt,

f(t) = dF (t)/dt, p(t|w) = dG(t|w)/dt, and g(t|w) = dG(t|w)/dw. Model (2.2)

implies that G(t|w) = F (H(t) + w). Therefore, p(t|w) = f(H(t) + w)h(t) and

g(t|w) = f(H(t) + w). So, g(t|w)h(t) = p(t|w). Let g(t, w) = g(t|w)p(w) and

p(t, w) = p(t|w)p(w), where p(·) is the density function of W . We then have

g(t, w)h(t) = p(t, w). (2.3)

Write Xik = (Z ′
ik, Z

′
d,ik)

′. Replacing w in (2.3) by Wik = X ′
ikθ and summing over

all observations, we get that
∑nd

i=1

∑mi
k=1 g(t,Wik)h(t) =

∑nd
i=1

∑mi
k=1 p(t,Wik).

Therefore

h(t) =

∑nd
i=1

∑mi
k=1 p(t,Wik)∑nd

i=1

∑mi
k=1 g(t,Wik)

. (2.4)

Integrating both sides of (2.4) gives us

H(t) =

∫ t

t0

∑nd
i=1

∑mi
k=1 p(u,Wik)∑nd

i=1

∑mi
k=1 g(u,Wik)

du. (2.5)

Hence, by using (2.5), to construct an estimatorHn ofH, we need to estimate

p(t), G(t|w) and its derivatives. Let K0 and K1 be one-dimensional density
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functions, and b0 and b1 be bandwidths. We estimate p(·) by

pn(w) =
1

Ndb0

nd∑
i=1

mi∑
k=1

K0

(
Wik − w

b0

)
. (2.6)

We then estimate G(t|w) by Gn(t|w) = (Ndb0pn(w))
−1
∑nd

i=1

∑mi
k=1 I(T̂ik ≤ t)

K0((Wik − w)/b0). We obtain an estimate of g(t|w) by differentiating Gn(t|w)
with respect to w,

gn(t|w) = ∂Gn(t|w)/∂w. (2.7)

Although p(t|w) = ∂G(t|w)/∂t, we cannot use ∂Gn(t|w)/∂t to estimate p(t|w),
because Gn(t|w) is a step function of t. Instead, we estimate p(t|w) by

pn(t|w) =
1

Ndb0b1pn(w)

nd∑
i=1

mi∑
k=1

K1

(
T̂ik − t

b1

)
K0

(
Wik − w

b0

)
. (2.8)

The estimator Hn of H is obtained by substituting (2.6), (2.7), and (2.8) into

(2.5).

Without imposing a parametric structure on F , it is natural to estimate θ

by a solution to the estimating equation
∑nd

i=1

∑mi
k=1

(
H(T̂ik) +X ′

ikθ
)
Xik = 0.

When given H, the estimator of θ is

θn = −

(
nd∑
i=1

mi∑
k=1

XikX
′
ik

)−1 nd∑
i=1

mi∑
k=1

XikH(T̂ik). (2.9)

2.3. Implementation

We outline the algorithm for estimating θ, H(·), and F (·) as follows
Step 1: Specify an initial value of θ.

Step 2: Repeat (a) and (b) below until successive values of θ do not differ signif-

icantly.

(a) Given θ, estimate H by (2.5) with p(u,Wik) and g(u,Wik) replaced

by pn(u|Wik)pn(Wik) and gn(u|Wik)pn(Wik), respectively.

(b) Given H, estimate θ by (2.9) as θn. Given H and θn, estimate σ2 =

V ar(ε) by the sample variance σ̂2 and update θn by θn/σ̂.

Let Ĥ and θ̂ be the results from the algorithm.

Step 3: Estimate F by the empirical distribution function of Û = Ĥ(T̂ ) + θ̂′X,

denoted by F̂ .

Step 4: The ROC curve for a test with covariate values x is estimated by

R̂OC(t, x) = F̂{θ̂′x+ Ĥ(t)}.
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Simulation suggests that our method is not sensitive to the initial value of θ.

We use the estimation of θ from the classic binormal model as the initial value,

because the classic binormal model is robust in some degree.

2.4. The selection of the bandwidths

Our estimation procedure involves the selections of the bandwidth b0 and

b1. This can be achieved by using K-fold cross-validation (Tian, Zucker, and

Wei (2005), Fan, Lin, and Zhou (2006)), to minimize the prediction error of

I(Yd,ik ≥ Ŝ−1
d,Zik

(t)) based on (2.1) with t = u1, . . . , uD, uniformly distributed

on [t0, t1]. Concretely, denote the full dataset by T , and denote training and

test sets by T − T v and T v, respectively, for v = 1, . . . ,K. For each pair of

bandwidths (b0, b1) and v, we find the estimator R̂OC
v
(t, x) = F̂

(
θ̂′x+ Ĥ(t)

)
of F (θ′x+H(t)) using the training set T − T v, and form the cross-validation

criterion as

CV (b0, b1) =

K∑
v=1

∑
i∈T v

ni∑
k=1

D∑
ℓ=1

{I(Yd,ik ≥ Ŝ−1
d,Zik

(uℓ))− R̂OC
v
(uℓ, x)}2.

We then find the bandwidths (b0, b1) that minimize the criterion CV (b0, b1).

The number K is usually chosen to be K = 5 or K = 10. In the data analysis

presented later, K = 10 is used.

3. Large Sample Properties

In this section, we establish the asymptotic properties for θ̂, Ĥ(·), F̂ (·), and
R̂OC(t, x). Generally, it is difficult to establish the asymptotic properties for

the infinite-dimensional parameters Ĥ(·) and F̂ (·) simultaneously. Fortunately,

the expressions of θ̂ and Ĥ(·) are not related to F̂ (·). Hence, the derivation of

asymptotic results can be done separately using existing techniques. Particu-

larly, our proof on the asymptotic properties for all the estimators relies on five

steps, with the second step being crucial. The first step consists of expansions for

Ŝd̄,Z(·), which have already been obtained by Cai and Pepe (2002). The second

step consists of an expansion for Ĥ(t), where the key is to establish asymptotic

forms of the p̂(t, x′θ̂) and ĝ(t, x′θ̂), the estimators of p(t, x′θ) and g(t, x′θ), re-

spectively; these asymptotic forms can be obtained by combining the technique

in Zhou, Lin, and Johnson (2009) and the expansions of Ŝd̄,Z(y). The third to

fifth steps consist of proofs of the asymptotic normality for θ̂, F̂ and R̂OC(t, x),

respectively.

We assume that as nd̄ and nd converge to ∞, nd/nd̄ → r0, nd̄/Nd̄ → ad̄, and

nd/Nd → ad. Lemma A in Appendix A.3 consists of an expansion of Ĥ(t) that is
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a key to establishing the asymptotic properties of all the estimators in Theorems

1 to 4. All the proofs can be found in the Appendix.

