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Abstract: This paper is concerned with quantile regression for a semiparametric

regression model, in which both the conditional mean and conditional variance

function of the response given the covariates admit a single-index structure. This

semiparametric regression model enables us to reduce the dimension of the covari-

ates and simultaneously retains the flexibility of nonparametric regression. Under

mild conditions, we show that the simple linear quantile regression offers a consis-

tent estimate of the index parameter vector. This is interesting because the single-

index model is possibly misspecified under the linear quantile regression. With a

root-n consistent estimate of the index vector, one may employ a local polynomial

regression technique to estimate the conditional quantile function. This proce-

dure is computationally efficient, which is very appealing in high-dimensional data

analysis. We show that the resulting estimator of the quantile function performs

asymptotically as efficiently as if the true value of the index vector were known. The

methodologies are demonstrated through comprehensive simulation studies and an

application to a dataset.

Key words and phrases: Dimension reduction, heteroscedasticity, linearity condi-

tion, local polynomial regression, quantile regression, single-index model.

1. Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression

has become an important statistical analytic tool. Koenker (2005) provided a

comprehensive review of the topic of quantile regression. Nonparametric quantile

regression has been extensively studied in situations where the covariate vector

is univariate. For instance, Bhattacharya and Gangopadhyay (1990) studied ker-

nel estimation and nearest neighborhood estimation, and Fan, Hu, and Truong

(1994) and Yu and Jones (1998) proposed local linear polynomial quantile regres-

sion. Koenker, Ng, and Portnoys (1994) proposed regression spline approaches for

estimating the conditional quantile regression. When the covariate x is multivari-

ate, Stone (1977) and Chaudhuri (1991) proposed fully nonparametric quantile

regression. Due to the “curse of dimensionality”, however, the fully nonpara-

metric quantile regression may not be very useful in practice. Thus, researchers
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considered alternatives by assuming structures on the regression function. De

Gooijer and Zerom (2003), Yu and Lu (2004), and Horowitz and Lee (2005)

proposed quantile regression for additive models; Wang, Zhu, and Zhou (2009)

considered quantile regression for partially linear varying-coefficient models; Wu,

Yu and Yu (2010) suggested a back-fitting algorithm for single-index models.

Based on their estimation equation, Kong and Xia (2010) investigated the Ba-

hadur representation of single-index parameter estimators. Gannoun et al. (2004)

considered quantile regression for multi-index models.

Let Y be a response variable, and x = (X1, . . . , Xp)
T be a covariate vector.

In this paper, we consider the heteroscedastic single-index model

Y = G(xTβ0) + σ(xTβ0)ε, (1.1)

where the error term ε is assumed to be independent of x, E(ε) = 0, and

Var (ε) = 1. The functions G(·) and σ(·) are unspecified, nonparametric smooth-

ing functions. The parameter of interest is the direction of β0. To ensure identi-

fiability, it is assumed throughout that ∥β0∥ = 1 with first nonzero element being

positive. It is easy to see that (1.1) includes linear quantile regression (Koenker

and Bassett (1978)) as a special case. Model (1.1) becomes a nonparametric

regression model when p = 1, and the traditional single-index model (Ichimura

(1993)) when σ(·) is a positive constant. Here we allow for heteroscedasticity.

The single-index structure in (1.1) retains the flexibility of nonparametric regres-

sion and allows the presence of high-dimensional covariates.

Chaudhuri, Doksum, and Samarov (1997) proposed an estimation procedure

for β0 using the average derivative approach that takes partial derivatives of the

conditional quantile with respect to the covariates x. The average derivative

approach requires multivariate kernel regression and is less useful in the presence

of high-dimensional covariates. Wu, Yu and Yu (2010) proposed a back-fitting

algorithm that is computationally expensive when p is large. In this paper, we

propose a new estimation procedure for model (1.1) that consists of two steps.

We first estimate β0 using linear quantile regression and show that the resulting

estimate is consistent. We then employ local linear regression (Fan and Gijbels

(1996)) to estimate the conditional quantile function of Y given xTβ0. We make

the following contributions to the literature

(a) Under mild conditions, for any link function G(·) and τ ∈ (0, 1), the τ -th

linear quantile regression coefficient for Y | x is proportional to β0 in the

single-index model (1.1).

(b) The local linear regression estimate for the conditional quantile function

based upon the root-n consistent estimate of β0 has the same asymptotic

bias and variance as the local linear estimate with the true value of β0.
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The theoretical result in (a) implies that the ordinary linear quantile re-
gression actually results in root-n consistent estimates for β0. Thus, quantile
regression provides an effective tool to reduce the dimension of the covariate in
the presence of high-dimensional covariates. This property enables us to substan-
tially reduce the computational cost of the back-fitting algorithm (Wu, Yu and
Yu (2010)); this is appealing in high-dimensional data analysis. We demonstrate
this issue in detail in our numerical analysis. In addition, variable selection
procedures for quantile regression (Zou and Yuan (2008); Wu and Liu (2009);
Belloni and Chernozhukov (2011)) may be applicable to model (1.1) with high-
dimensional covariates when many covariates are not significant. In general, the
regularization parameter in the penalized quantile regression should depend on
the quantile index τ (Belloni and Chernozhukov (2011)). The result in (b) im-
plies that the dimensionality of covariate does not affect the performance of the
local linear estimate asymptotically. Thus, it may not be necessary to update the
estimate of β0 iteratively once a root-n consistent estimator of β0 is available.
It also ensures that our proposed procedure works properly in high-dimensional
settings.

The rest of this article is organized as follows. In Section 2 we propose a
two-step procedure to estimate the conditional quantile function. Asymptotic
properties of the resulting estimates are also established in this section. We
demonstrate the methodologies through comprehensive simulation studies and
an application to a dataset in Section 3. We conclude this paper with a brief
discussion in Section 4. All proofs are in the Appendix.

2. A New Estimation Procedure

In this section we study the estimation of quantile regression for model (1.1).
We prove that the linear quantile regression yields consistent estimate for β0. We
further demonstrate that the quantile regression for model (1.1) can be reduced
to the univariate quantile regression through replacing β0 with β̂0, the resulting
estimate of the linear quantile regression.

