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Abstract: Multiple testing procedures, such as the False Discovery Rate control,

often rely on estimating the proportion of true null hypotheses. This proportion

is directly related to the minimum of the density of the p-value distribution. We

propose a new estimator for the minimum of a density that is based on constrained

multinomial likelihood functions. The proposed method involves partitioning the

support of the density into several intervals, and estimating multinomial proba-

bilities that are a function of the density. The motivation for this new approach

comes from multiple testing settings where the test statistics are dependent, since

this framework can be extended to the case of the dependent observations by using

weighted univariate likelihoods. The optimal weights are obtained using the theory

of estimating equations, and depend on the discretized pairwise joint distributions

of the observations. We discuss how optimal weights can be estimated when the

test statistics have multivariate normal distribution, and their correlation matrix

is available or estimated. We evaluate the performance of the proposed estimator

in simulations that mimic the testing for differential expression using microarray

data.
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1. Introduction

The proportion of true null hypotheses, denoted throughout the paper as

π0, has been shown to be an important quantity in many multiple comparison

procedures. When the number of tests is large, this proportion is the basis of

calculation of almost any total error measure. For example, the false discovery

rate (FDR), defined as the expected proportion of falsely rejected hypotheses

at a given threshold of significance, is a function of π0 (Storey (2002)). The

various modifications of the Benjamini-Hochberg sequential procedure use π0 for

identification of the rejection threshold that will guarantee the total error rate

below α (see Benjamini and Hochberg (1995); Genovese and Wasserman (2001)).

Also, π0 can be a quantity of interest itself in a number of areas, for example,

astrophysics (Miller et al. (2001)).

http://dx.doi.org/10.5705/ss.2010.255
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Multiple comparison procedures are often used in genetic association studies

and microarray experiments, where the test statistics might be correlated. For

example, expression microarrays are used for identification of signaling pathways

or tissue classification. Since genes in the same genetic pathways will generate

correlated expression values, the test statistics are not independent. In genetic

association studies, for example (Hoffjan et al. (2004, 2005)), multiple associa-

tions between related phenotypes, genetic markers, and environmental covariates

are tested, resulting in dependence between the test statistics. As a consequence

of dependence the effective null distribution may appear considerably wider or

more narrow (Efron (2007)). That is, correlations may produce more or fewer

extreme test statistics than expected, even though the null marginal distribu-

tions still hold. Also, since many error measures involve expectations of sums of

random variables, the variance of the error estimates may significantly increase.

The goal of this paper is to construct an estimator of the proportion of true null

hypotheses, π0, that takes into account the dependence.

The commonly used estimator of π0 (Storey (2002)) for the independent data

is

π̂S0 (λ) =
#{p-values > λ}

(1− λ)N
, (1.1)

where λ is a tuning parameter selected by a bootstrap procedure and N is a

total number of tests. In Storey and Tibshirani (2003) a cubic spline is fitted to

(1.1), and the estimate at λ = 1 is used. Other methods proposed in this context

include Poisson regression based estimation of the density of the test statistics

(Efron (2004)), parametric models for the distribution of the test statistics under

the alternative hypothesis (e.g., Pounds and Morris (2003); Allison et al. (2002);

Markitsis and Lai (2010)), and methods combining parametric models and splines

(Ruppert, Nettleton, and Hwang (2007)). Langaas, Lindqvist, and Ferkingstad

(2005) review several available methods and compare them to their own non-

parametric MLE method with convexity and monotonicity constraints.

Literature on estimating π0 for dependent data is much more scarce. Some

authors argue that the methods created for the independent data will work for

dependent data as well, as long as dependence is weak or moderate (Langaas,

Lindqvist, and Ferkingstad (2005); Benjamini and Yekutieli (2001); Farcomeni

(2007)). Sun and Cai (2009) offer an FDR control procedure with the built-in

estimate of π0 for a special case when the data come from a two-state hidden

Markov model. Many multiple comparison procedures developed for dependent

data either use estimates of π0 under independence (Hunt, Cheng and Pounds

(2009)), or conservatively assume π0 = 1 (Efron (2007); Chen, Tong, and Zhao

(2008)).
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Two articles approach estimation of π0 under dependence more directly. Sin-

gular value decomposition of the distribution of the test statistics is used by Paw-

itan, Calza and Ploner (2006) to characterize the dependence structure, which is

estimated using permutations. The expected false discovery proportion is calcu-

lated using a latent FDR model, and π0 is estimated as one of the parameters

of the model. Lu and Perkins (2007) use permutations to adjust for variability

in π0 brought by dependence. They resample cases and controls for each gene

separately and calculate p-values and π0 using methods created for independent

data. The 3rd quartile of the resampled π0 distribution serves as a final estimate

of π0. We compare these two methods, as well as Langaas’ method created for

independent data, to the proposed estimator in simulations in Section 4.

The main idea behind estimation of π0 is that the p-value density can be

modeled as a mixture of two densities with mixing proportion π0. The component

corresponding to the null hypothesis is the uniform distribution with the density

equal to 1. Let fA(x) be the unknown density of the p-values generated under

the alternative hypotheses. Then the p-value density is

f(x) = π0 + (1− π0)fA(x), for any x ∈ [0, 1].

The problem can be equivalently formulated in terms of the distribution

of the test statistics, but the p-value density is attractive because it usually

has a similar shape regardless of the test used. The p-values coming from the

alternative hypotheses are expected to be small, thus, it is reasonable to assume

that f(x) is a decreasing function. Additionally, in most applications the density

is convex. Thus, the minimum of the density is achieved at 1 and f(1) = π0
if fA(1) = 0 (the only case when π0 is identifiable). This reduces the task to

estimating the minimum of non-increasing convex density. We propose to use a

constrained multinomial likelihood on data obtained by partitioning the support

of the density. Then we extend the model to the dependent case - we use a

weighted marginal likelihood with optimal weights defined by the correlation

structure of the test statistics.

In Section 2 we present a framework for estimating π0 based on multinomial

likelihood, which is modified for dependent data in Section 3. The performance

of the method is evaluated using simulations in Section 4, and finally in Sections

5 and 6 we present an application of our method to a gene expression dataset

and discussion.

2. Proposed Method for Independent Test Statistics

The goal of this section is to introduce the framework for estimating the

minimum of a monotone density with bounded support assuming independence.

We describe it for any sample of iid random variables Z1, . . . , ZN having density
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f(x) and cdf F (x). Since we are motivated by estimating π0, we assume the

density is non-increasing and convex, the support is [0, 1], and the value of the

minimum is of interest. However, the method can be easily modified for any

monotone density on a bounded support.

2.1. The multinomial likelihood

We introduce a new function, g, determined solely by f(x) or F (x), which

is used for the multinomial modeling of the data:

g(s) =
1− F (s)

1− s
=

∫ 1
s f(x)dx

1− s
, 0 ≤ s ≤ 1. (2.1)

Figure 1 shows a simple example of the shape of g. For this plot, f(x) is a

mixture of a Uniform(0,1) density and a density of p-values based on one-sided

normal test with σ2 = 1 and difference in means equal to 2. Note that g(0) = 1

and g carries many properties of f : g is non-increasing and convex when f is

non-increasing and convex (see the first theorem in the Appendix), and both g

and f converge to the same value at the point 1,

g(1−) = lim
s→1

g(s) = lim
s→1

−f(s)
−1

= f(1−).

Thus, the estimation of π0 can be accomplished by finding the minimum of the

function g instead of f .

In order to construct a multinomial model using g, let k be a positive integer

and consider the partition of the unit interval into k subintervals

0 = t0 < t1 < t2 < · · · < tk = 1.