Theorem 1. Under conditions given in Appendix A.1, as nd̄ → ∞ and nd → ∞,

√
nd

(
θ̂ − θ

)
→ N

(
0, E

[
(adA

−1
1 ∆d,θ,i)

⊗2
]
+ r0E

[
(adA

−1
1 ∆d̄,θ,i)

⊗2
])
, (3.1)

where A1, ∆d,θ,i and ∆d̄,θ,i are defined in Appendix A.2.

The asymptotic variance is a summation of two terms; the first term reflects

the variation from the diseased subjects, and the second reflects the variation

from the non-diseased subjects. Substituting the expression for θ̂ − θ into that

for Ĥ in (A.3) in Appendix A.3, we obtain Ĥ(t)−H(t) as a sum of independent

random variables.

Theorem 2. Under conditions given in Appendix A.1, as nd̄ → ∞ and nd → ∞,

√
nd

(
Ĥ(t)−H(t)

)
→ N(0, a2

d
E∆2

d,H,i(t) + a2dr0E∆2
d̄,H,i(t)), (3.2)

where ∆d,H,i(t) and ∆d̄,H,i(t) are defined in Appendix A.2.

Thus, Ĥ(t) is a
√
nd consistent, asymptotically normal estimator of H(t),

and we estimate the function H(·) at the parametric convergent rate. A similar

conclusion on the parametric convergence rate of the estimated transformation

function was reached in Horowitz (1996), Ye and Duan (1997), and Zhou, Lin,

and Johnson (2009). The conclusion also assures that the resulting estimators for

F , and then for the ROC curve, converge to their true values with the parametric

convergence rate.

Theorem 3. Under conditions given in Appendix A.1, as nd̄ → ∞ and nd → ∞,

√
nd

(
F̂ (z)− F (z)

)
→ N(0, a2dE∆2

d,F,i(t) + r0a
2
d̄f

2(z)E∆2
d̄,F,i(z)), (3.3)

where ∆d,F,i(z) and ∆d̄,F,i(z) are defined in Appendix A.2.

Theorem 4. Under conditions given in Theorem 1,

√
nd

(
R̂OC(t, x)−ROC(t, x)

)
→ N

(
0, a2dE∆2

d,R,i(t, x) + r0a
2
d̄f

2
(
θ′x+H(t)

)
E∆2

d̄,R,i(t, x)
)
, (3.4)

where ∆d,R,i(t, x) and ∆d̄,R,i(t, x) are defined in Appendix A.2.

The variance estimation of Ĥ, θ̂, F̂ and R̂OC involves estimating derivatives

of unknown functions. Because it may be difficult to get a good estimate of a
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derivative, we use the bootstrap method to approximate the variance or covari-

ance matrix in our simulation studies and in the data example. The number of

bootstrap samples is chosen to be 100.

From Theorems 1−4, we have

√
nd

(
R̂OC(t, x)−ROC(t, x)

)
=

√
ndf

(
θ′x+H(t)

) 1

Nd̄

n∑
i=nd+1

∆d̄,R,i(t, x) +

√
nd
Nd

nd∑
i=1

∆d,R,i(t, x) + op(1).

Following the resampling technique (Cai and Pepe (2002), Parzen, Wei, and

Ying (1994)), we can construct a (1− α)100% simultaneous confidence band for

{ROC(t, x), t0 ≤ t ≤ t1}. However, the resampling technique requires good esti-

mates for ∆d̄,R,i(t, x) and ∆d,R,i(t, x), which again involve estimating derivatives

of unknown functions. A new method is needed to construct a simultaneous

confidence band for {ROC(t, x), t0 ≤ t ≤ t1}. We will consider the problem in

future work.

4. Simulation Study

4.1. Robustness

Since our procedure does not require a specification of parametric forms for

the link and baseline functions, we would expect that the proposed procedure

would be more robust than existing fully parametric and single semiparamet-

ric procedures. To investigate this issue, we examined the performance of the

proposed method in comparison with the single-semiparametric method of Cai

(2004) and the parametric method of Pepe and Cai (2004). We choose these

methods because they are the most efficient among existing single-semiparametric

and parametric direct regression methods, respectively. The performance of an

estimator of the ROC curve, R̂OC(·, ·), is assessed via bias and the integrated

mean square errors(IMSE),

IMSE(X) =

ngrid∑
k=1

E[R̂OC(uk, X)−ROC(uk, X)]2, (4.1)

where {uk, k = 1, · · · , ngrid} are the grid points at which the functions ROC(·)
are estimated. In the simulation, we chose ngrid = 100 and uk is distributed

uniformly on (0, 1). We took K1 to be a second-order kernel, K0 to be a sixth-

order kernel. The conditions in Appendix A.1 can be satisfied under these choices.

We used the high-order kernels given in Muller (1984). Our simulations suggest

that the proposed method is not sensitive to the selection of the kernel, provided

the order of the kernel is satisfied.
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For each of nd = 400 diseased subjects, we first generated Z as uniform on

(0, 10) and εd = δX1+(1−δ)X2, with δ a binomial variable with p = 0.5, X1 and

X2 were normal with standard deviation 0.01 and means −2 and 2, respectively.

Here δ, X1 and X2 were independent. Hence, the distribution function of εd was

F (z) = (1/2)Φ((z + 2)/0.01)+ (1/2)Φ((z − 2)/0.01), where Φ(z) is the standard

normal distribution function. We then constructed the response Yd of a diseased

patient as Yd = υ(θZ + εd) + Z, where υ(z) = d0 + (1/d1) sinh((z − d2)/d3),

d0 = 8, d1 = 2, d2 = 2.5, d3 = 3, and θ = 0.5. For each of nd̄ = 400 non-

diseased subjects, we generated Z and εd̄ as uniform on (0, 10) and standard

normal, respectively, and then constructed the response Yd̄ of a non-diseased

patient as Yd̄ = 7 + Z + εd̄. The induced ROC curve with Z = z was then given

by ROC(t, z) = F (−υ−1(7− Φ−1(t)) + θz).

For each simulated data set, we obtained estimates of θ and the ROC curve

at z = 3, 5, 7, 9 using the proposed approach with the bandwidths b0 = 1.5

and b1 = 0.05, the single semiparametric method with the misspecified link

function F = Φ, and the parametric approach with the misspecified link F =

Φ and misspecified baseline H = α0 + α1Φ
−1. Here, we misspecified the link

and baseline function as Φ(·) and α0 + α1Φ
−1(·), respectively, to induce the

misspecified binormal model, since the binormal model is the most commonly

used one in the ROC curve literature.