2.1. Estimation of β0

Let ρτ (r) = τr − r1(r < 0) be the check loss function, and Lτ (u,β) =
E
{
ρτ
(
Y − u− βTx

)}
. Take

(uτ ,βτ )
def
= argmin

u,β
{Lτ (u,β)} . (2.1)

Theorem 1. If the covariate vector x at (1.1) satisfies

E
(
x | βT

0 x
)
= Var (x)β0

{
βT
0 Var (x)β0

}−1
βT
0 x, (2.2)

then βτ = κβ0 for some constant κ, where βτ is defined in (2.1).
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The linearity condition (2.2) plays an important role here. With it, we

are able to obtain a root n consistent estimator of the direction of β by the

linear quantile regression, see Theorem 2. The linearity condition (2.2) is widely

assumed in the context of sufficient dimension reduction. Li (1991) pointed out

that it is satisfied when x follows an elliptically contour distribution, and Hall

and Li (1993) proved that it always holds to a good approximation in single-index

models of the form (1.1) when the dimension p of the covariates diverges. Thus,

the linearity condition is typically regarded as mild, particularly when p is fairly

large.

Similar results can be established for general convex loss functions under

the linearity condition. When the quadratic loss function is used, however, the

resulting estimate cannot recover any information beyond the conditional mean

function. Similarly, the absolute loss function is designed to identify information

in the conditional median function. More generally, the check loss function at

any given τ is specifically designed to find the information relevant exclusively

to the τ -th quantile function. Theorem 1 justifies partially the validity of the

procedure suggested by Gannoun et al. (2004). However, their method can be

excessive because the dimension-reduction step captures all information relevant

to the whole conditional distribution function.

Theorem 1 also implies that the existing statistical procedures for the linear

quantile regression can be directly applied to model (1.1). In particular, the

existing variable selection procedure for the linear quantile regression with high-

dimensional covariates (Wu and Liu (2009); Zou and Yuan (2008); Belloni and

Chernozhukov (2011)) can be used to select significant variables. It is impor-

tant to correctly set the range of the tuning parameter in the variable selection

procedure based on a penalized linear quantile regression. The range of the tun-

ing parameter may explicitly or implicitly depend on the link function G, the

quantile index τ , and the density of error distribution. A data-driven method for

tuning parameter selection is recommended.

Let (xi, Yi) , i = 1, . . . , n, be a random sample from (x, Y ), and take

Lτ n(u,β) = n−1
n∑

i=1

{
ρτ
(
Yi − u− xT

i β
)}

.

Let (
ûτ , β̂τ

)
def
= argmin

u,β
{Lτ n(u,β)} . (2.3)

Theorem 2. Assume that Λ = E
{
f∗(ξτ | x)xxT

}
is invertible, where f∗(z | x)

denotes the conditional density of
(
Y − xTβτ

)
given x, and ξτ denotes the τ -th

quantile of Y | x. Then n1/2(β̂τ − βτ ) is asymptotically normal with mean zero
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and covariance matrix τ (1− τ)Λ−1E
(
xxT

)
Λ−1. If the “partial residual” term

Y − xTβτ is independent of x, the asymptotic variance matrix of β̂τ reduces to

τ (1− τ)E
(
xxT

)−1
/ {f∗(ξτ )}2.

2.2. Estimation of the conditional quantile function

By Theorem 1, βτ is proportional to β0, and hence the conditional distri-

bution of Y |
(
xTβ0

)
is that of Y |

(
xTβτ

)
. Consequently, Theorem 1 allows

one to estimate the quantile regression of Y |
(
xTβ0

)
through the conditional

distribution of Y |
(
xTβτ

)
. We denote the τ -quantile function of Y |

(
xTβτ

)
by

Gτ (·).
By using data points {(xT

i β̂τ , Yi), i = 1, . . . , n}, we estimate Gτ (·) by local

linear regression. For ease of presentation, let z = xT
0 βτ , ẑ = xT

0 β̂τ , Zi = xT
i βτ ,

Ẑi = xT
i β̂τ . Local linear regression is used to approximate Gτ (Z) by

Gτ (Z) ≈ Gτ (z) +G′
τ (z)(Z − z)

for Z in the neighborhood of z. Let

(
â, b̂
)

def
= argmin

a,b

1

n

n∑
i=1

ρτ
{
Yi − a− b

(
Ẑi − ẑ

)}
K
{(Ẑi − ẑ)

h

}
.

Then, Ĝτ (ẑ) = â and Ĝ′
τ (ẑ) = b̂.

Theorem 3. Under the regularity conditions (i)−(iv) in Appendix A, if h → 0

and nh → ∞, then the asymptotic conditional bias and variance of the local linear

quantile regression estimator Ĝτ (ẑ) are

bias{Ĝτ (ẑ)} = G′′
τ (z)µ2

h2

2
+ op(h

2),

Var {Ĝτ (ẑ)} = (nh)−1∆ {1 + op(1)} ,

where ∆ = τ(1− τ)ν0/
{
f(z)f2

Y (ξτ | z)
}
= τ(1− τ)ν0σ

2(z)/
{
f(z)f2

ε (ξ
⋆
τ )
}
, ν0 =∫ 1

−1K
2(u)du, fε is the density function of ε, and ξ⋆τ is its τ -th quantile. Further-

more, as n → ∞, h → 0 and nh → ∞,

(nh)1/2
{
Ĝτ (ẑ)−Gτ (z)−G′′

τ (z)µ2
h2

2

}
is asymptotically normal with mean zero and asymptotic variance ∆.

For univariate x, the asymptotic bias and variance of nonparametric quan-

tile regression can be found in Fan, Hu, and Truong (1994) and Yu and Jones

(1998). We compared the asymptotic bias and variance of the local linear quan-

tile regression estimator built upon {(xT
i β̂τ , Yi), i = 1, . . . , n} with that of the
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estimator built upon {(xT
i βτ , Yi), i = 1, . . . , n} in Fan, Hu, and Truong (1994),

and found they performed equally well asymptotically. This implies that the
resulting estimate of our procedure performs as well as an oracle estimate that
replaces β̂τ with its true value.

We turn to the issue of bandwidth selection. One usually chooses it to
minimize the mean squared error (MSE) of nonparametric estimation. Theorem
3 indicates that the leading term of the MSE of Ĝτ (ẑ) is

MSE
{
Ĝτ (ẑ)

}
=

1

4

{
µ2G

′′
τ (z)

}2
h4 +

ν0
nhf(z)

τ(1− τ)

f2
ε (ξ

⋆
τ )

σ2(z).

Thus, the bandwidth that minimizes the asymptotic MSE of Ĝτ (ẑ) is

hopt(ẑ) =

[
4ν0τ(1− τ)

{µ2fε(ξ⋆τ )}
2

σ2(z)/f(z)

{G′′
τ (z)}

2

]1/5
n−1/5. (2.4)

This implies that the local quantile regression achieves the optimal rate of conver-
gence n2/5. To implement hopt(ẑ), one has to replace all unknowns in (2.4) with
their consistent estimators. This is usually computationally inefficient although
all the unknown quantities are univariate nonparametric functions.