Although the final goal is to estimate g(1), instead we estimate the whole function

g on the grid defined by the partition, so gi = g(ti), i = 1, . . . , k − 1, are the

parameters of interest. Let g0 := g(t0) = 1. For i = 1, . . . , k we define

θi =

∫ ti

ti−1

f(s)ds = (1− ti−1)gi−1 − (1− ti)gi,

and it is easy to see that
∑k

i=1 θi = 1. Each θi is the probability that an obser-

vation falls into the ith interval. There is a one-to-one correspondence between

(g1, . . . , gk−1) and (θ1, . . . , θk), and the inverse is given by

gi =

∑k
j=i+1 θj

(1− ti)
, i = 1, . . . , (k − 1).
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Figure 1. Example of f(x) and g(x). The function f is a mixture of U(0,1)
density and density of p-values based on the one-sided normal test with
σ2 = 1 and difference in means equal to 2. The mixing proportion is equal
to 0.5.

Let Xi be the number of observations in the interval (ti−1, ti]. Then X =

(X1, . . . , Xk) follows a multinomial distribution with N =
∑k

i=1Xi, and proba-

bilities θ = (θ1, . . . , θk). The multinomial log-likelihood function,

l(g;X) ∼
∑

Xi log[(1− ti−1)gi−1 − (1− ti)gi], (2.2)

is maximized subject to the shape constraints on the function g. The discretiza-

tion of the support allows the construction of a parametric likelihood without

imposing a parametric model on the distribution of the data.

The value gk−1 = g(tk−1) is the closest to g(1), and thus our estimate of the

minimum of the density is

π̂0 = ĝk−1. (2.3)

In this formulation of the problem, it is not possible to estimate g(1) directly

because there are no data points to the right of 1. Since we assume that the

density is non-increasing, gk−1 ≥ π0 and the estimator is possibly biased. In

the multiple testing context, most of the large p-values correspond to the null

hypotheses, so the density is often nearly flat around 1. It gets flatter as π0
increases, so the bias in most applications is small, especially when tk−1 is chosen

to be close to 1. Note that a simple estimator of g(1) can be obtained using linear
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interpolation of gk−2 and gk−1, but this does not dramatically change the results

shown in this paper.

2.2. Constrained optimization of the likelihood

We impose a monotonicity and convexity constraint on the function f and,

therefore, g. The constraints can be written as:

1 ≥ g1 ≥ · · · ≥ gk−1 ≥ 0, (2.4)

β1 :=
1− g1
t1

− g1 − g2
t2 − t1

≥ 0,

for i = 2, . . . , k − 2, βi :=
gi−1 − gi
ti − ti−1

− gi − gi+1

ti+1 − ti
≥ 0, (2.5)

βk−1 :=
gk−2 − gk−1

tk−1 − tk−2
≥ 0.

Again there is a one to one correspondence between parameters βi and gi:

g1 = 1− t1

k−1∑
j=1

βj , gi = 1− [
i−1∑
j=1

βjtj + (βi + βi+1 + . . .+ βk−1)ti].

The log-likelihood (2.2) is maximized as a function of βi’s with respect to the

constraints (2.4) and (2.5). The MLE is computed numerically using the quasi-

Newton method with box constraints built in the procedure optim in R.

The proposed estimator is based on the constrained likelihood maximization,

but many of the properties of the unconstrained likelihood can be used to prove

the asymptotic results for a fixed partition, including consistency and asymptotic

normality (See the Appendix for results and proofs).

The partition of the [0, 1] interval plays the role of a tuning parameter in this

method. The bigger is the number of intervals, k, the smoother is the estimated

curve of g, but since the number of observations in each interval gets smaller,

the variance of each ĝi increases. There is a similar bias-variance trade-off in the

choice of the last interval - the closer is tk−1 to 1, the smaller is the bias, but the

variance increases.

2.3. Comparison to the other available methods and simulations

There are connections between the proposed method and other methods

available for estimating π0. Many other procedures use the fact that the problem

of estimating π0 is related to estimating the non-increasing p-value density, and

some also include the convexity assumption (e.g., Langaas, Lindqvist, and Ferk-

ingstad (2005)). Several methods also partition the [0, 1] interval and model the
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distribution of the number of p-values per interval (e.g., Efron (2004)), and some

methods are related to the function g(x) = (1− F (x))/(1− x) (Wu, Guan and

Zhao (2006)). Note also that the estimator (1.1) is ĝ(λ), where g is estimated

directly from the empirical cdf of F .

We ran simulations to compare the performance of the proposed estimator

with four partitions: k = 6 (0.2, 0.4, 0.6, 0.8, 0.95, 1), k = 11

(0.1, 0.2, 0.3, . . . , 0.9, 0.95, 1), k = 15, and k = 30 (equally spaced intervals ending

with 0.95,1). Note that the last interval is the same for all partitions. We

compared these to three other methods. The first method is the smoothing spline

based on the function (1.1) (Storey and Tibshirani (2003)). The second method

is described in Efron (2004) and is based on partitioning the [0, 1] interval and

fitting the Poisson distribution to the number of p-values in the intervals. The

third method is described in Langaas, Lindqvist, and Ferkingstad (2005) and is

considered to be state-of-the-art (Ruppert, Nettleton, and Hwang (2007)).

Two types of distributions are considered. Both are densities of one-sided

p-values from the normal test, where the null test statistics are drawn from the

standard normal distribution. For the first scenario the alternative distribution is

normal with mean µA = 2 and variance 1. For the second scenario the variance

is still 1, but µA is drawn from N(2, 0.752) and constrained from below by 1.

This scenario is more realistic since different hypotheses have different signal

intensities. There were N=1,000 observations in both situations, and the mean

squared errors(MSE) were calculated based on 1,000 replicates. The simulation

was run for π0 = 0.1, 0.5 and 0.9.

Table 1 contains MSE, bias, and variance of the estimators, with the true

value of the parameter taken to be f(1) = π0. Table 1 shows that the performance

of the proposed method improves as the number of the intervals increases, but

the change in MSE is very small. This is one of the advantages of the proposed

estimator - its performance is not affected greatly by the choice of the partition

as long as the number of tests is much larger than the number of intervals. In

part that is because we are only interested in the estimate of one point of the

curve, so the bias-variance trade-off in the choice of partition does not play a big

role.

Note that when µA is fixed the proposed estimator had negative bias for

π0 = 0.5, 0.9, but not for the π0 = 0.1. We believe that the reason is that

for higher π0 the density is nearly flat near 1, and the decreasing and convex

assumptions are pushing the estimates down. The scenario with π0 = 0.1, while

unrealistic in practice, was included here to demonstrate that the bias depends

on the shape of the curve.

When µA’s are variable and can be as low as 1, it is harder to estimate π0,

and the estimate has larger bias and variance. Scenarios with smaller π0 are
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Table 1. Estimators of π0 assuming independence. Comparison of the pro-
posed method with four partitions (k = 6, 11, 15, 30), and three other meth-
ods available in the literature (Storey and Tibshirani (2003), Efron (2004),
Langaas, Lindqvist, and Ferkingstad (2005)).