The averaged ROC curves and the distributions of the IMSE at z = 3, 5, 7, 9

over the 200 replications are displayed in Figures 1 and 2, respectively. Those

show that the misspecification of both the link and baseline functions (indicated

by “parametric”) and the misspecification of the link function (indicated by “Sin-

gle”) lead to biased ROC curve estimates and, as a result, large IMSE. The single

semiparametric method with the misspecified link function can lead to substan-

tially biased estimates and its bias can be larger than the parametric estimate

when both the link and baseline function are misspecified. These results suggest

that the single semiparametric estimators of the regression parameters of Cai

(2004) may not be robust, and the lack of robustness of the single semipara-

metric method in estimating the regression parameters can in part be attributed

to the strong dependence of the parameter estimates on the specification of the

link function (see (3.1) and the expression of ξ(x) in Cai (2004)). The proposed

estimate was much closer to the true ROC curve and had less IMSE than those

produced by the parametric and single semiparametric estimates, suggesting that

the proposed method is robust and accurate.

Numerical studies were also conducted with a smaller sample size under the

same simulation scheme as in Figure 1 and Figure 2. Figure 3 and Figure 4

show the averaged ROC curves and the distributions of the IMSE at z = 3, 5, 7, 9

over the 500 replications with n0 = n1 = 200. For the smaller sample size, the
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Figure 1. Average of the estimated ROC curves at z = 3, 5, 7, 9 over the 200
simulated data sets with n0 = n1 = 400.

performance of all estimators was worse; however, the relative performance of

the three methods was similar to those in Figure 1 and Figure 2.

4.2. Relative efficiency

We next investigated whether the added robustness in our approach was

gained at the expense of reduced statistical efficiency. We generated data from the

binormal model and included both a covariate, Z, common to both the diseased

and non-diseased subjects, and a covariate, Zd, relevant only to diseased subjects.

We generated independent observations for nd = 400 diseased and nd̄ = 400

non-diseased subjects as Yd = α−1
1 {α0 + θ1Zd + (θ2 + 0.5)Z + εd} and Yd̄ =

0.5Z + εd̄, respectively. Here, α0 = α1 = 1, θ = (θ1, θ2)
′ = (0.5, 0.7)′, εd̄ and εd

are the standard normal random variables, and Zd and Z are Bernoulli (p = 0.5)

and uniform (0, 1) random variables, respectively. Given Zd and Z, the induced

ROC curve is ROCZd,Z(t) = Φ(α0 + α1Φ
−1(t) + θ1Zd + θ2Z).

For each simulated data set, we obtained estimates of θ1, θ2, and the ROC

curve at X = (Zd, Z) = (0, 0.5), (0, 0.75), (1, 0.25), (1, 0.5) using the proposed
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Figure 2. The boxplots for the distribution of the IMSE over 200 replica-
tions, using the proposed method, single semiparametric method, and the
parametric method at z = 3, 5, 7, 9.

approach with the bandwidths b0 = 0.01, b1 = 9, the single semiparametric ap-
proach with the correctly specified link function, and the parametric approach
with correct specification of both the link and baseline functions. The averaged
ROC curves at X = (0, 0.5), (0, 0.75), (1, 0.25), (1, 0.5) over the 200 simulated
data sets, using the three methods, were almost the same and basically unbi-
ased; hence, we do not report the results here. The distributions of the IMSE
over the 200 replications are displayed in Figure 5. The IMSE of the proposed
estimators for the ROC curve was larger than those of the single semiparametric
and the parametric methods when X was close to its boundary, and they were
comparable when X was in the interior of its support. This is not surprising,
because the parametric estimation is carried out under the true link and base-
line functions, the single semiparametric estimation is carried out under the true
link function, whereas the proposed method assumes these two functions are un-
known. In addition, we also note that the IMSE of the single semiparametric
method was close to that of the parametric methods in all cases, suggesting that
the single semiparametric method is efficient.

The distributions of the IMSE over the 500 replications with n0 = n1 = 200
are displayed in Figure 6. Similar conclusions with those from Figure 5 are
obtained.



1438 HUAZHEN LIN, XIAO-HUA ZHOU AND GANG LI

Figure 3. Average of the estimated ROC curves at z = 3, 5, 7, 9 over the 500
simulated data sets with n0 = n1 = 200.

4.3. The issues of initial value, bandwidth and kernel

Our method requires initial values to start the estimation. Based on the

classical binormal model, we suggested an initial value in Section 2.3. It may

be not close to the true value. Hence, it is necessary to test if the proposed

algorithm is sensitive to the initial value of θ. To investigate the issue, we

first took a series of initial values of θ = (θ1, θ2), varied in a 7 × 7 design with

θ1 = (−15,−10,−5, 0.1, 5, 10, 15) and θ2 = (−15,−10,−5, 0.1, 5, 10, 15), then we

selected a typical sample from the simulation in Section 4.2 with n0 = n1 = 400.

The estimated MSE-value of the typical sample for θ is the median of the 200

MSE-values. All the selected initial values had the algorithm converge and gave

the estimator θ̂ = (0.3885, 0.5183). We also investigated the sensitivity of the

initial value using a typical sample from the simulation in Section 4.1, and a

similar conclusion is obtained.

In the derivation of the large sample properties, higher order kernel functions

are needed to ensure the
√
n convergent rate. With higher order kernel function,

however, pn(t), gn(t|w), and pn(t|w) are not always positive and, hence, the

resultant ROC(t;x) may not be monotone increasing in t as desired. As posed
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Figure 4. The boxplots for the distribution of the IMSE over 500 replications,
using the proposed method, single semiparametric method, and the paramet-
ric method at z = 3, 5, 7, 9 for the simulation data with n0 = n1 = 200.

by a referee, from a practical point of view is the proposed method sensitive

to the choice of the kernel function? By changing the parameters k, µ and ν

in the kernels function provided by Muller (1984), we obtained the rectangular

kernel (k = 2, µ = 0, ν = 0), the Epanechnikov kernel (k = 2, µ = 1, ν = 0), the

Legendre kernel of order j (k = 2j+2, µ = 0, ν = 0, Deheuvels (1977)), the Eddy

kernel (any k, µ = 1, ν = 0, Eddy (1980)), Ramlau-Hansen kernel (any k, any

µ, ν = 0, Ramlau-Hansen (1983)) and the Gasser kernel (any k, µ = 0, 1, any

ν, Gasser and Muller (1979)). Because the theoretical conclusion require sixth-

order kernel, we take k = 6. To investigate the sensitivity of the kernel function,

we varied µ and ν in a 2 × 3 design with µ = 0 or 2 and ν = 0, 2 or 4. For

the typical sample with n0 = n1 = 400 from the simulation in Section 4.2, the

estimated ROC curve at X = (0, 0.5), (0, 0.75), (1, 0.25), (1, 0.5) with each pair of

(µ, ν) is displayed in Figure 7. Figure 7 shows that all the estimated ROC curves

with different kernel functions fully overlap, suggesting the proposed method is

not sensitive to the selection of the kernel functions. In addition, from Figure 7,

we can see that the estimated ROC curve is very close to a monotone increasing

function, although is not always monotone increasing.
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Figure 5. The boxplots for the distribution of the IMSE using data
with n0 = n1 = 200 over the 200 replications, using the proposed
method, single semiparametric method and the parametric method at X =
(0, 0.5), (0, 0.75), (1, 0.25), (1, 0.5).