In the sequel we introduce a computationally efficient way to calculate the
bandwidth for the quantile regression. We notice from Theorem 3 that the leading
term of the asymptotic bias for the local linear quantile regression is the same
as that for the local linear least squares estimator, whereas their asymptotic
variances are different. The local least squares estimator (Fan and Gijbels (1996))
has MSE of the form

MSE
{
ĜLS(ẑ)

}
=

1

4

{
µ2G

′′(z)
}2

h4 +
ν0

nhf(z)
σ2(z),

which results in the optimal bandwidth

hoptm (ẑ) =

[
4ν0
µ2
2

σ2(z)/f(z)

{G′′(z)}2

]1/5
n−1/5. (2.5)

Comparing (2.5) with (2.4),

hopt(ẑ) = hoptm (ẑ)

{
τ(1− τ)

{fε(ξ⋆τ )}
2

{G′′(z)}2

{G′′
τ (z)}

2

}1/5

.

We introduce a rule of thumb bandwidth selector. If the curvatures of the τ -
th quantile function G′′

τ (z) and the conditional mean function G′′(z) are similar,
and the error ε is close to standard normal, then we take

hopt(ẑ) = hoptm (ẑ)

{
τ(1− τ)

{ϕ (ξ⋆τ )}
2

}1/5

, (2.6)
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where ϕ(·) denotes the probability density function of the standard normal dis-

tribution. There are many algorithms for calculating hoptm (ẑ) (Fan and Gijbels

(1996)), hence hopt(ẑ). One can estimate ξ⋆τ through the sample τ -th quantile

of the residuals ε̂i =
{
Yi − Ĝ(xT

i β̂τ )
}
/σ̂(xT

i β̂τ ), for i = 1, . . . , n. An alternative

way is to replace ξ⋆τ in (2.6) with the τ -th quantile of the standard normal to

further simplify the calculation.

The idea of this approximation originated with Yu and Jones (1998) and Yu

and Lu (2004). Although it is built upon several assumptions, it provides a com-

putationally efficient way to calculate the bandwidth for the quantile regression.

We find it performs quite well in usual practice.

3. Simulations and Application

In this section we report on simulations to compare the performance of

the proposed methods with existing competitors and to illustrate the proposed

methodology with a data example.

3.1. Simulation

We generated 1,000 datasets, each consisting of n = 500 observations, from

Y = sin
{
2
(
xTβ0

)}
+ 2 exp

{
− 16

(
xTβ0

)2 }
+ σ

(
xTβ0

)
ε, (3.1)

where the index parameter β0 = (2,−2,−1, 1, 0, . . . , 0)T /
√
10 is a p × 1 vec-

tor, and the covariate vector x = (X1, . . . , Xp)
T was generated as multivariate

normal with mean zero and covariance matrix Var (x) = (σij)p×p with σij =

0.5|i−j|. The conditional mean function at (3.1) was designed by Kai, Li, and

Zou (2010). In our simulations, we chose p = 10, 20, and 50, and considered

five error distributions for ε: (i) the standard normal N(0, 1); (ii) the mixture

0.8N(0, 1)+0.2N(0, 9); (iii) the Laplace distribution; (iv) the student-t distribu-

tion with 3 degrees of freedom t(3); and (v) the Cauchy distribution. The error

term ε and the covariates x were mutually independent. We took σ
(
xTβ0

)
= 1 in

the homoscedasticity case (1), and σ
(
xTβ0

)
= exp

(
xTβ0

)
in the heteroscedas-

ticity case (2). The response values contain outliers with larger probabilities

in case (2) than in case (1). We compared the performance of our procedures

with the back-fitting algorithm proposed by Wu, Yu and Yu (2010). Though,

from our limited experience, the back-fitting algorithm demands much comput-

ing time. We compared the simulation results of the back-fitting algorithm based

on 100 and 1,000 replications for one case, and found that the simulation results

based on 100 replications were almost the same as those based on 1,000 repli-

cations. Thus, we report the results of the back-fitting algorithm based on 100

replications in order to save computing time.
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Performance in estimating β0. The index parameter β0 was estimated via

a series of quantile regressions with τ = 0.025, 0.05, 0.5, 0.95 and 0.975, respec-

tively. Table 1 depicts the averages of mean squared errors (MSE) of the estimate

β̂τ , defined by MSE =
∥∥∥β̂τ/∥β̂τ∥ − β0

∥∥∥2. We included three competitors when

p = 10: (i) the linear quantile regression formulated in (2.3); (ii) the back-fitting

algorithm proposed by Wu, Yu and Yu (2010); and (iii) the ordinary least squares

estimate (LSE). Li and Duan (1989) proved that this LSE is a consistent esti-

mator of the direction of β0; thus, it serves naturally as a competitor here. It

can be seen from Table 1 that the back-fitting algorithm performs the best in

most scenarios. This is expected in that the back-fitting algorithm updates the

nonparametric quantile function in a data-driven manner while estimating β0.

By contrast, the linear quantile regression assumes a linear quantile function to

reduce computational complexity. Yet the linear quantile regression also has a

satisfactory performance. In case (1) with Cauchy errors, the linear quantile

regression performs even better than the back-fitting algorithm in terms of the

MSE values. In case (1) with standard normal errors, the LSE performs slightly

better than the linear quantile regression. However, the linear quantile regres-

sion is superior to the LSE in all other cases. The improvement of linear quantile

regression over the LSE is more significant in case (2) than in case (1). This is ex-

pected in that the performance of the LSE is sensitive to the presence of outliers.

The quantile regression offers a more robust estimation in most scenarios.

Performance in coverage probability of prediction intervals. It is of in-

terest to evaluate the accuracy of quantile regression in its prediction interval of

Y given xTβ0. Here the τ -th and (1− τ)-th quantile of the conditional distribu-

tion of Y given xTβ0 can be used as a confidence interval at the level of (1− 2τ)

for τ < 0.5. We choose τ = 0.025 and 0.05 to provide confidence intervals at

95% and 90%, and expect the empirical coverage probability to be close to the

nominal level of (1− 2τ).

We include three competitors in our comparison: (i) the back-fitting algo-

rithm (Wu, Yu and Yu (2010)) which can simultaneously estimate the index

parameter βτ and the quantile function; (ii) the quantile regression method in-

troduced in Section 2.2 based on the estimated index parameter β̂τ ; and (iii)

the oracle estimator that provides the prediction interval by using the true index

parameter β0. The average and the standard deviation of the empirical coverage

probabilities are summarized in Table 2.