Proposed method

k = 6 k = 11 k = 15 k = 30 Storey Efron Langaas
-spline

π0 Normal test statistics - µA = 2

0.1 MSE 0.0006 0.0007 0.0006 0.0006 0.0011 0.0236 0.0003
Var 0.0006 0.0007 0.0006 0.0005 0.0005 0.0009 0.0003
Bias 0.0003 0.0005 0.0021 0.0052 -0.0242 -0.1507 0.0064

0.5 MSE 0.0014 0.0012 0.0012 0.0010 0.0028 0.0050 0.0012
Var 0.0014 0.0012 0.0012 0.0010 0.0027 0.0008 0.0012
Bias -0.0058 -0.0032 -0.0024 -0.0007 -0.0125 -0.0646 -0.0037

0.9 MSE 0.0016 0.0012 0.0012 0.0011 0.0043 0.0049 0.0012
Var 0.0013 0.0011 0.0010 0.0009 0.0043 0.0017 0.0010
Bias -0.0158 -0.0139 -0.0134 -0.0134 -0.0044 -0.0560 -0.0122

Normal test statistics - µA = max(1, N(2, 0.752))

0.1 MSE 0.0013 0.0013 0.0013 0.0016 0.0008 0.0042 0.0013
Var 0.0009 0.0008 0.0008 0.0008 0.0007 0.0009 0.0005
Bias 0.0189 0.0225 0.0242 0.0287 -0.0054 -0.0578 0.0285

0.5 MSE 0.0018 0.0015 0.0015 0.0015 0.0027 0.0020 0.0015
Var 0.0017 0.0014 0.0013 0.0013 0.0027 0.0009 0.0013
Bias 0.0086 0.0123 0.0133 0.0152 -0.0030 -0.0324 0.0115

0.9 MSE 0.0015 0.0012 0.0011 0.0010 0.0045 0.0047 0.0011
Var 0.0014 0.0011 0.0010 0.0009 0.0045 0.0020 0.0011
Bias -0.0112 -0.0091 -0.0084 -0.0081 -0.0019 -0.0513 -0.0071

more affected by it. The bias was positive for π0 = 0.5 since the density is not

as flat near 1 as for fixed µA, but otherwise the results were similar. For most

scenarios our estimator outperformed Efron’s and Storey’s estimators, but has a

similar performance when compared to Langaas’ method. This is not surprising

since both of these methods rely on nonparametric estimators of decreasing and

convex densities.

3. Extension to the Dependent Data

The main strength of our procedure is that it is likelihood-based and can

be extended to the dependent case. The basic idea is that the correlated ob-

servations carry less information and should be used with less confidence, or

down-weighted in comparison with the independent observations. As before,

we formulate the method for general dependent identically distributed random
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variables Z1, . . . , ZN from a density with support [0, 1]. Denote the jth interval

of the partition as Ij . Then the number of observations in the jth interval is

Xj =
∑N

i=1 1Zi∈Ij . The multinomial log-likelihood (2.2) can be written as the

sum of the individual contributions of observations:

l(θ,X) ∼
k∑

j=1

Xj log(θj) =

N∑
i=1

k∑
j=1

1Zi∈Ij log(θj). (3.1)

If the observations are dependent, this function is no longer the true log-

likelihood. In general, it is not possible to specify the joint distribution of all the

observations, especially ifN is large; approximations to the likelihood can be used

instead. We propose to use the marginal likelihoods that are weighted according

to how strongly the observation is correlated with the rest of the sample. The

weighted log-likelihood becomes

lw(θ,X) ∼
N∑
i=1

[wi

k∑
j=1

1Zi∈Ij log(θj)], (3.2)

where wi are the weights.

The function (3.2) is a special case of the composite likelihood introduced

by Lindsay (1988). This idea is motivated by the following fact. It has been

suggested (Cox and Reid (2004)) that when full likelihood is not available one

can use all possible conditional distributions of one component given another.

In the case of the multivariate normal distribution, using all possible conditional

distributions is equivalent to using a likelihood function obtained by a weighted

average of the marginal univariate distributions, where the weights are a func-

tion of the correlation matrix. The advantages of this approach are that the

weighted log-likelihood is still a simple function, and we do not need to specify

any pairwise or higher order joint distributions. Asymptotic properties of com-

posite likelihoods based on marginal likelihoods are investigated in Cox and Reid

(2004).

3.1. Derivation of optimal weights

Our goal is to find weights for (3.2) that correspond to ’optimal’ estimating

equations in the class of scores of weighted marginal likelihoods. For notational

convenience, denote the number of free parameters by m = k − 1. If we had no

constraints, we would differentiate the weighted log likelihood (3.2) with respect

to θj , j=1, . . . ,m, and solve the system of equations

N∑
i=1

wieij = 0, where eij =
1Zi∈Ij
θj

− 1Zi∈Ik
θk

, j = 1, . . . ,m. (3.3)
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Each eij (i = 1, . . . , N , j = 1, . . . ,m) represents a derivative of the log-likelihood

of the ith observation with respect to θj , and E(eij) = 0. Functions (3.3) are

examples of estimating equations, functions of the data and parameters that have

expectation 0, and they share a lot of properties with the derivatives of the true

likelihood.

Let e = {e11, e12, . . . , e1m, e21, e22, . . . , e2m, . . . , eN1, eN2, . . . , eNm}T be the

mN -dimensional vector of eij ’s. Consider an mN ×m weight matrix α and an

m-dimensional vector Q = αT e of unbiased estimating equations. Define the

class Q of all estimating equations in which αT = (W1W2 · · ·WN ) consists of

the diagonal m ×m block matrices Wi with the value wi on the diagonal, and∑N
i=1wi = 1. Thus, only one weight wi per observation is allowed. Denote the

class of all the matrices α by Ad.

Following Heyde (1997), the analog of Fisher’s information matrix for esti-

mating equations is

E(Q) = (EQ̇)TE(QQT )−1(EQ̇), (3.4)

where Q̇ denotes the gradient of Q. Estimating equation Q∗ is called Loewner-

optimal in a class Q if, for any other estimating equation Q ∈ Q, E(Q∗)−E(Q)

is non-negative definite (nnd). If Q∗ is Loewner-optimal, it is closest to the true

score function in terms of minimizing the dispersion distance.

Loewner-optimal weights α∗ have to satisfy E(α∗T e)− E(αT e) is nnd for all

α ∈ Ad. Using algebraic derivations and properties of nnd matrices, it can be

shown that this is equivalent to

αTSα− α∗TSα∗ is nnd, (3.5)

where S is an mN ×mN covariance matrix of e. Thus, maximizing the informa-

tion matrix is equivalent to minimizing the covariance matrix.

We can think about the covariance matrix S as consisting of N ×N blocks

Sij , where each Sij is an m ×m matrix describing the association between ith

and jth observations. For a given pair of observations (i, j) and a pair of intervals

(a, b), let

γij,ab =
P (Zi ∈ Ia, Zj ∈ Ib)

P (Zi ∈ Ia)P (Zj ∈ Ib)
=
P (Zi ∈ Ia, Zj ∈ Ib)

θaθb
. (3.6)

The off-diagonal blocks Sij are symmetric square matrices and contain the ele-

ments (a, b = 1, . . . ,m)

Sij,ab = E(eiaejb) = γij,ab − γij,ak − γij,kb + γij,kk.
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The diagonal matrices Sii are all equal and depend only on θa, a = 1, . . . ,m. If

ith and jth observations are independent, γij,ab = 1, Sij,ab = 0, and Sij is a zero

matrix.

There is no guarantee that an optimal α∗ satisfying condition (3.5) exists.

However, according to the Theorem 2.2 from Heyde (1997), if a Loewner-optimal

estimating equation exists, it coincides with the tr-optimal equation. The esti-

mating equation is tr-optimal if the trace of its information matrix is the largest

compared to the other estimating equations in the class. Note that it is much

easier to minimize the trace, since it is a scalar function, while we would have to

minimize in the space of matrices to verify Loewner optimality.

Thus, instead of solving (3.5) we choose to minimize the function tr(αTSα).