Finally, we examined the performance of the proposed cross-validation

method for selecting the bandwidths b0 and b1. We ran the sample with nd = 400

and nd = 400 according to the simulation in Section 4.1 and the sample with

nd = 400 and nd = 400 from the simulation in Section 4.2. For the first

case, we varied the bandwidth b0 in {1.5, 1.8, 2.2, 2.5, 2.8} and the bandwidth

b1 in {0.01, 0.05, 0.1, 0.15, 0.2}. For the second, we varied the bandwidth b0
in {6, 7, 8, 9, 10, 11, 12} and b1 in {0.01, 0.03, 0.05, 0.07, 0.09, 0.12, 0.15}. We ob-

tained the CV (b0, b1) and IMSE(b0, b1). Figure 8 is the plot of CV vs IMSE for

the two cases. Figure 8 shows that CV increases as ∥θ̂− θ∥ increases, suggesting

that the proposed cross-validation method provides a reasonable estimator of

bandwidths.

5. Example: Hearing Test Study

We illustrate the application of our method in the hearing test study of

Stover, et al. (1996), which has also been reported on by Pepe (2003). For

each ear, the distortion product otoacoustic emission (DPOAE) test is applied

under nine different settings for the input stimulus. Each setting is defined
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Figure 6. The boxplots for the distribution of the IMSE using data
with n0 = n1 = 200 over the 500 replications, using the proposed
method, single semiparametric method and the parametric method at X =
(0, 0.5), (0, 0.75), (1, 0.25), (1, 0.5).

by a particular frequency (f) and intensity (L) of the auditory stimulus. The

response of the ear to the stimulus can be affected by the stimulus parameters,

as well as by the hearing status of the ear. Among hearing-impaired ears, the

severity of hearing impairment, as measured by the true hearing threshold, is

expected to affect the results of the DPOAE test. The test result, Y , is the

negative signal-to-noise ratio response, which coincides with our convention that

higher values are associated with hearing impairment. The disease variable, D,

is hearing impairment of 20 decibels (dB) or more. Covariates are the frequency

and intensity levels of the stimulus. With the same set-up as in Pepe (2003),

we have two covariates, Xf = frequency/100, measured in Hertz, and XL =

intensity/10, measured in dB. We also use a disease-specific covariate, Zd =

(hearing threshold − 20)/10, measured in decibels, taking values greater than 0

dB for hearing-impaired ears, and is undefined for normally-hearing ears. We

fit the model ROCXL,Xf ,Zd
(u) = F (H(u) + θ1XL + θ2Xf + θ3Zd) and analyzed

the data using the proposed method with bandwidths b0 = 1 and b1 = 0.01,

the single semiparametric method with the link function F = Φ and unknown
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Figure 7. The estimated ROC curve (solid lines) at (a) X = (0, 0.5), (b)
X = (0, 0.75), (c) X = (1, 0.25) and (d) X = (1, 0.5) with varying kernel
functions based on the typical sample from the simulation in Section 4.2.
Pointed line is the true ROC curve.

H, and the parametric method with F = Φ and H = α1 + α2Φ
−1. Table 1

presents the coefficient estimates and their bootstrap standard errors using the

three methods. Here, to compare our model with the binormal model, we took

t0 = mini,k T̂ik and H(t0) = Φ−1(t0). The hearing test appears to perform better

when the stimulus used has a low intensity and a higher frequency. The estimates

of θ3 clearly indicate that it is easier to detect hearing-impairment among severely

hearing impaired patients than mildly impaired patients.

The estimated ROC curves at XL = 6.0, Xf = 14.16, and Zd = 0.5 using

the three methods are plotted in Figure 9. Table 1 shows that the absolute value

of the parameter estimates using our method are smaller than those using the

existing single semiparametric and parametric methods. However, the estimated

ROC curve of our method is higher than those from the other two methods. Our

models make some assumptions, such as the location model for test results of

the non-diseased, and a linear relationship between covariates and the transfor-

mation of test results of the diseased. We should investigate the validity of these
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Figure 8. The scatter plot of CV vs IMSE for the typical samples (a) with
n0 = n1 = 400 from the simulation in Section 4.1; and (b) with n0 = n1 =
400 from the simulation in Section 4.2.

assumptions. In Figure 9, we also displayed the empirical ROC curve, based on

147 non-diseased patients, with XL = 6.0, Xf = 14.16, and 20 diseased patients,

with XL = 6.0, Xf = 14.16, and Zd = 0.5. We see that on average, our estimate

is closer to the empirical ROC curve than the two other estimated curves when

the false positive rate is between 0.15 and 1.0. When the false positive rate is

between 0 and 0.15, the estimated empirical ROC curve is not reliable due to the

small number of observations available in this region.

6. Discussion

In this paper, we have developed double semi-parametric regression mod-
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Table 1. Hearing test: estimated parameters and standard errors.

Proposed Single Parametric
estimated(SD) estimated(SD) estimated(SD)

θ1 -0.4951(0.1137) -0.5525(0.1136) -0.5435(0.0955)
θ2 0.0401(0.0157) 0.0394(0.0173) 0.0370(0.0171)
θ3 0.3740(0.0462) 0.4241(0.0483) 0.3819(0.0484)

Figure 9. The estimated ROC curves of the hearing test at XL = 6.0, Xf =
14.16, Zd = 0.5.

els for the ROC curves, that allow both the baseline and link functions to be

non-parametric. Our method has the following two apparent advantages over ex-

isting methods: non-parametric specifications of the link and baseline functions

increase robustness; the new estimators for the regression parameters and the

ROC curve converge to their true values at the parametric rate n
−1/2
d , suggesting

that extra flexibility is gained at little cost to efficiency; this is also confirmed by

our simulation studies.

We propose using the semi-parametric location model for Sd̄,Z(y), the sur-

vival distribution of test results of the non-diseased patients with covariates Z;

however, we can extend the method to a more general model, such as the semi-

parametric linear transformation model (1.1) for Sd̄,Z(y). Under the framework

of the semi-parametric linear transformation model, we can estimate Sd̄,Z(y) at

rate n−1/2 by the method of Zhou, Lin, and Johnson (2009), and hence the

requirement on Ŝd̄,Z(y) by the method proposed in the paper is satisfied. There-

fore, related large sample properties can be obtained by replacing the asymptotic
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expansion of Ŝd̄,Z(y) in the paper with that under the framework of the semi-

parametric linear transformation model.