Both the homoscedasticity and the heteroscedasticity cases reported in Ta-

ble 2 show similar messages. The coverage probabilities of the three competitors

are all close to the nominal levels for different τ values, although the back-fitting

algorithm uses a more accurate estimate of β0. The standard deviations of the
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Table 1. The averages of MSEs of β̂τ for model (3.1) with p = 10.

case (1): σ
(
xTβ0

)
= 1 case (2): σ

(
xTβ0

)
= exp

(
xTβ0

)
the τ -th quantile in % the τ -th quantile in %
2.5 5 50 LSE 95 97.5 2.5 5 50 LSE 95 97.5

Linear quantile regression

ε ∼ N(0, 1)
0.200 0.191 0.140 0.113 0.292 0.305 0.173 0.164 0.107 0.265 0.230 0.245
ε ∼ 0.8N(0, 1) + 0.2N(0, 9)
0.259 0.246 0.173 0.197 0.347 0.362 0.236 0.223 0.145 0.484 0.289 0.301
ε ∼ Laplace distribution
0.144 0.136 0.097 0.110 0.219 0.230 0.127 0.121 0.082 0.255 0.186 0.197
ε ∼ t(3)
0.249 0.239 0.171 0.217 0.344 0.359 0.222 0.210 0.139 0.498 0.290 0.303
ε ∼ Cauchy distribution
0.376 0.359 0.237 1.441 0.452 0.474 0.371 0.354 0.215 1.430 0.420 0.442

Back-fitting algorithm

ε ∼ N(0, 1)
0.137 0.118 0.069 – 0.164 0.195 0.105 0.094 0.048 – 0.117 0.135
ε ∼ 0.8N(0, 1) + 0.2N(0, 9)
0.319 0.232 0.086 – 0.284 0.316 0.136 0.112 0.069 – 0.163 0.184
ε ∼ Laplace distribution
0.119 0.104 0.045 – 0.128 0.167 0.098 0.087 0.035 – 0.115 0.125
ε ∼ t(3)
0.269 0.218 0.089 – 0.260 0.314 0.162 0.146 0.083 – 0.142 0.168
ε ∼ Cauchy distribution
0.598 0.612 0.164 – 0.645 0.655 0.336 0.257 0.158 – 0.305 0.394

empirical probabilities are very small, indicating that the quantile regression of-

fers a very reliable coverage probability that is comparable with its oracle version.

Computational efficacy. It is of interest to compare the computational efficacy

of our method with that of the back-fitting algorithm proposed by Wu, Yu and

Yu (2010). Table 3 summarizes the average computing time in seconds used for

estimating the index parameter and calculating the prediction intervals for one

replication. It can be seen from Table 3 that our method is much faster than

the back-fitting algorithm. In addition, the computing time of the back-fitting

algorithm varies over the error distributions.

Performance in high dimension. Next we investigate the performance of the

proposed method when p is relative large. We still use model (3.1) for illustration

purposes, but increase the dimension p of the covariates. Tables 4 and 5 report,

respectively, the MSE values and the coverage probabilities for model (3.1) with

p = 20 and 50. Table 4 together with Table 1 indicates that the MSE values

of β̂τ increase significantly as the covariate dimension p increases. However, the

covariate dimension p has little effect on estimating the coverage probabilities of
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Table 2. The empirical coverage probabilities for model (3.1) with p = 10.

case (1): σ
(
xTβ0

)
= 1 case (2): σ

(
xTβ0

)
= exp

(
xTβ0

)
quantile regression Back-fitting quantile regression Back-fitting
New Oracle algorithm New Oracle algorithm

Level 90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%

ε ∼ N(0, 1)

aver. 89.4 94.5 89.8 94.8 90.5 95.5 90.1 95.1 90.9 95.5 91.1 95.9
stdev 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4

ε ∼ 0.8N(0, 1) + 0.2N(0, 9)

aver. 89.7 94.7 89.9 94.7 90.6 95.5 90.3 95.0 90.7 95.9 91.1 95.8
stdev 0.4 0.3 0.5 0.3 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.5

ε ∼ Laplace distribution

aver. 89.7 94.7 89.8 94.8 90.6 95.6 90.3 95.1 90.9 95.5 91.1 95.9
stdev 0.4 0.3 0.5 0.4 0.6 0.4 0.4 0.4 0.5 0.4 0.5 0.4

ε ∼ t(3)

aver. 89.7 94.7 89.8 94.8 90.6 95.5 90.3 95.1 90.8 95.4 91.2 95.9
stdev 0.4 0.3 0.5 0.4 0.6 0.4 0.4 0.4 0.5 0.4 0.5 0.4

ε ∼ Cauchy distribution

aver. 90.4 95.4 90.4 95.7 90.9 95.7 90.8 95.6 91.0 95.7 91.2 95.9
stdev 0.5 0.4 0.5 0.5 0.7 0.4 0.5 0.4 0.5 0.4 0.5 0.5

Table 3. The averages of computing times (in seconds) for model (3.1) with
p = 10.

Case (1): σ
(
xTβ0

)
= 1 (2): σ

(
xTβ0

)
= exp

(
xTβ0

)
Error New back-fitting New back-fitting
N(0, 1) 0.11 1018.57 0.10 1029.58
0.8N(0, 1) + 0.2N(0, 9) 0.11 1472.64 0.11 1490.92
Laplace distribution 0.11 1531.51 0.09 1551.81
t(3) 0.12 1386.17 0.10 1401.70
Cauchy distribution 0.13 1429.88 0.11 1426.16

the prediction intervals, as can be seen from Tables 2 and 5. This benefits essen-

tially from the single-index structure of the quantile function. These simulation

results support our methodology in high-dimensional setting.

3.2. An application

We illustrate the proposed procedures by an empirical analysis of an auto-

mobile dataset (Johnson (2003)). It is of interest to know how the manufactures’

suggested retail price (MSRP) of vehicles depends upon different levels of such

attributes as miles per gallon and horsepower. Thus, MSRP serves naturally as

the response variable. This is the manufacturer’s assessment of a vehicle’s worth,

and includes adequate profit for the manufacturer and the dealer. We use the

logarithmic transformation of the MSRP in U.S. dollars as the response (Y ).
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Table 4. The averages of MSEs of β̂τ for model (3.1) with p = 20 and 50.