Indeed, let the vector of weights be w = (w1, . . . , wN ). Let R be N ×N matrix

composed of traces of block matrices of S, Rij = tr(Sij). Since S is nnd as a

covariance matrix, R is also nnd, see Theorem A.3 in the Appendix. Then

tr(αTSα) = wTRw. (3.7)

In order to obtain the optimal weights we minimize the quadratic form wTRw

subject to the constraint that wi’s sum up to 1. By differentiating the Lagrangian

we find to the following solution:

w∗
i =

∑N
j=1R

−1
ij∑N

j,l=1R
−1
jl

. (3.8)

For each observation we have found the optimal weight that guarantees that

the trace of the corresponding covariance matrix of estimating equations is the

smallest. The weights (3.8) may or may not be positive. In our simulations where

all the correlations are positive, (3.8) often provides positive weights; however,

we do allow negative weights in our calculations. We see negative weights as

compensation for overly high weights of some other correlated statistics. Notice

that the weights depend on the partition t. Negative weights appear when the

diagonal elements Rii are not substantially higher than the off-diagonal elements

Rij , all of them dependent on t. We have noticed in simulations (not shown)

that as number of intervals k grows, negative weights become rare and eventually

disappear. Since the performance of the π0 estimate does not change significantly

with higher k, see Section 4, we prefer to use smaller k for computational efficiency

even when weights are negative.

3.2. Some properties of the optimal weights

Consider an extreme case. If Zi ≡ Zj and the two statistics i and j are

perfectly dependent, then Sij = Sii and Rij = Rii. Since Zi and Zj have equal
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correlation with all other observations, Ril = Rjl for any l ̸= i, j. As a result,

R is singular. However, if the Moore-Penrose generalized inverse of matrix R is

used, the optimal weights are one half the weight of an independent observation.

Similarly, for the block of size n of perfectly dependent statistics, the optimal

weights are 1/n of the weight of an independent observation.

If N0 < N observations are dependent according to some correlation matrix

Σ0 and independent of all other observations, then, regardless of N and the de-

pendence structure of the other observations, the submatrix of R and, therefore,

R−1, corresponding to these N0 observations, is the same. This implies that the

weights of these N0 dependent observations, divided by the weight of an indepen-

dent observation, depend only on Σ0 and not on N or the rest of the covariance

matrix.

Notice that the criteria for optimality of weights does not involve any con-

straints. The weights are designed to represent the dependence between obser-

vations rather than any knowledge about their distribution. Assumptions about

the density are used only in the maximization of the weighted likelihood.

3.3. Optimal weights in practice

Here we consider how the optimal weights can be calculated when the full

distribution is known, or estimated from the data. Suppose that the test statistics

Ti, i = 1, . . . , N , have a multivariate normal distributionMVN(µ,Σ), where µi =

µ0 if the test statistic comes from the null hypothesis, µi = µA otherwise, and

diagonal values of Σ are equal to σ2. The proportion of the true null hypotheses

is π0. Let Φµ be the cdf of the corresponding N(µ, σ2) distribution.

The one-sided p-value is pi = 1 − Φµ0(Ti). Let t′a = Φ−1
µ0

(1 − ta). The

multinomial probabilities θa, a = 1, . . . , k, are

θa = P (pi ∈ Ia) = π0(ta − ta−1) + (1− π0)(ΦµA(t
′
a−1)− ΦµA(t

′
a)). (3.9)

The joint probability of the p-values i and j falling into a pair of intervals

can be calculated likewise using the mixture model. Let Φ(µ0,µA),Σij
be bivariate

normal distribution, where Σij is a 2 × 2 submatrix of Σ corresponding to the

ith and jth statistics. Knowing π0 and assuming null and alternative hypotheses

are independent, we obtain

P (pi∈Ia, pj∈Ib)=π0{Φ(µ0,µ0),Σij
(t′a−1, t

′
b−1)− Φ(µ0,µ0),Σij

(t′a, t
′
b)}

+(1−π0){Φ(µA,µA),Σij
(t′a−1, t

′
b−1)−Φ(µA,µA),Σij

(t′a, t
′
b)}. (3.10)

The optimal weights (3.8) can be easily calculated as functions of the marginal

probabilities (3.9) and joint probabilities (3.10). Alternatively, other bivariate
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distributions can be used in place of Φ(µ0,µA),Σij
. The formulas for the two-sided

test can be derived similarly.

Consider microarray data for which the parameters of the distribution of

the test statistics are not known, and suppose there are n1 cases and n2 con-

trols. Let X·i = X1i, . . . , XNi be the overall intensities corresponding to N genes

observed on the microarray from the ith person of the cases group. Similarly,

Y·i = Y1i, . . . , YNi are the expression levels obtained from the ith person of the

control group. Vectors X·i’s are independent for any person i, and so are the

Y·i’s. The controls are independent of the cases. Suppose the vector X·i of ith

individual’s expression levels is multivariate normal distribution with mean µx,

variance σ2, and correlation matrix Σ, with the Y·i’s distributed likewise with

mean vector µy.

Let X̄j· and Ȳj· be the mean intensity levels for gene j in the cases and

controls groups respectively. If the variance is known, the z test statistics Tj =

(X̄j· − Ȳj·)/
√
σ2/n1 + σ2/n2 are multivariate normal with the same correlation

matrix Σ. If the variance is not known and the t-statistics are calculated, their

distribution would be a multivariate t-distribution (Krishnan (1972)). In our

simulations (not shown) we concluded that for a sufficient number of degrees of

freedom and small to moderate effect sizes, the distribution of the t-statistics can

be approximated by the multivariate normal distribution with the same means

and correlation matrix Σ as for z-statistics. These facts suggest a route to esti-

mating weights in practice.

• Obtain the correlation matrix of the test statistics as the sample correlation

matrix between vectors of gene expression intensities.

• Obtain initial estimates of π0 and the means of the test statistics under null

and alternative distributions. Alternatively, for simplicity, assume π0 = 1.

• Plug the above estimates into (3.9) and (3.10), then calculate the matrix R

and the weights (3.8).

• Maximize the weighted log-likelihood (3.2) using the estimated weights to

obtain the final estimates of θ’s, and then π0.

4. Simulation Studies under Dependence

4.1. Characteristics of weights

We used normally distributed test statistics to investigate how the weights

change when dependence block size or correlation change. Consider the situation

where N = 100, half of the observations are independent and the other half have

pairwise correlations ρ. Suppose also that µ0 = 0, µA = 2, and σ = 1. Let

π0 = 0.5. Since weights sum up to 1, we compare the ratios of the weights for
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(a) (b)

Figure 2. Ratio between the weights of independent and dependent obser-
vations against a) correlation coefficient in the block 50x50; b) size of the
dependent block with correlation 0.999. For both simulations N = 100 and
π0 = 1.

independent observations over weights for dependent observations. Figure 2a

demonstrates how the ratio of weights changes as ρ increases. As expected, for

higher values of ρ the ratio is higher, so that the more dependent p-values are

down-weighted more. For small ρ, the ratio is close to 1. Figure 2b shows that

if π0 = 1, ρ = 0.999 and the size of the dependent block changes, then the ratio

of weights is almost linearly inversely proportional to the size of the dependent

block. Next we present several simulations that show how the optimal weights

affect the performance of the estimator of π0.