We make linear assumptions, θ′X and γ′Z, at (1.1) and for the model for

test results of the non-diseased subjects, respectively. The linear assumption is

commonly used for dimension reduction so that we can make reliable inferences

based on limited data. If we add additional higher-order and interaction terms

to the models, the linear assumption can be approximately satisfied. However, in

doing so, we may end up with a model with too many covariates. Further research

is needed for efficiently selecting a subset of significant variables from the model

(1.1) and the model for test results of the non-diseased subjects. Variable selec-

tion for (1.1) is challenging, because we need to consider model selection in two

parts of the model: the nonparametric component of the outcome transformation

and the parametric component of significant variables.
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Appendix

We outline the proofs for the asymptotic results given in Section 3. More

details of the proofs can be found in Zhou, Lin, and Johnson (2009). We make

some assumptions that are needed to prove asymptotic normality of estimators

for θ,H(·), F (·) and the ROC curve. Hereafter, we let f (k1,k2,...)(x1, x2, . . .) =

d(k1+k2+··· )f(x1, x2, . . .)/dx
k1
1 dx

k2
2 · · · be the (k1+k2+ · · · )th order partial deriva-

tive of f .

A.1. Conditions

1. Let K0 and K1 be one-dimensional bounded and symmetric functions with

compact supports. Without loss of generality, these supports are [−1, 1]. K1 is

of bounded variation, while K0 has a bounded, continuous second derivative,

for which |K(2)
0 (x1)−K

(2)
0 (x2)| ≤M |x1 − x2| for some M <∞.

2. As nd → ∞, ndb
8
0 → ∞, log nd/

√
ndb

6
0b1 → 0, ndb

2s0
0 → 0, and ndb

2s1
1 → 0,

where s0 and s1 are the orders of K0 and K1, respectively.

3. Z and Zd have a bounded support. The true values of θ belong to the interior

of a known compact set, and the support of W = θ′X is taken to be Θ.

4. H is strictly increasing, and its derivatives, H(k)(t)(k = 1, . . . , s1 + 1), exist

and are uniformly bounded over t ∈ [t0, t1]. The derivatives, p(k)(w) and
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p(k1,k)(t, w), k1 = 1, . . . , s1 + 1, k = 1, . . . , s0 + 1, exist and are uniformly

bounded over t ∈ [t0, t1] and w ∈ Θ.

5.
1

Nd

nd∑
i=1

mi∑
k=1

I (Tik /∈ [t0, t1]) = op(n
−1/2
d ). (A.1)

6. max1≤i≤nd+nd̄
mi <∞.

7. There is a sequence θ̂ = θ̂n such that ∥θ̂ − θ∥ = op(1).

The assumption on b0 and b1 can be satisfied, for example, if K1 is a second-

order kernel, K0 is a sixth-order kernel, b1 ∝ n
−1/3
d , and b0 ∝ n

−1/10
d . Since gn is

a function of the derivatives of K0 and derivative functionals converge relatively

slowly, the higher-order kernel for K0 is needed to insure a sufficiently rapid

convergence; We use one given in Muller (1984). With a higher order kernel

function, however, pn(t), gn(t|w), and pn(t|w) may not be positive. Condition

(A.1) is used to avoid the tail problem. Condition 7 is commonly assumed in the

semiparametric literature; see Carroll et al. (1997) and Horowitz (1996), and this

condition requires that the initial value for θ be close to its true value.

A.2. Notation

To express Theorems 1 to 4, we write B1 = E[Z], B2 = E[ZZ ′]

g(t) = Eg(t,W ), q0(w) = E[X|W = w], q1(w) = E[Z|W = w],

η(t, w) =
2h(t)p(1)(w)

g(t)
, π(t) =

∫ t

t0

h(u)
E
[
g(u,W )q

(1)
0 (W )

]
g(u)

du,

Q(u,w) = (B1 − q1(w))S
(1)

d̄
(S−1

d̄
(u))p(u|w),

λ(u) =
E
[{
p(10)(u|W )− h(u)p(01)(u|W )

}
p(W )

]
g(u)

, and

Γ(t) =

∫ t

t0

E
[{
Q(10)(u,W )− h(u)Q(01)(u,W )

}
p(W )

]
g(u)

du.

Then we define

A1 = EX{X + π(T )}′, A2 = EX
[
h(T )S

(1)

d̄
(S−1

d̄
(T ))(Z −B1) + Γ(T )

]′
,

A3(t) = EX +

∫ +∞

−∞
π(y)p(t−H(y))dH(y),

A4(t) =

∫ +∞

−∞

{
h(y)S

(1)

d̄
(S−1

d̄
(y))[B1+q1(t−H(y))]−Γ(y)

}
p(t−H(y))h(y)dy,

A5(t, x) = (x+ π(t))′A−1
1 A2 − Γ′(t)−A′

4(θ
′x+H(t))−A′

3(θ
′x+H(t))A−1

1 A2,
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A6(t, x) =
(
A3

(
θ′x+H(t)

)
− x− π(t)

)′
A−1

1 .

Let EXT and EW be the expectation with respect to (X,T ) and W , respectively.
Related to the components of the asymptotical expansion, we take

µd̄,ik = Yd̄,ik − γ′Zik, ed̄,ik(u) = I(µd̄,ik ≥ S−1
d̄

(u))− u,

ψd̄,ik(t) = I(µd̄,ik ≥ S−1
d̄

(t))h(Sd̄(µd̄,ik))−H(t) +

∫ t

t0

λ(u)ed̄,ik(u)du,

τd̄,ik(t) = h(t)ed̄,ik(t)− ψd̄,ik(t), τ̃d̄,ik = EXT

[
Xτd̄,ik(T )

]
,

δd̄,ik(t) = ψd̄,ik(t) + Γ′(t)B−1
2 Zikµd̄,ik,

δd,ik(t) =

∫ t

t0

η(u,Wik) {I(Tik ≤ u)−G(u|Wik)} du

+

{
I(t0 ≤ Tik ≤ t)

g(Tik)
−
∫ t

t0

p(u|Wik)

g(u)

}
p(Wik),

δ̃d,ik = EXT [Xδd,ik(T )] , τ̆d̄,ik(t) = EW

[
τd̄,ik

(
H−1(t−W )

)]
,

δ̆d,ik(t) = EW

[
δd,ik(H

−1(t−W ))
]
.