case (1): σ
(
xTβ0

)
= 1 case (2): σ

(
xTβ0

)
= exp

(
xTβ0

)
the τ -th quantile in % the τ -th quantile in %

2.5 5 50 LSE 95 97.5 2.5 5 50 LSE 95 97.5
p = 20

ε ∼ N(0, 1)
0.380 0.365 0.271 0.230 0.516 0.535 0.371 0.353 0.231 0.439 0.450 0.468
ε ∼ 0.8N(0, 1) + 0.2N(0, 9)
0.476 0.458 0.345 0.380 0.619 0.640 0.483 0.460 0.300 0.722 0.539 0.561
ε ∼ Laplace distribution
0.294 0.280 0.213 0.232 0.438 0.458 0.290 0.275 0.185 0.446 0.400 0.419
ε ∼ t(3)
0.444 0.427 0.331 0.387 0.606 0.628 0.470 0.445 0.290 0.736 0.535 0.559
ε ∼Cauchy distribution
0.651 0.624 0.447 1.633 0.754 0.778 0.701 0.671 0.431 1.597 0.708 0.733

p = 50
ε ∼ N(0, 1)
0.757 0.733 0.586 0.504 0.941 0.967 0.840 0.804 0.539 0.780 0.863 0.888
ε ∼ 0.8N(0, 1) + 0.2N(0, 9)
0.895 0.868 0.689 0.718 1.041 1.067 1.029 0.991 0.660 1.065 0.970 0.995
ε ∼ Laplace distribution
0.670 0.643 0.496 0.506 0.878 0.906 0.704 0.671 0.465 0.756 0.817 0.844
ε ∼ t(3)
0.890 0.859 0.667 0.734 1.008 1.034 1.009 0.972 0.656 1.083 0.972 0.997
ε ∼Cauchy distribution
1.175 1.145 0.889 1.777 1.253 1.283 1.313 1.275 0.865 1.749 1.165 1.189

In addition, there are seven features which possibly affect the resulting price of

vehicles: engine size (X1), number of cylinders (X2), horsepower (X3), average

city miles per gallon (MPG, X4), average highway MPG (X5), weight in pounds

(X6), and wheel base in inches (X7). This dataset consists of 428 observations,

sixteen of which have missing values. We remove those observations with miss-

ing values in our subsequent analysis. The remaining dataset has a total of eight

variables and 412 observations. Both the response variable Y and the covariate

vector x = (X1, . . . , X7)
T are standardized marginally to have zero mean and

unit variance. The fully nonparametric regression is not applicable to this par-

ticular case because the sample size is small compared with the dimensionality

of the covariates.

We specify the heteroscedastic single-index model (1.1) for analyzing the

new vehicle data. The index parameter is estimated at five different quantiles:

τ = 0.025, 0.05, 0.50, 0.95 and 0.975. This yields similar estimates for the index

parameter βτ at different quantiles, indicating that similar patterns between the
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Table 5. The empirical coverage probabilities for model (3.1) with p = 20
and 50.

Case (1): σ
(
xTβ0

)
= 1 (2): σ

(
xTβ0

)
= exp

(
xTβ0

)
New Oracle New Oracle

Error Level 90% 95% 90% 95% 90% 95% 90% 95%
p = 20

N(0,1) aver. 90.3 95.3 90.9 95.9 90.8 95.7 91.4 96.1
stdev 0.4 0.4 0.5 0.4 0.5 0.3 0.5 0.4

0.8N(0, 1) aver. 90.4 95.3 90.9 95.7 90.8 95.6 91.3 95.9
+0.2N(0, 9) stdev 0.4 0.3 0.5 0.4 0.4 0.3 0.5 0.5

Laplace aver. 90.4 95.4 91.0 95.8 90.8 95.7 91.4 96.0
stdev 0.4 0.3 0.5 0.5 0.4 0.3 0.5 0.5

t(3) aver. 90.3 95.3 90.8 95.7 90.8 95.6 91.2 96.0
stdev 0.4 0.4 0.5 0.4 0.5 0.4 0.5 0.4

Cauchy aver. 90.6 95.3 90.6 95.5 90.6 95.4 91.0 95.7
stdev 0.7 0.4 0.9 0.7 0.5 0.4 0.4 0.4

p = 50
N(0, 1) aver. 90.3 95.3 90.9 95.8 90.7 95.6 91.3 96.2

stdev 0.4 0.3 0.5 0.4 0.4 0.4 0.4 0.5
0.8N(0, 1) aver. 90.4 95.3 90.9 95.7 90.6 95.5 91.2 95.9

+0.2N(0, 9) stdev 0.4 0.3 0.5 0.4 0.5 0.3 0.5 0.4
Laplace aver. 90.3 95.3 91.0 95.8 90.6 95.5 91.3 96.1

stdev 0.4 0.3 0.6 0.5 0.4 0.3 0.5 0.4
t(3) aver. 90.4 95.3 90.9 95.7 90.7 95.5 91.3 96.0

stdev 0.4 0.3 0.5 0.4 0.5 0.4 0.5 0.4
Cauchy aver. 90.6 95.5 90.4 95.4 90.6 95.5 91.1 95.8

stdev 0.5 0.4 0.8 0.7 0.5 0.4 0.7 0.6

MSRP and different features are revealed at different quantiles. Specifically, the

estimated index parameter at τ = 0.5 is β̂τ = (0.3254,−0.1846,−0.6332, 0.3688,

−0.3326,−0.4156, 0.1994)T. Table 6 reports that the standard deviation of β̂τ ,

obtained from a nonparametric bootstrap procedure, is (0.052, 0.046, 0.051, 0.069,

0.057, 0.043, 0.032)T. This implies that the horsepower (X3) is perhaps the most

important factor that affects the suggested retail price (Y ), followed by the weight

in pounds (X6).

Using the data {(xT
i β̂τ , Yi), i = 1, . . . , n}, we first estimated the regression

function G(xTβ0) via the local least squares estimator. The estimated func-

tion and its 95% confidence interval are reported in Figure 1(C). We further

conducted some exploratory data analysis on this dataset. The boxplot of the

log-transformed MSRP, the response variable, is depicted in Figure 1(A), which

shows that there are four vehicles whose prices are significantly higher than other

vehicles. In addition, the histogram in Figure 1(B) reveals that the distribution
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(A) Boxplot of Y (B) Histogram of Y
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Figure 1. (A) Boxplot of log-transformed retail price. (B) Histogram of log-
transformed retail price. (C) Plot of Ĝ(·) and its 95% confidence interval
using the local linear least squares method. (D) Plot of Ĝτ (·) with τ = 2.5%,
50% and 97.5%. The 95% prediction interval of Y given x covers 96% points

of the log-transformed prices are highly skewed. This motivated us to further

conduct empirical analysis of this dataset using the proposed procedure.

Next we applied quantile regression to this dataset. Figure 1(D) presents

the 2.5% and 97.5% quantiles to give an approximate 95% prediction interval of

Y . This prediction interval covers 95.87% of the data points, which is close to

the nominal level. The line in the middle of Figure 1(D) presents the quantile

regression at the level of 50%. It behaves similarly to the local least squares

estimator in Figure 1(C) within the range of xTβ̂τ . When xTβ̂τ is near to the

boundary, however, the local least squares estimate is clearly more sensitive to the

outliers than the quantile estimate. This example demonstrates the effectiveness

of our procedure in terms of description of the conditional distribution of Y given

x.