4.2. Performance of the weighted estimator of π0

For this simulation we generated multivariate normal “gene expression” data-

sets as described in Section 3.3. We assumed N=1,000, n1 = n2 = 20, σ =

1, µx=0, and µy = 2/
√
n1/2. Thus, the mean of the t-statistics under the

alternative distribution is about 2. Half of the genes were dependent in blocks of

50, where all off-diagonal values in a block were ρ, and blocks were independent

of each other. The other half of the genes were independent. Half of all the

null genes were dependent, as were half of all non-null, differentially expressed
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genes; null and non-null genes were independent. We repeated the simulation for

ρ = 0.3, 0.5, 0.9, and π0 = 0.5, 0.9, and each combination of these two parameters

is referred to as a scenario. For each dataset we calculated the t-statistics and

the corresponding p-values which were used to estimate π0.

For each particular set of parameters we calculated the true optimal weights

using a partition with k=11 intervals (k = 6 was not used since it had slighly

worse performance in the simulations with independent data, k = 15 was very

similar to k = 11). These weights were applied to all ”datasets” within a sce-

nario. We also estimated π0 assuming independence, i.e., using equal weights.

For each dataset we also estimated the optimal weights as outlined in Section

3.3, using the sample correlation matrix of genes and either π0 and µA estimated

under independence, or π0 = 1. To be precise, means of each gene were sub-

tracted within cases and controls separately, and then the centered expression

levels were combined and correlation matrix of genes was computed. To reduce

the time needed to calculate the weights we rounded the correlation matrix to 2

digits. The initial estimate of π0 was the estimate with our proposed method,

under independence. The absolute value of the mean of the test statistics un-

der the alternative distribution, µA, was estimated from the mixture model as

(
∑N

i=1 |Ti|/N−0.794π0)/(1−π0), where Ti is the test statistic for gene i, π0 is an
initial estimate and 0.794 is a mean of the absolute value of a standard normal

random variable. We also decided to estimate the weights assuming π0 = 1 since

we are concerned that the noise in initial estimates of π0 and µA might make the

weights inefficient. We took a bivariate normal distribution in (3.9, 3.10).

To check whether the derived optimal weights were indeed optimal, we used

weights suggested in Chen, Tong, and Zhao (2008). They considered indicator

variables, νi, for whether the ith hypothesis is falsely rejected. The weight for

the test statistic i is inversely proportional to the sum of correlation coefficients

between νi and νj , j ̸= i, j = 1, . . . N . We calculated such weights under the

known multivariate model and the predefined threshold for significance, 0.01.

These weights were plugged into our estimator.

Comparisons were made with four methods: the estimator of π0 built into

the ELF algorithm (Pawitan, Calza, and Ploner (2006)); the median and the 3rd

quartile of the SampG estimator from Lu and Perkins (2007); Langaas’ method

(Langaas, Lindqvist, and Ferkingstad (2005)) which was shown to be robust to

the violation of the independence assumption.

Datasets were repeated 100 times for each scenario, and estimates of π0
were summarized by the mean squared error (MSE), variance, and bias. Results

for the one-sided tests are shown in Table 2. In all scenarios MSE was much

higher for the estimator assuming independence compared to the estimator with

the optimal weights. The difference ranged from 3-fold for small correlation 0.3
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to 10-fold for ρ = 0.9. Both variance and bias increased as the strength of

the correlation increased, but less for the weighted estimator compared to the

estimator under independence. As in simulations with independent data, bias

was negative. The MSE for estimated weights was only slightly larger or similar

to MSE for the estimator with the true weights, and weights estimated under the

full or the null model seemed to have similar performance.

The ELF estimator had similar performance for small correlation, 0.3, but

much higher variance for higher values of ρ. The median of SampG estima-

tors had better performances than the third quartile, but had larger MSE than

the weighted estimator, especially for higher ρ or lower π0. Langaas’ method is

equivalent to our method that assumes independence, but had much higher vari-

ance than the proposed weighted estimator. Note that the weights from Chen,

Tong, and Zhao (2008) result in roughly 2-fold higher variance of the estimator

compared to the optimal weights.

In simulations not shown we also assessed the MSE of the weighted estimator

when the weights were estimated using numerical optimization with positivity

constraints. In all scenarios such constrained weights resulted in slightly worse

performance of the estimator.

The proposed estimator appears to have better performance than its com-

petitors, and estimating weights from the data does not lead to substantial loss

of precision.

The results for the two-sided tests are shown in the Supplementary Table 3.

The simulations were performed in the same way except that half of the non-null

test statistics had negative means (they were not correlated with the non-null

test statistics with positive means). MSE and bias were calculated around the

true value of the density at 1. Note that for the two-sided normal tests f(1) > π0
due to the identifiability issue. The weighted estimator does not provide gain in

precision for small correlation ρ = 0.3, but the reduction in MSE was roughly

1.5-fold for ρ = 0.5 and 4.5-fold for ρ = 0.9 compared to method assuming

independence, or Langaas’ method. We believe that the dependence between

the null p-values is reduced under the two-sided test compared to the one-sided

test, hence the improvement in performance is not as dramatic. The rest of the

conclusions still hold.

In Supplementary Tables 4 and 5 we have shown results of simulations with

the one- and two-sided tests and µA drawn at random from N(2, 0.752) (con-

strained from below by 1). These results are similar to the results with fixed

µA.
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Table 2. Performance of the estimators of π0 under dependence. One-sided
test, µA = 2.

k = 11 Other methods

Fixed weights Estimated weights

Equal Full eQTL Full Null ELF SampG3Q SampGM Langaas

π0=0.5, ρ=0.3

MSE 0.00567 0.00234 0.00442 0.00352 0.00351 0.0060 0.02633 0.01564 0.00558

Var 0.00560 0.00229 0.00438 0.00349 0.00347 0.0035 0.00116 0.00103 0.00552

Bias -0.00804 -0.00687 -0.00655 -0.00579 -0.00595 0.0497 0.15863 0.12086 -0.00739

π0=0.5, ρ=0.5

MSE 0.01023 0.00210 0.00550 0.00290 0.00283 0.0089 0.02984 0.01843 0.01001

Var 0.00928 0.00209 0.00520 0.00286 0.00279 0.0073 0.00268 0.00251 0.00906

Bias -0.03091 -0.00251 -0.01753 -0.00618 -0.00590 0.0401 0.16479 0.12621 -0.03076

π0=0.5, ρ=0.9

MSE 0.01693 0.00184 0.00339 0.00172 0.00180 0.0140 0.03020 0.01935 0.01605

Var 0.01569 0.00182 0.00330 0.00171 0.00179 0.0122 0.00344 0.00329 0.01492

Bias -0.03527 -0.00382 -0.00950 -0.00262 -0.00292 0.0424 0.16357 0.12673 -0.03353

π0=0.9, ρ=0.3

MSE 0.00600 0.00228 0.00429 0.00280 0.00279 0.0024 0.00514 0.00147 0.00602

Var 0.00498 0.00185 0.00357 0.00227 0.00227 0.0024 0.00079 0.00095 0.00506

Bias -0.03201 -0.02096 -0.02695 -0.02306 -0.02293 -0.0042 0.06595 0.02285 -0.03101

π0=0.9, ρ=0.5

MSE 0.01261 0.00206 0.00608 0.00244 0.00252 0.0031 0.00565 0.00281 0.01163

Var 0.01073 0.00186 0.00536 0.00211 0.00219 0.0030 0.00146 0.00204 0.00989

Bias -0.04346 -0.01385 -0.02683 -0.01812 -0.01811 0.0098 0.06474 0.02777 -0.04172

π0=0.9, ρ=0.9

MSE 0.02596 0.00217 0.00413 0.00213 0.00218 0.0099 0.00576 0.00464 0.02513

Var 0.01941 0.00164 0.00318 0.00167 0.00170 0.0097 0.00285 0.00422 0.01897

Bias -0.08097 -0.02305 -0.03097 -0.02155 -0.02196 -0.0111 0.05395 0.02041 -0.07846

5. Application to a Lymphoma Dataset

We have analyzed the lymphoma dataset published in Rosenwald et al.