The following are the components of the asymptotical expansion for θ̂, Ĥ(t), F̂ (t)

and R̂OC(t, x),

∆d̄,θ,i=

mi∑
k=1

{
A2B

−1
2 Zikµd̄,ik − τ̃d̄,ik

}
,

∆d,θ,i=

mi∑
k=1

{
δ̃d,ik + εikXik

}
,

∆d,H,i(t)=

mi∑
k=1

{
δd,ik(t)− π′(t)A−1

1

[
δ̃d,ik + εikXik

]}
,

∆d̄,H,i(t)=

mi∑
k=1

{
π′(t)A−1

1

{
A2B

−1
2 Zikµd̄,ik − τ̃d̄,ik

}
− δd̄,ik(t)

}
,

∆d,F,i(t)=

mi∑
k=1

{
f(t)δ̆d,ik(t)−A′

3(t)A
−1
1

(
f(t)δ̃d,ik+εikXik

)
−(I(εik ≥ t)−F (t))

}
,

∆d̄,F,i(t)=

mi∑
k=1

{
τ̆d̄,ik(t)−A′

3(t)A
−1
1 τ̃d̄,ik+

{
A′

4(t)+A
′
3(t)A

−1
1 A2

}
B−1

2 Zikµd̄,ik

}
,

∆d,R,i(t, x)=

mi∑
k=1

{
f(v)A6(t, x)

[
δ̃d,ik + εikXik

]
+ f(v)δd,ik(t)
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−f(v)EX

[
δd,ik(H

−1(v −X ′θ))
]
+ [I(εik ≥ v)− F (v)]

}
,

∆d̄,R,i(t, x)=

mi∑
k=1

{
A5(t, x)B

−1
2 Zikµd̄,ik +A6(t, x)τ̃d̄,ik − ψd̄,ik(t)− τ̆d̄,ik(t)

}
,

where v = θ′x+H(t).

A.3. Lemmas

Lemma A.1. Let

Υn(y) =
1

Nd

nd∑
i=1

mi∑
k=1

∫ y

y0

S(u)

b
K(

ζik − u

b
)du,

and

ϑn(y) =
1

Nd

nd∑
i=1

mi∑
k=1

I(y0 ≤ ζik ≤ y)S(ζik),

where K is bounded and symmetric density function with support [−1, 1]. Here

the derivative, S(r), exists and is uniformly bounded over y ∈ [y0, y1], and r is the

order ofK. If ndb
2r → 0,then Υn(y)−ϑn(y) = op(n

−1/2
d ) uniformly in y ∈ [y0, y1].

Lemma A.2. Under A.1, we have

(−1)k0
1

bk0+1
0

ES1(W )K
(k0)
0 (

W − w

b0
) = (S1(w)p(w))

(k) +O(bs00 ),

(−1)k0+k1

bk0+1
0 bk1+1

1

ES2(W,T )K
(k1)
1 (

T − t

b1
)K

(k0)
0 (

W − w

b0
)

= {S2(w, t)p(w, t)}(k1,k0) +O(bs00 + bs11 ),

for k0, k1 = 0, 1, where the derivatives, S
(s0+1)
1 (w) and S

(s0+1,s1+1)
2 (w, t), exist

and are uniformly bounded over w ∈ Θ and t ∈ [t0, t1].

The proofs of Lemma A.1 and Lemma A.2. See Horowitz (1996) and Zhou,

Lin, and Johnson (2009).

Lemma A.3. Under conditions given in Cai and Pepe (2002), we have

γ̂ − γ =
B−1

2

Nd̄

n∑
i=nd+1

mi∑
k=1

Zikµd̄,ik + op(n
−1/2

d̄
), and

Ŝd̄(c)− Sd̄(c) =
1

Nd̄

n∑
i=nd+1

mi∑
k=1

{
ed̄,ik(Sd̄(c)) + S

(1)

d̄
(c)(B′

1B
−1
2 Zik)µd̄,ik

}
+op(n

−1/2

d̄
).
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The Proof of Lemma A.3. See the proof of Lemma A.1 in Cai and Pepe

(2002).

Lemma A.4 establishes asymptotic forms of p̂(t, x′θ̂) and ĝ(t, x′θ̂), respec-

tively, the estimates of p(t, x′θ) and g(t, x′θ). These are used in proving Lemma

A.5 and Lemma A.

Lemma A.4. With Ŵ = X ′θ̂ and Ŵik = X ′
ikθ̂, let

p̂(t, w)=
1

Ndb0b1

nd∑
i=1

mi∑
k=1

K1

( T̂ik − t

b1

)
K0

(X ′
ikθ̂ − w

b0

)
,

pn(t, w)=
1

Ndb0b1

nd∑
i=1

mi∑
k=1

K1

(Tik − t

b1

)
K0

(X ′
ikθ − w

b0

)
,

p̂(w)=
1

Ndb0

nd∑
i=1

mi∑
k=1

K0

(X ′
ikθ̂ − w

b0

)
,

pn(w)=
1

Ndb0

nd∑
i=1

mi∑
k=1

K0

(X ′
ikθ − w

b0

)
,

Ĝ(t, w)=
1

Ndb0

nd∑
i=1

mi∑
k=1

I(T̂ik ≤ t)K0

(X ′
ikθ̂ − w

b0

)
,

Gn(t, w)=
1

Ndb0

nd∑
i=1

mi∑
k=1

I(Tik ≤ t)K0

(X ′
ikθ − w

b0

)
,

Λ1(t, w, x)=−p(t, w) [q0(w)− x] ,

Λ2(w, x)=−p(w)[q0(w)− x],

Λ3(t, w, x)=−G(t|w)p(w)[q0(w)− x],

P1(t, w)=−
n∑

i=nd+1

mi∑
k=1

{
ed̄,ik(t)+(B1−q1(w))′S(1)

d̄
(S−1

d̄
(t))B−1

2 Zikµd̄,ik

}
p(t|w),

P2(t, w)=−
n∑

i=nd+1

mi∑
k=1

{ 1

b4

∫ c0

S−1
d̄

(t)
K4

(µd̄,ik − u

b4

)
du− t

+(B1 − q1(w))
′S

(1)

d̄
(S−1

d̄
(t))B−1

2 Zikµd̄,ik

}
p(t|w),

where c0 = S−1
d̄

(t0), K4 is a kernel function defined on [−1, 1], b4 is a bandwidth,

satisfying nd̄b
2s4
4 → 0, and s4 is the order of K4. Under A.1,

p(t, x′θ̂) = pn(t, x
′θ) + (θ̂ − θ)′Λ

(010)
1 (t, x′θ, x) +

1

Nd̄

P
(10)
2 (t, x′θ)p(x′θ)

+op(n
−1/2),
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p̂(r)(x′θ̂) = p(r)n (x′θ) + (θ̂ − θ)′Λ
(r+1,0)
2 (x′θ, x) + op(n

−1/2), and

Ĝ(0r)(t, x′θ̂) = G(0r)
n (t, x′θ) + (θ̂−θ)′Λ(0,r+10)

3 (t, x′θ, x)+
1

Nd̄

∂r {p(x′θ)P1(t, x
′θ)}

∂(x′θ)r

+op(n
−1/2),

uniformly over t ∈ [t0, t1] and x in the bounded support of X.