We further used a bootstrap procedure to demonstrate the performance of
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Table 6. The average and standard deviation of the estimated index param-
eter based on 500 bootstrap samples of the new vehicle data.

ε∗i sampled from X1 X2 X3 X4 X5 X6 X7

Fn aver. 0.325 -0.185 -0.633 0.369 -0.333 -0.416 0.199
stdev. 0.052 0.046 0.051 0.069 0.057 0.043 0.032

0.5Fn+ aver. 0.305 -0.173 -0.630 0.351 -0.341 -0.428 0.191
0.5N(0, 0.43322) stdev. 0.058 0.051 0.051 0.073 0.060 0.047 0.036
.5Fn + aver. 0.303 -0.169 -0.628 0.314 -0.318 -0.421 0.184
.5Cauchy stdev. 0.088 0.081 0.129 0.136 0.110 0.098 0.062

our method in the presence of outliers. Given the covariates we bootstrapped

new response variables by using the residuals. To calculate the residuals, we

fixed τ = 0.5 and estimated βτ and Gτ (x
Tβτ ) to obtain ε̂i = Yi − Ĝτ (x

T
i β̂τ ) for

i = 1, . . . , n. For ease of illustration, we denote by Fn the empirical distribution

of the residuals ε̂i. We bootstrapped 500 samples each of form
{
(xi, Y

∗
i ), i =

1, . . . , n
}
, where Y ∗

i = Ĝτ (x
T
i β̂τ )+ ε̂∗i , and ε∗i was generated from three different

distributions: (1) Fn; (2) 0.5Fn + 0.5N(0, 0.43322), since the standard deviation

of the original residuals was exactly 0.4332; and (3) 0.5Fn + 0.5Cauchy. In case

(3) the distribution of the response variable has a heavy tail.

We estimated the index parameter βτ at different quantiles, and summarized

the average and standard deviation of β̂τ based on the bootstrap samples. Be-

cause the results for different quantiles show similar messages, we only report the

results for τ = 0.5, which are depicted in Table 6. The averages of the estimated

index parameter β̂τ are similar. This once again suggests that our method is

robust to the presence of outliers. By contrast, the standard deviations of these

three cases are slightly different, the standard deviations of β̂τ in case (1) and

(2) are similar, both of which have smaller standard deviations than case (3).

This can be interpreted to mean that the bootstrapped residuals in case (3) have

substantially larger variance than in cases (1) and (2).

4. Discussion

To estimate the quantile regression with high-dimensional covariates, we im-

pose a heteroscedastic single-index structure on the regression function. The

heteroscedastic single-index structure allows us to reduce the dimension of co-

variates and simultaneously retain the flexibility of nonparametric regression. We

propose a computationally efficient two-step estimation procedure to estimate the

parameters involved in the quantile regression function. Asymptotic properties

of the proposed procedures are studied.

It is remarkable here that, if (1.1) reduces to the homoscedastic single-index

model, and the error ε is symmetric about zero, then a byproduct is that our
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estimation procedure offers a robust estimation for the conditional mean function.
Simulation studies support this point implicitly. In addition, it is not necessary
that the error term ε in model (1.1) be independent of x; we can assume instead
that E

(
x | xTβ0, ε

)
is a linear function of xTβ0. If the parameter of interest is

the index parameter β0 only, the composite quantile regression (Zou and Yuan
(2008)) can be adapted to improve the efficiency in estimating β0.

We suggest quantile regression to construct prediction intervals. This is in
spirit a local pointwise prediction interval. How to construct global confidence
band is an interesting question. Härdle and Song (2010) investigated the confi-
dence band in univariate quantile regression. Their results are readily applicable
to the single-index model (1.1) when β0 is known. Further research is needed to
quantify the effect when β0 is replaced with its root-n consistent estimate.
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Appendix: Technical Conditions and Proofs

A.1. Technical conditions

The following technical conditions are imposed. They are not the weakest
possible conditions, but are imposed to facilitate the proofs.
(i) The quantile function Gτ (·) has a continuous and bounded second derivative.

(ii) The density function f(·) of (xTβ) is positive and uniformly continuous for
β in a neighborhood of β0. Furthermore, the density function of (xTβ0) is
continuous and bounded away from zero and infinity on its support.

(iii)The conditional density of Y given (xTβ0), denoted by fY (y | xTβ0), is
continuous in (xTβ0) for each y ∈ R. Moreover, there exist positive constants
ε and δ and a positive function F (y | xTβ0) such that

sup
∥xTβ−xTβ0∥≤ε

fY (y | xTβ) ≤ F (y | xTβ0).

For any fixed value of (xTβ0),
∫
F (y | xTβ0) dy < ∞; and as t → 0,∫

{ρτ (y − t)− ρτ (y)− ρ′τ (y) t}
2 F (y | xTβ0) dy = o(t2).
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(iv)The kernel function K(·) is symmetric and has compact support [−1, 1]. It

satisfies the first-order Lipschitz condition.

Condition (i) is commonly assumed for a link function in the literature. Con-

dition (ii) guarantees the existence of any ratio terms with the density function

f(xTβ0) appearing in the denominator. Condition (iii) is weaker than the Lips-

chitz condition of the function ρ′τ (·). The check loss function ρτ (·) is piecewise lin-
ear and non-differentiable at 0. We take ρ′τ (u) = sign(u)+(2τ − 1) for u ̸= 0 and

ρ′τ (0) = 0. With Taylor’s expansion, we obtain
∫
{ρτ (y − t)− ρτ (y)− ρ′τ (y) t}

2

F (y | xTβ0) dy = t2
∫
{sign(u∗)− sign(y)}2 F (y | xTβ0)dy for some u∗ between

y − t and y. Without loss of generality we assume t > 0. Then∫ ∞

−∞
{sign(u∗)− sign(y)}2 F (y | xTβ0)dy

=

∫ t

0
{sign(u∗)− sign(y)}2 F (y | xTβ0)dy ≤ 4

∫ t

0
F (y | xTβ0)dy.

Thus,
∫
{ρτ (y − t)− ρτ (y)− ρ′τ (y) t}

2 F (y | xTβ0) dy = o(t2) is implied by∫ t
0 F (y | xTβ0)dy as t → 0. Thus condition (iii) is mild. Condition (iv) requires

that the kernel function be a proper density function with compact support.