(2002), data also explored by Pawitan, Calza, and Ploner (2006). The 102 sur-

vivors and 138 non-survivors of diffuse large B-cell lymphoma were compared

using a custom-made microarray consisting of 7,399 markers. Censoring was ig-

nored and a two-sided t-test was used to compare the two groups. The p-value

distribution appears to be non-increasing and convex as shown by the histogram

in Figure 3a. The histogram of pairwise correlation coefficients of the marker ex-

pression values is shown in panel b. The median of this distribution is 0.05, and

about 25% of all correlations are greater in absolute value than 0.2, thus there

is significant amount of dependence; if all markers were independent, having 240

observations per marker we would expect only 0.2% of correlation coefficients

outside of [-0.2,0.2].
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(a) (b) (c)

Figure 3. Lymphoma data: a) histogram of p-values; b) histogram of the
estimated correlation coefficients; c) weight versus the number of related
tests (with |ρ̂| ≥ 0.2)

ELF (Pawitan, Calza, and Ploner (2006)) produces an estimate of π0 of

0.92. Langaas’ method and our proposed estimator under independence and

k = 11 give the estimate 0.83. Estimated weights assuming a multivariate normal

distribution under both full and null models provide weighted estimates equal to

84% and 85%, respectively. The difference between these estimates is small, but

with N=7,399 it corresponds potentially to at least 70 more discoveries. To

illustrate the relationship between the dependence structure and the weights, we

first calculated ”dependence scores”. For each particular marker we looked at

its pairwise correlations with all other markers, and then counted the number of

correlations that exceeded 0.2 in absolute value. A plot of the weights (under

the full model) against these ”dependence scores” is shown in panel c of Figure

3. A strong negative association is present: if a marker is correlated with many

other markers, it is downweighted.
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Of course we do not know which estimate is closest to the truth. Therefore,

we performed another simulation study based on the lymphoma data. Denote the

estimated correlation matrix of the marker expression values as Σ. We created a

vector of means µ equal to the test statistics in the dataset, except that the values

between -2 and 2 were replaced with 0 and declared null. As a result the ’true’

π0 was 88%. We estimated the optimal weights using the correlation matrix Σ

and the means µ. Then we generated N=7,399 test statistics from the multi-

variate normal distribution with means µ and correlation matrix Σ, transformed

them into two-sided p-values using the standard normal as a null distribution,

and applied our proposed estimators with equal and with optimal weights. The

simulation was repeated 100 times. When π0 was estimated assuming indepen-

dence, MSE, variance, and bias were 0.0137, 0.01 and -0.05 respectively. For

the weighted estimator MSE, variance and bias were 0.0038, 0.0036 and -0.013;

variance and bias were reduced about 3-fold.

It was not computationally feasible to perform a more comprehensive simula-

tion generating the expression levels rather than the test statistics and, therefore,

we did not compare our method to other methods. Of course, if the estimated

weights were used instead of the ”true” weights, the performance would have

dropped but, based on the simulations from the previous section, we believe that

the reduction in accuracy would have been small. Nevertheless, these results sug-

gest that even in more realistic scenarios, where correlation matrix is not block

diagonal and the test statistics under the alternative distribution have different

means, the proposed weighted estimator can offer substantial decrease in variance

and bias.

6. Discussion

We have developed a method for estimating the proportion of true null hy-

potheses based on constrained multinomial likelihood. It is free of distributional

assumptions other than the non-increasing and convex shape of the density of

the p-values. Partition of the support interval serves as a tuning parameter and

has to be specified apriori. One of the main advantages of our method is that it

does not depend crucially on the choice of the partition.

When the tests are dependent we propose to use weighted marginal likeli-

hoods within the same framework. Each test statistic receives a weight that is

roughly inversely proportional to the extent of its correlation with all other test

statistics. Optimal weights are derived to guarantee that the trace of the corre-

sponding covariance matrix of the estimating equations is the smallest. When

the parametric bivariate distributions of the test statistics are known, we can

easily calculate the weights using closed-form formulas. We suggested a simple
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procedure in which the weights can be estimated from the data if the test statis-

tics have multivariate normal distribution, that can also be used when the test

statistics come from the t-test. Simulations show that the weighted estimator of-

fers a considerable improvement in bias and variance compared to the estimator

under independence. When the weights are estimated from the data the drop in

performance seems negligible.

The computation of the optimal weights requires estimation of the correlation

matrix of the test statistics and, optionally, preliminary estimates of π0 and

µA. Our simulations show that rounding the correlation matrix to two digits

has a very small effect on the weights but provides substantial savings in the

computational time: for example, it takes about 10 seconds to estimate the

weights for N = 1, 000 and 8 minutes for N = 7, 399 on a computer with 2.33GHz

CPU. The greatest computational challenge in estimating weights is storing and

inverting an NxN matrix. As the number of tests increases to more than 10,000,

estimating weights might not be feasible unless some simplifications are made.

For such cases the test statistics should be split into smaller blocks that are

independent of each other based, for example, on genomic locations or known

pathway information. Then the computation of the weights can be achieved for

each block separately, with the restriction that the weights sum up to the size of

the block over the total number of tests. The R code for estimating the weights

and π0 is available from the authors.

Based on the results of the simulations, weights that are calculated using the

multivariate normal distribution work well even for t-statistics. We believe it is

possible to estimate the weights under distributions other than normal, although

we have not investigated this issue further. It would be necessary to specify the

parametric form of the bivariate distribution of the test statistics that would

depend on a small number of parameters that can be estimated from the data.

Some form of the multivariate t distribution in Kotz and Nadarajah (2004) can be

a useful approximation, or in the case of χ2 tests the multivaraite χ2 distribution

can be applied (Kotz, Johnson, and Balakrishnan (2000)).

In our derivation of the optimal weights for multivariate normal test statistics

we made some assumptions: the null and alternative test statistics are indepen-

dent, all the non-null test statistics have the same mean, correlation between

the two test statistics is the same whether they come from the null or alter-

native distributions. Of course, in reality these assumptions are violated and

the data structure can be much more complex. Our simulations with means

and correlation matrix from the lymphoma dataset showed good performance

of the estimator even when some of the assumptions did not hold, e.g., some

null and non-null statistics were correlated. Note that the model for bivariate

distributions (3.10) can be easily modified to accommodate more complex data

structures.
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In this paper we have not touched upon how the estimate of π0 under de-

pendence should be used in the multiple comparison procedures, or how it affects

their power and other properties. There is a host of error metrics in the literature

developed under dependence, including conditional FDR (Friguet, Kloareg, and

Causeur (2009)), upper bound of false discovery proportion (Chen, Tong, and

Zhao (2008)), empirical FDR (Hunt, Cheng, and Pounds (2009)), and others.

These available methods operate under different settings and assumptions, e.g.,

testing of linear contrasts, regression analysis or the beta-binomial distribution.

Many methods either use values of π0 obtained by methods developed for inde-

pendent data, or assume π0 = 1. We have shown that the proposed estimator

of π0, while requiring minimum assumptions on the data structure, has much

smaller variance and bias if the dependence is taken into account; we expect it

will improve the power of the multiple testing procedures in a variety of models.

However, quantifying its effect on various metrics and under various settings is

beyond the scope of this paper, although it is the area of our current research.
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Appendix

A.1. Theorems and proofs

Theorem A.1. Assume that f is a non-increasing continuously differentiable

function, and let g defined as in (2.1). Then

(i) g is a non-increasing function.