Proof of Lemma A.4. Noting that

T̂ik − Tik = −S(1)
0 (µd,ik)Z

′
ik(γ̂ − γ) +

{
Ŝd̄(µd,ik)− Sd̄(µd,ik)

}
, (A.2)

where µd,ik = Yd,ik − γ′Zik, using Lemma A.3 and following the arguments of

Lemma 3 in Zhou, Lin, and Johnson (2009), we can complete the proof of Lemma

A.4.

Lemma A.5. Let p(t, w) denote the joint density function of (T,W ),

Ψn1(t) =
1

N2
d b0g(t)

nd∑
j=1

mj∑
ℓ=1

nd∑
i=1

mi∑
k=1

{
b−1
1 K1

(Tik−t
b1

)

+
h(t)p(1)(Wd̄,jℓ)

p(Wd̄,jℓ)

(
I(Tik ≤ t)−G(t|Wd̄,jℓ)

)}
K0

(Wik−Wd̄,jℓ

b0

)
,

Ψn2(t) =
h(t)

N2
d b

2
0g(t)

nd∑
j=1

mj∑
ℓ=1

nd∑
i=1

mi∑
k=1

(I(Tik≤ t)−G(t|Wd̄,jℓ))K
(1)
1

(Wik−Wd̄,jℓ

b0

)
,

Ψn3(t) =
1

Nd̄g(t)
EW

{[
P
(10)
2 (t,W )− h(t)P

(01)
1 (t,W )

]
p(W )

}
,

and Σ(t) = h(t)E[g(t,W )q
(1)
0 (W )]/g(t). Under A.1,∑nd

i=1

∑mi
k=1 p̂(t, Ŵik)∑nd

i=1

∑mi
k=1 ĝ(t, Ŵik)

−
∑nd

i=1

∑mi
k=1 p(t,Wik)∑nd

i=1

∑mi
k=1 g(t,Wik)

= Ψn1(t) + Ψn2(t) + Ψn3(t) + Σ(t)′(θ̂ − θ) + op(n
−1/2),

uniformly in t ∈ [t0, t1].

Proof of Lemma A.5. Take G(t, w) = G(t|w)p(w), ĝ(t, w) = ∂Ĝ(t|w)
∂w p̂(w).

Since

ĝ(t, x′θ̂) = Ĝ(01)(t, x′θ̂)− Ĝ(t, x′θ̂)p̂(1)(x′θ̂)

p̂(x′θ̂)
,

g(t, x′θ) = G(01)(t, x′θ)− G(t, x′θ)p(1)(w)

p(w)
,
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and p(t, w) = h(t)g(t, w), Lemma A.5 follows by combining Lemma A.4, the

conditions on b0 and b1, and some tedious computation.

Lemma A. Under the conditions given in Appendix A.1, as nd̄ → ∞ and nd →
∞,

Ĥ(t)−H(t) =
1

Nd

nd∑
i=1

mi∑
k=1

δd,ik(t)−
1

Nd̄

n∑
i=nd+1

mi∑
k=1

δd̄,ik(t)

+(θ̂ − θ)′π(t) + op(|θ̂ − θ|), (A.3)

uniformly over t ∈ [t0, t1].

Proof of Lemma A. Since h(u) = p(u,w)/g(u,w), by (2.5) and Lemma A.5,

we have

Ĥ(t)−H(t) =

∫ t

t0

Ψn1(u)du+

∫ t

t0

Ψn2(u)du+

∫ t

t0

Ψn3(u)du

+(θ̂ − θ)′
∫ t

t0

Σ(u)du+ op(n
−1/2). (A.4)

Exchanging the summations in Ψn1(t) and Ψn2(t) , using Lemma A.2 and the

conditions on b0, we can show that

Ψn1(t) + Ψn2(t)

=
1

Ndg(t)

nd∑
i=1

mi∑
k=1

p(Wik)
{
b−1
1 K1

(Tik−t
b1

)
+
h(t)p(1)(Wik)

p(Wik)

(
I(Tik≤ t)−G(t|Wik)

)}
+

h(t)

Ndg(t)

nd∑
i=1

mi∑
k=1

{
p(1)(Wik)(I(Tik≤ t)−G(t|Wik))−g(t,Wik)

}
+op(n

−1/2), (A.5)

uniformly over t ∈ [t0, t1]. Consider Ψn3(u). Let

p̃1ik(t, w) = −ed̄,ik(t)− (B1 − q1(w))
′S

(1)

d̄
(S−1

d̄
(t))B−1

2 Zikµd̄,ik,

and

p̃2ik(t, w) = −
{ 1

b4

∫ c0

S−1
d̄

(t)
K4

(
µd̄,ik − u

b4

)
du− t

}
−(B1 − q1(w))

′S
(1)

d̄
(S−1

d̄
(t))B−1

2 Zikµd̄,ik.

Then

Ψn3(t) =
1

Nd̄g(t)

n∑
i=nd+1

mi∑
k=1

EW

[
p̃
(10)
2ik (t,W )p(t,W ) + p̃2ik(t,W )p(10)(t,W )
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−h(t)p̃(01)1ik (t,W )p(t,W )− h(t)p̃1ik(t,W )p(01)(t|W )p(W )
]

≡ 1

g(t)
{Ψn31(t) + Ψn32(t)−Ψn33(t)−Ψn34(t)} . (A.6)

It can be shown that

Ψn33(t) + Ψn34(t)

=
1

Nd̄

n∑
i=nd+1

mi∑
k=1

h(t)EW

[
(q(1)z (W ))′S

(1)

d̄
(S−1

d̄
(t))B−1

2 Zikµd̄,ikp(t,W )

−
{
ed̄,ik(t) + (B1 − q1(W ))′S

(1)

d̄
(S−1

d̄
(t))B−1

2 Zikµd̄,ik

}
p(01)(t|W )p(W )

]
. (A.7)

By Lemma A.1 and assumption that nd̄b
2s4
4 → 0, we have

Ψn32(t) = − 1

Nd̄

n∑
i=nd+1

mi∑
k=1

EW

[{
ed̄,ik(t)+(B1−q1(W ))′S

(1)

d̄
(S−1

d̄
(t))B−1

2 Zikµd̄,ik

}
×p(10)(t,W )

]
+ op(n

−1/2). (A.8)

In addition,∫ t

t0

Ψn31(u)

g(u)
du

=− 1

Nd̄

n∑
i=nd+1

mi∑
k=1

EW

{
−
∫ t

t0

p(u,W )K4((µd̄,ik−S
−1
d̄

(u))/b4)

b4g(u)S
(1)

d̄
(S−1

d̄
(u))

du−
∫ t

t0

p(u,W )

g(u)
du

}

− 1

Nd̄

n∑
i=nd+1

mi∑
k=1

EW

{∫ t

t0

p(u,W )S
(2)

d̄
(S−1

d̄
(u))

g(u)S
(1)

d̄
(S−1

d̄
(u))

du(B1 − q1(W ))′B−1
2 Zikµd̄,ik

}
.