A.2. Proof of Theorem 1

Theorem 1 follows from the convexity of the check loss function and the

linearity condition (2.2). It suffices to prove that, for any constant u ∈ R, there
exists a constant κ such that Lτ (u,β) ≥ Lτ (u, κβ0). Specifically,

Lτ (u,β) = E
[
E
{
ρτ
(
Y − u− βTx

)
| βT

0 x, ε
}]

≥ E
[
ρτ
{
E
(
Y | βT

0 x, ε
)
− u− E

(
βTx | βT

0 x, ε
)}]

= E
[
ρτ
{
Y − u− E

(
βTx | βT

0 x
)}]

= E
{
ρτ
(
Y − u− κβT

0 x
)}

,

where κ = βTVar (x)β0/
{
βT
0 Var (x)β0

}
. The first equality follows from the

iterative law of conditional expectation; the first inequality follows from Jensen’s

inequality and the convexity of ρτ ; the second equality is true in view of model

(1.1), and the last equality holds true by invoking the linearity condition (2.2)

and the error ε is independent of x. This completes the proof.

A.3. Proof of Theorem 2

This proof follows from the quadratic approximation lemma (Hjort and Pol-

lard (1993)).



SINGLE-INDEX QUANTILE REGRESSION 1395

Quadratic Approximation Lemma. Suppose Lτ n(β) is convex and can be

represented as βTBβ/2+uTnβ+an+Rn(β), where B is symmetric and positive

definite, un is stochastically bounded, an is arbitrary, and Rn(β) goes to zero in

probability for each β. Then β̂, the minimizer of Lτ n(β), is only op(1) away from

−B−1un. If un converges in distribution to u, then β̂ converges in distribution

to −B−1u accordingly.

Let αn = n−1/2 and a = n1/2(β̂τ − βτ ). Further, let Lτ n(u,β) = n−1
∑n

i=1

ρτ (Yi − u− xT
i β). By applying the identity (Knight (1998)) that

ρτ (x− y)− ρτ (x) = 2

[
y {1(x ≤ 0)− τ}+

∫ y

0
{1(x ≤ t)− 1(x ≤ 0)} dt

]
, (A.1)

it follows that

Lτ n(ξτ + αnb,βτ + αna)− Lτ n(ξτ ,βτ )

= n−1
n∑

i=1

ρτ (Yi − ξτ − αnb− xT
i βτ − αnx

T
i a)− n−1

n∑
i=1

ρτ (Yi − ξτ − xT
i βτ )

= n−1
n∑

i=1

αn

(
xT
i a+ b

) {
1(Yi − xT

i βτ ≤ ξτ )− τ
}

+n−1
n∑

i=1

∫ αn(xT
i a+b)

0

{
1(Yi − xT

i βτ ≤ ξτ + t)− 1(Yi − xT
i βτ ≤ ξτ )

}
dt.

The objective function Lτ n(ξτ +αnb,βτ +αna)−Lτ n(ξτ ,βτ ) is convex in (a,b).

With a slight change of notation, F (t | x) = E
{
1(Y − xTβτ ≤ t) | x

}
. By

Taylor’s expansion, it follows that

E {Lτ n(ξτ+αnb,βτ+αna)−Lτ n(ξτ ,βτ ) | x1, . . . ,xn}

= n−1
n∑

i=1

[
αn

(
xT
i a+b

)
{F (ξτ | xi)−τ}

+

∫ ξτ+αn(xT
i a+b)

ξτ

F (t | xi)−F (0 | xi)dt

]

=
αn

n

n∑
i=1

[(
xT
i a+b

)
{F (ξτ | xi)−τ}+α2

n

2
f(ξτ | xi)

(
b+aTxi

)2]
+op(α

2
n). (A.2)

The first two terms are of order Op (1/n). The last term of (A.2) admits a

quadratic function of (a,b). Following standard arguments, we obtain that

R2 = Lτ n(ξτ + αnb,βτ + αna)− Lτ n(ξτ ,βτ )

−E {Lτ n(ξτ + αnb,βτ + αna)− Lτ n(ξτ ,βτ ) | x1, . . . ,xn} = op
(
n−1

)
.
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This, together with the quadratic approximation lemma and (A.2), leads to the
asymptotic normality of β̂.

A.4. Proof of Theorem 3

Recall the notations z = xT
0 βτ , ẑ = xT

0 β̂τ , Zi = xT
i βτ , Ẑi = xT

i β̂τ . Let
a0 = Gτ (z) = Gτ (x

T
0 βτ ), b0 = G′

τ (z), K̂i = K{(Ẑi − ẑ)/h}, Ki = K{(Zi − z)/h}
and K ′

i = K ′{(Zi − z)/h} for i = 1, . . . , n.
We first show that, for β̂τ to be a root-n consistent estimate of βτ ,

1

n

n∑
i=1

[
ρτ{Yi−a−b(Ẑi−ẑ)}K̂i−ρτ {Yi−a−b (Zi−z)}Ki

]
=Op(n

−1/2). (A.3)

Define

R11 = n−1
n∑

i=1

Ki

[
ρτ

{
Yi − a− b

(
Ẑi − ẑ

)}
− ρτ {Yi − a− b (Zi − z)}

]
,

R12 = n−1
n∑

i=1

(
K̂i −Ki

)
ρτ {Yi − a− b (Zi − z)} ,

R13 = E
[
ρτ

{
Yi − a− b

(
Ẑi − z

)}
− ρτ {Yi − a− b (Zi − z)}

] (
K̂i −Ki

)
.

Then, the left hand side of (A.3) can be written as R11 + R12 + R13. Using the
identity ρτ (x− y)− ρτ (x) = 2

[
y {1(x ≤ 0)− τ}+

∫ y
0 {1(x ≤ z)− 1(x ≤ 0)} dz

]
,

we have |ρτ (x− y)− ρτ (x)| ≤ 4|y|. Invoking the root-n consistency of β̂τ , we
obtain

n−1
n∑

i=1

[
Ki

∣∣∣ρτ {Yi − a− b
(
Ẑi − ẑ

)}
− ρτ {Yi − a− b (Zi − z)}

∣∣∣]
≤ 4b sup

u
|K(u)|n−1

n∑
i=1

∣∣∣Ẑi − Zi

∣∣∣ = 4bn−1
n∑

i=1

∣∣∣xT
i

(
β̂τ − βτ

)∣∣∣ = Op(n
−1/2).

This indicates that |R11| = Op(n
−1/2).

Next we deal with R12. R12 can be written as(
β̂τ−βτ

)T
(nh)−1

n∑
i=1

K ′
(
Zi−z

h

)
(xi−x0) ρτ {Yi−a−b (Zi−z)} {1+op(1)} .

Let zi = (xi − x0) /h. Then

(nh)−1
n∑

i=1

K ′
(
Zi − z

h

)
(xi − x0) ρτ {Yi − a− b (Zi − z)}

= n−1
n∑

i=1

K ′ (zTi βτ

)
ziρτ

(
Yi − a− bhzTi βτ

)
= Op (1) ,
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which, together with the root-n consistency of β̂τ , proves that R12 = Op

(
n−1/2

)
.