(ii) 0 ≤ g(x) ≤ f(x), for any x ∈ [0, 1].

(iii) If f is convex, then g is also convex.

Proof of Theorem A.1. The following lemma is needed for the proof of The-

orem A.1.

Lemma A.1. Let f be a non-increasing, continuously differentiable, convex

function. Then for any a and b in the support of f ,∫ b

a
f(y)dy ≥ f

(
a+ b

2

)
(b− a).

Proof. Convexity of f implies that for any a1, a2, δ ∈ [0, (b− a)/2]

f

(
a+ b

2

)
≤ 1

2

(
f

(
a+ b

2
+ δ

)
+ f

(
a+ b

2
− δ

))
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Table 3. Supplementary table. Performance of the estimators of π0 under
dependence. Two-sided test, µA = 2.

k = 11 Other methods

Fixed weights Estimated weights

Equal Full eQTL Full Null ELF SampG3Q SampGM Langaas

π0=0.5, ρ=0.3

MSE 0.00236 0.00216 0.00228 0.00225 0.00226 0.0041 0.01109 0.00497 0.00219

Var 0.00233 0.00211 0.00224 0.00222 0.00222 0.0022 0.00105 0.00107 0.00215

Bias -0.00569 -0.00683 -0.00622 -0.00564 -0.00627 0.0431 0.10021 0.06246 -0.00615

π0=0.5, ρ=0.5

MSE 0.00364 0.00260 0.00278 0.00306 0.00282 0.0041 0.01069 0.00491 0.00366

Var 0.00360 0.00252 0.00271 0.00296 0.00269 0.0033 0.00205 0.00195 0.00363

Bias -0.00652 -0.00932 -0.00865 -0.00986 -0.01139 0.0297 0.09292 0.0544 -0.00523

π0=0.5, ρ=0.9

MSE 0.01275 0.00378 0.00421 0.00402 0.00353 0.0107 0.01516 0.00906 0.0129

Var 0.01223 0.00366 0.00409 0.00385 0.00339 0.0068 0.00574 0.00553 0.01237

Bias -0.02271 -0.01063 -0.01100 -0.01305 -0.01190 0.0619 0.09704 0.05943 -0.02313

π0=0.9, ρ=0.3

MSE 0.00240 0.00202 0.00223 0.00220 0.00221 0.0024 0.00390 0.00109 0.00252

Var 0.00217 0.00183 0.00202 0.00194 0.00194 0.0022 0.00083 0.00093 0.00233

Bias -0.01520 -0.01359 -0.01446 -0.01605 -0.01627 -0.0108 0.05539 0.01257 -0.01349

π0=0.9, ρ=0.5

MSE 0.00439 0.00286 0.00326 0.00352 0.00331 0.0053 0.00399 0.00228 0.00428

Var 0.00392 0.00253 0.00290 0.00307 0.00288 0.0049 0.00172 0.00220 0.00388

Bias -0.02167 -0.01836 -0.01898 -0.02121 -0.02076 -0.0217 0.04769 0.00909 -0.02011

π0=0.9, ρ=0.9

MSE 0.01691 0.00348 0.00468 0.00435 0.00369 0.0157 0.00563 0.00573 0.01620

Var 0.01420 0.00273 0.00378 0.00322 0.00274 0.0149 0.00421 0.00569 0.01352

Bias -0.05205 -0.02738 -0.02999 -0.03372 -0.03085 -0.0295 0.03777 0.00604 -0.05181

and f

(
a+ b

2
− δ

)
− f

(
a+ b

2

)
≥ f

(
a+ b

2

)
− f

(
a+ b

2
+ δ

)
.

Denote h1(δ) = f ([(a+ b)/2]− δ) − f((a+ b)/2) and h2(δ) = f ((a+ b)/2) −
f ([(a+ b)/2] + δ). Notice that h1(δ) ≥ h2(δ) ≥ 0 for any δ, therefore∫ b−a

2

0
h1(δ)dδ ≥

∫ b−a
2

0
h2(δ)dδ. (A.1)

Calculating the integrals, we get∫ b+a
2

a
f(y)dy − f

(
a+ b

2

)
b− a

2
≥ f

(
a+ b

2

)
b− a

2
−
∫ b

b+a
2

f(y)dy ⇒∫ b

a
f(y)dy ≥ f

(
a+ b

2

)
(b− a).
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Table 4. Supplementary table. Performance of the estimators of π0 under
dependence. One-sided test, µA is random.

k = 11 Other methods

Fixed weights Estimated weights

Equal Full eQTL Full Null ELF SampG3Q SampGM Langaas

π0=0.5, ρ=0.3

MSE 0.00707 0.00268 0.00305 0.00379 0.00377 0.01665 0.04178 0.02737 0.00676

Var 0.00702 0.00266 0.00304 0.00379 0.00376 0.00259 0.00108 0.00102 0.00671

Bias -0.00760 0.00342 0.00220 0.00247 0.00263 0.11860 0.20174 0.16232 -0.00722

π0=0.5, ρ=0.5

MSE 0.00971 0.00289 0.00304 0.00396 0.00395 0.01403 0.03718 0.02395 0.00917

Var 0.00960 0.00267 0.00284 0.00380 0.00379 0.00317 0.00193 0.00180 0.00907

Bias -0.01026 0.01496 0.01419 0.01261 0.01254 0.10423 0.18776 0.14882 -0.00981

π0=0.5, ρ=0.9

MSE 0.02259 0.00325 0.00321 0.00367 0.00379 0.01839 0.04375 0.02978 0.02118

Var 0.02071 0.00323 0.00319 0.00362 0.00374 0.00731 0.00479 0.00476 0.01965

Bias -0.04333 0.00410 0.00416 0.00744 0.00664 0.10528 0.19739 0.15817 -0.03921

π0=0.9, ρ=0.3

MSE 0.00472 0.00234 0.00241 0.00289 0.00296 0.00239 0.00555 0.00177 0.00475

Var 0.00454 0.00218 0.00228 0.00278 0.00284 0.00231 0.00072 0.00092 0.00455

Bias -0.01349 -0.01255 -0.01137 -0.01062 -0.01084 0.00900 0.06950 0.02914 -0.01408

π0=0.9, ρ=0.5

MSE 0.01062 0.00215 0.00226 0.00296 0.00292 0.00425 0.00574 0.00279 0.00991

Var 0.00916 0.00203 0.00214 0.00285 0.00280 0.00424 0.00156 0.00208 0.00852

Bias -0.03825 -0.01083 -0.01083 -0.01038 -0.01068 0.00189 0.06464 0.02680 -0.03725

π0=0.9, ρ=0.9

MSE 0.02093 0.00233 0.00234 0.00243 0.00243 0.01157 0.00645 0.00559 0.01856

Var 0.01613 0.00208 0.00209 0.00217 0.00217 0.01156 0.00303 0.00470 0.01409

Bias -0.06931 -0.01581 -0.01590 -0.01620 -0.01635 -0.00094 0.05849 0.02987 -0.06688

Proof of Theorem A.1. (i) Put s1 < s2 < 1. Then g is non-increasing if and

only if ∫ s2
s1
f(s)ds

s2 − s1
−
∫ 1
s2
f(s)ds

1− s2
≥ 0.

Since f is decreasing,∫ s2

s1

f(s)ds ≥ (s2 − s1)f(s2) and

∫ 1

s2

f(s)ds ≤ (1− s2)f(s2).

It follows that∫ s2
s1
f(s)ds

s2 − s1
−
∫ 1
s2
f(s)ds

1− s2
≥ f(s2)− f(s2) = 0.