(A.9)

Note that Sd̄(µd̄,ik) is the uniform distribution on [t0, t1]. By Lemma A.1, we can

show that

− 1

Nd̄

n∑
i=nd+1

mi∑
k=1

EW

{∫ t

t0

p(u,W )K4((µd̄,ik − S−1
d̄

(u))/b4)

b4g(u)S
(1)

d̄
(S−1

d̄
(u))

du

}

in (A.9) can be replaced by

1

Nd̄

n∑
i=nd+1

mi∑
k=1

EW

{
I(t0 ≤ Sd̄(µd̄,ik) ≤ t)p(Sd̄(µd̄,ik),W )

g(Sd̄(µd̄,ik))

}
.
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Then, by (A.6), (A.7), (A.8), (A.9), and some algebraic calculations, we can show

that∫ t

t0

Ψn3(u)du = − 1

Nd̄

n∑
i=nd+1

mi∑
k=1

{
I(t0 ≤ Sd̄(µd̄,ik) ≤ t)h(Sd̄(µd̄,ik))−H(t)

+Γ(t)B−1
2 Zikµd̄,ik +

∫ t

t0

λ(u)ed̄,ik(u)du
}
. (A.10)

Furthermore, noting that the term

1

Nd

nd∑
i=1

mi∑
k=1

∫ t

t0

1

b1g(u)
K1

(
Tik − u

b1

)
p(Wik)du

in
∫
{Ψn1(u) + Ψn2(u)} du can be replaced by (1/Nd)

∑nd
i=1

∑mi
k=1 I(t0 ≤ Tik ≤

t)p(Wik)/g(Tik) by Lemma A.1 and the condition on b1, we conclude Lemma A

from (A.4), (A.5), and (A.10).

A.4. Proof of Theorem 1.

We consider the asymptotic expression form of θ̂− θ. By (2.9) and a Taylor

expansion, we can write

θ̂ − θ = −D−1 1

Nd

nd∑
i=1

mi∑
k=1

h(Tik)(T̂ik − Tik)Xik

−D−1 1

Nd

nd∑
i=1

mi∑
k=1

(
Ĥ(Tik)−H(Tik)

)
Xik

−D−1 1

Nd

nd∑
i=1

mi∑
k=1

εikXik + op(n
−1/2
d )

≡ Cn1 + Cn2 + Cn3 + op(n
−1/2
d ), (A.11)

where D = E[XX ′]. By (A.2), substituting Lemma A.3 into Cn1 and exchanging

the summations, we get

Cn1≈
D−1

Nd̄

n∑
i=nd+1

mi∑
k=1

EXTh(T )X
{
S
(1)
0 (S−1

d̄
(T ))(Z−B1)

′B−1
2 Zikµd̄,ik−ed̄,ik(T )

}
.

Substituting (A.3) into Cn2, exchanging the summations and using Condition 4,

we get

Cn2 ≈ −D−1 1

Nd

nd∑
j=1

mj∑
ℓ=1

EXT

[
Xδd̄,ik(T )

]
−D−1E

[
Xπ′(T )

]
(θ̂ − θ)
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+D−1 1

Nd̄

n∑
i=nd+1

mi∑
k=1

EXT

[
δd̄,ik(T )X

]
.

Theorem 1 follows by substituting the expressions of Cn1, Cn2 and Cn3 into

(A.11).

A.5. Proof of Theorem 3

Denote the compact support of H(T ) + X ′θ for T ∈ [t0, t1] by [e0, e1]. For

any t ∈ [e0, e1], take

F̂ (t) =
1

Nd

nd∑
i=1

mi∑
k=1

I(Ĥ(T̂ik) +X ′
ikθ̂ ≤ t), and Fn(t) =

1

Nd

nd∑
i=1

mi∑
k=1

I(εik ≤ t).

Using the argument as in Lemma 9 of Horowitz (1996), we get that

N
1/2
d sup

t∈[e0,e1]
|
(
F̂ (t)− ẼI(Ĥ(T̂ik) +X ′

ikθ̂ ≤ t)
)
− (Fn(t)− F (t)) | → 0,

where Ẽh(X,Yd) =
∫
h(x, y)dP (x, y) for any function h, and P is the cumulative

distribution function of (X,Yd). Hence,

N
1/2
d

(
F̂ (t)− F (t)

)
= Dn1(t) +Dn2(t) + op(1), (A.12)

where Dn1(t) = N
1/2
d (Fn(t) − F (t)), and Dn2(t) = N

1/2
d (ẼI(Ĥ(T̂ik) + X ′

ikθ̂ ≤
t)− F (t)). Using the techniques of Horowitz (1996), we get that

Dn2(t) = −N1/2
d f(t)

∫ {
h(y)

(
Ŝd̄(S

−1
d̄

(y))− y
)
+
(
Ĥ(y)−H(y)

)
+h(y)S

(1)
0 (S−1

d̄
(y))(γ̂ − γ)′E[Z|X ′θ = t−H(y)]

}
p(t−H(y))h(y)dy

−N1/2
d f(t)E[X ′](θ̂ − θ).

Substituting Lemma A.3, the expressions of θ̂− θ and Ĥ(w)−H(w) into Dn2(t),

we can show that

Dn2(t) = −
N

1/2
d f(t)

Nd̄

n∑
i=nd+1

mi∑
k=1

{
EXT

[
τd̄,ik

(
H−1(t−W )

)
−A′

3(t)A
−1
1 τd̄,ik(T )X

]
+
(
A′

4(t) +A′
3(t)A

−1
1 A2

)
B−1

2 Zikµd̄,ik
}

− f(t)

N
1/2
d

nd∑
i=1

mi∑
k=1

{
EXT

[
δd,ik(H

−1(t−W ))−A′
3(t)A

−1
1 δd,ik(T )X

]
−A′

3(t)A
−1
1 εikXik

}
. (A.13)
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Theorem 3 then follows from (A.12) and (A.13).

A.6. Proof of Theorem 4

By the definition of R̂OC(t, x), we have that

R̂OC(t, x)−ROC(t, x)

= F̂
(
θ̂′x+ Ĥ(t)

)
− F

(
θ̂′x+ Ĥ(t)

)
+ F

(
θ̂′x+ Ĥ(t)

)
− F

(
θ′x+H(t)

)
.

Then, by Taylor expansions and the smoothing approximation in Lemma A.1,

we have

R̂OC(t, x)−ROC(t, x)

=
{
F̂
(
θ′x+H(t)

)
− F

(
θ′x+H(t)

)}
+f
(
θ′x+H(t)

) (
(θ̂ − θ)′x+ (Ĥ(t)−H(t))

)
+ op(n

−1/2). (A.14)

Substituting the expressions of θ̂− θ, Ĥ(w)−H(w), and F̂ (t)−F (t) into (A.14),

we can prove Theorem 4.
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