It remains to investigate the order of R13, but following similar arguments,

we have R13 = Op(n
−1/2).

Thus, (A.3) follows and implies that

n−1
n∑

i=1

ρτ

{
Yi − a− b

(
Ẑi − ẑ

)}
K̂i

= n−1
n∑

i=1

ρτ {Yi − a− b (Zi − z)}Ki + op

{
(nh)−1/2

}
.

That is, the quantile regression estimate of Ĝ(·) based on {(xT
i β̂τ , Yi), i =

1, . . . , n} is asymptotically as efficient as that based on {(xT
i β0, Yi), i = 1, . . . , n}.

The rest of the proof follows literally from Theorem 3 of Fan, Hu, and Truong

(1994). Based on the auxiliary data points
{
(xT

i β0, Yi), i = 1, . . . , n
}
, the tech-

nique for establishing the asymptotic normality involves the convexity lemma

(Pollard (1991)) and the quadratic approximation lemma (Hjort and Pollard

(1993)). We only sketch the outline below.

For the sake of clarity, we write ζi = (a − a0) + (b − b0)(Zi − z). By using

(A.1) we obtain immediately that

n∑
i=1

ρτ {Yi − a− b (Zi − z)}Ki −
n∑

i=1

ρτ {Yi − a0 − b0 (Zi − z)}Ki

= 2

n∑
i=1

[
ζi {1(Yi − a0 − b0(Zi − z) ≤ 0)− τ} (A.4)

+

∫ ζi

0
{1(Yi − a0 − b0(Zi − z) ≤ t)− 1(Yi − a0 − b0(Zi − z) ≤ 0)} dt

]
Ki.

Let β =
√
nh {a− a0, h (b− b0)}T. In the sequel, we show the first quantity in

(A.4) has approximately the form 2uTnβ, and the second quantity has the form

βTBβ. Then we use the quadratic approximation lemma to complete the proof.

Denote by FY (y | Z) the conditional distribution of Y given Z. Then

2
n∑

i=1

ζi {1(Yi − a0 − b0(Zi − z) ≤ 0)− τ}Ki

= 2
n∑

i=1

ζi {FYi (a0 + b0(Zi − z) | Zi)− τ}Ki (A.5)

+2

n∑
i=1

ζi {1(Yi − a0 − b0(Zi − z) ≤ 0)− FYi (a0 + b0(Zi − z) | Zi)}Ki.
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The first term in (A.5) is a bias term. To view it, we use the Taylor’s expansion

Gτ (Zi) = a0 + b0(Zi − z) +G′′
τ (z)(Zi − z)2

{
1

2
+ op(1)

}
, for |Zi − z| ≤ h.

This together with another Taylor’s expansion entails that

FYi (a0 + b0(Zi − z) | Zi) = FYi

(
Gτ (Zi)−G′′

τ (z)(Zi − z)2
{
1

2
+ op(1)

}
| Zi

)
= τ − fYi(Gτ (Zi) | Zi)G

′′
τ (z)(Zi − z)2

{
1

2
+ op(1)

}
.

With this result, the bias term can be simplified as

2

n∑
i=1

ζi {FYi (a0 + b0(Zi − z) | Zi)− τ}Ki

= −
n∑

i=1

ζifYi(Gτ (Zi) | Zi)G
′′
τ (z)(Zi − z)2 {1 + op(1)}Ki,

which is of the form

− 1√
nh

n∑
i=1

βT

(
1

(Zi−z)
h

)
fYi(Gτ (Zi) | Zi)G

′′
τ (z)(Zi − z)2 {1 + op(1)}Ki. (A.6)

The second term on the right side of (A.5) can be approximated as

2
n∑

i=1

ζi {1(Yi ≤ Gτ (Zi))− τ}Ki {1 + op(1)} ,

which is again of the form

2√
nh

n∑
i=1

βT

(
1

(Zi−z)
h

)
{1(Yi ≤ Gτ (Zi))− τ}Ki {1 + op(1)} . (A.7)

Let fY (y | Z) be the conditional density function of Y given Z. Then the second

term on the right side of (A.4) can be approximated as

2
n∑

i=1

[ ∫ ζi

0
{1(Yi − a0 − b0(Zi − z) ≤ t)− 1(Yi − a0 − b0(Zi − z) ≤ 0)} dt

]
Ki

=
n∑

i=1

fYi (a0 + b0(Zi − z) | Zi) ζ
2
i Ki {1 + op(1)}

=

n∑
i=1

fYi (Gτ (Zi) | Zi) ζ
2
i Ki {1 + op(1)} ,
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which is now of the form

1

nh

n∑
i=1

fYi (Gτ (Zi) | Zi)β
T

 1
{

(Zi−z)
h

}
{

(Zi−z)
h

} {
(Zi−z)

h

}2

βKi {1 + op(1)} .

(A.8)

Combining the results of (A.5)−(A.8), we observe that (A.4) is now approximated

by a quadratic function of β. By the quadratic approximation lemma, β is only

op(1) away from −B−1un, where

B =
1

nh

n∑
i=1

fYi (Gτ (Zi))

 1
{

(Zi−z)
h

}
{

(Zi−z)
h

} {
(Zi−z)

h

}2

Ki,

un =
√
nh

[
1

nh

n∑
i=1

(
1{

(Zi−z)
h

}) {1(Yi ≤ Gτ (Zi))− τ}Ki

− 1

nh

n∑
i=1

(
1{

(Zi−z)
h

}) fYi(Gτ (Zi) | Zi)G
′′
τ (z)(Zi − z)2

Ki

2

]
.

It can be easily shown that, as n → ∞, B converges in probability to

fY (Gτ (z) | z) fZ(z)
(

1 0

0 µ2

)
.

Because our target is the quantile function, it suffices to deal with the first ele-

ment of un because the second element is concerned instead with its derivative.

Without much difficulty, we can prove that the first quantity in the curly paren-

thesis converges in distribution to a normal population with zero mean and vari-

ance τ(1−τ)fZ(z)
∫ 1
−1K

2(u)du, and the second quantity in the curly parenthesis

converges in probability to h2G′′
τ (z)µ2{fY (Gτ (z) | z)fZ(z)}.

Let fε denote the density function of the error term ε, and ξ⋆τ denote its τ -th

quantile. We can easily verify that fY (Gτ (z) | z)σ(z) = fε(ξ
⋆
τ ) when model (1.1)

is true. Then the asymptotic variance has a different appearance.

The proof of Theorem 3 is completed by combining the above results.
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