(ii) Since f is decreasing
∫ 1
s f(s)ds ≤ (1−s)f(s). It follows that g(x) ≤ f(x),

for any x in (0,1).
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Table 5. Supplementary table. Performance of the estimators of π0 under
dependence. Two-sided test, µA is random.

k = 11 Other methods

Fixed weights Estimated weights

Equal Full eQTL Full Null ELF SampG3Q SampGM Langaas

π0=0.5, ρ=0.3

MSE 0.00387 0.00351 0.00324 0.00371 0.00361 0.00883 0.01883 0.00998 0.00381

Var 0.00212 0.00183 0.00175 0.00201 0.00194 0.00177 0.00097 0.00097 0.00207

Bias 0.04185 0.04107 0.03868 0.04125 0.04080 0.08399 0.13366 0.09496 0.04169

π0=0.5, ρ=0.5

MSE 0.00419 0.00318 0.00239 0.00355 0.00320 0.00864 0.01617 0.00847 0.00435

Var 0.00365 0.00273 0.00221 0.00310 0.00279 0.00257 0.00200 0.00193 0.00381

Bias 0.02336 0.02110 0.01348 0.02124 0.02036 0.07791 0.11902 0.08085 0.02339

π0=0.5, ρ=0.9

MSE 0.01160 0.00426 0.00338 0.00412 0.00379 0.01293 0.02196 0.01315 0.01184

Var 0.01135 0.00323 0.00222 0.00328 0.00282 0.00550 0.00461 0.00444 0.01162

Bias 0.01580 0.03216 0.03414 0.02891 0.03113 0.08622 0.13169 0.09334 0.01471

π0=0.9, ρ=0.3

MSE 0.00210 0.00204 0.00201 0.00201 0.00199 0.00202 0.00388 0.00115 0.00213

Var 0.00194 0.00189 0.00187 0.00183 0.00181 0.00202 0.00071 0.00091 0.00201

Bias -0.01269 -0.01205 -0.01188 -0.01365 -0.01363 -0.00160 0.05636 0.01542 -0.01089

π0=0.9, ρ=0.5

MSE 0.00450 0.00342 0.00276 0.00385 0.00390 0.00416 0.00413 0.00221 0.00435

Var 0.00416 0.00312 0.00237 0.00344 0.00346 0.00401 0.00149 0.00203 0.00405

Bias -0.01838 -0.01752 -0.01980 -0.02024 -0.02106 -0.01195 0.05140 0.01355 -0.01721

π0=0.9, ρ=0.9

MSE 0.01273 0.0027 0.00170 0.00338 0.00297 0.01235 0.00508 0.00492 0.01204

Var 0.01151 0.0026 0.00165 0.00313 0.00280 0.01232 0.00304 0.00464 0.01084

Bias -0.03485 -0.0101 -0.00712 -0.01573 -0.01292 -0.00480 0.04523 0.01671 -0.03464

(iii) The first and second derivatives of g are

g′(x) =
g(x)− f(x)

(1− x)
and g′′(x) =

2g′(x)− f ′(x)

1− x
.

Fix arbitrary x. By the first mean value theorem, there exists a in [x, 1],
such that ∫ 1

x
f(y)dy = (1− x)f(a),

and therefore g′(x) = (f(a)− f(x))/(1− x). Also there exists b ∈ [x, a], such
that

∫ a
x b

′(y)dy = (a− x)f ′(b). It follows that

g′(x) =
(a− x)f ′(b)

1− x
and g′′(x) =

2 (a−x)f ′(b)
1−x − f ′(x)

1− x
.

Since f ′′(x) ≥ 0, f ′(x) is non-decreasing and 0 ≥ f ′(b) ≥ f ′(x) (remember
0 ≤ x ≤ b ≤ a ≤ 1)
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g′′(x) ≥ − f
′(x)

1− x

1 + x− 2a

1− x
.

Now it remains to show that a ≤ (x+1)/2. Since f is non-increasing, this occurs

if and only if f(a) ≥ f ((1 + x)/2), or equivalently

(1− x)f

(
1 + x

2

)
≤
∫ 1

x
f(y)dy = (1− x)f(a).

This inequality is a special case of Lemma A.1, thus a ≤ (x + 1)/2 and g is

convex.

Theorem A.2. Let lθ(θ,X) ∼
∑k

i=1Xi log(θi). Let SC be the constrained set

of multinomial probabilities

SC = {θ = (θ1, . . . θk) : θi ≥ 0,

k∑
i=1

θi = 1, ψ(θ) ≤ 0},

where ψ(θ) is the vector of linear constraints, and let the unconstrained set be

SU = {θ = (θ1, . . . , θk) : θi ≥ 0,

k∑
i=1

θi = 1}.

If θ̂C is the constrained MLE, argmax{SC} lθ(θ,X), and θ̂U is the MLE over

the unconstrained set SU , then if θ is an interior point of SC , θ̂C is a consistent

estimator of θ and θ̂C has the same asymptotic distribution as the unconstrained

estimator θ̂U .

For simplicity, Theorem A.2 is formulated in terms of parameters θi’s. It

implies that, as N goes to infinity, θ̂C ∼ N(θ,Σ), where

Σii =
θi(1− θi)

N
and Σij = −θiθj

N
.

Thus π̂0 = ĝk−1 has an asymptotically normal distribution with mean gk−1 and

variance gk−1[1−gk−1(1−tk−1)]/N(1−tk−1). This distribution does not take into

account the constraint and cannot be used for a fixed sample size. Consistency

of ĝ implies the consistency of π̂0 if the length of the last interval goes to 0 as N

goes to infinity.

Proof of Theorem A.2. We can write the log-likelihood function in terms of

parameters θ: l(θ,x) ∼
∑k

i=1Xi log(θi).

First, notice that θU ∈ SC ⇔ θU = θC. To see that, observe that SC ⊂ SU ⇒
maxSU l(θ,X) ≥ maxSC l(θ,X) and θU ∈ SC ⇒ maxSU l(θ,X) = l(θU,X) ≤
maxSC l(θ,X). Therefore M := maxSU l(θ,X) = maxSC l(θ,X).
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There is no point θ′ ∈ SU with l(θ′,X) = M except θU, since the uncon-

strained MLE is unique, thus there is no such point in SC ⊂ SU as well. The

unconstrained and constrained maximum M must be attained in the same point

and θU = θC ⇒ θU ∈ SC .

We show that P (θU ∈ SC) → 1 as n→ ∞, true value θ ∈ SC . The MLE θU

is consistent and thus, for any ϵ > 0, P (|θU − θ| ≤ ϵ) → 1 as n → ∞. Since θ is

an interior point of SC , there exists ϵ0 > 0, such that |θU − θ| ≤ ϵ0 and this can

only happen if θU ∈ SC . That is, if θU is close enough to θ, it must be in SC

also. So for ϵ0 P (|θU − θ| ≤ ϵ0) = P (θU ∈ SC) → 1 as n→ ∞.

Now P (θU ∈ SC) = P (θU = θC) → 1 as n→ ∞, and thus θU−θC converges

to 0 in probability. It follows that θC converges to θ in probability.

Theorem A.3. The matrix R = {tr(Sij)} is nnd.

Proof. We need to show that xTRx ≥ 0 for any N -dimensional vector x. Notice

that

Rij = tr(Sij) =
m∑
a=1

Cov(eia, eja).

Therefore

xTRx =

m∑
a=1

N∑
i,j=1

xixjCov(eia, eja)

=
m∑
a=1

N∑
i,j=1

Cov(xieia, xjeja) =
m∑
a=1

V ar

(
N∑
i=1

xieia

)
≥ 0,

and R is nnd.
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