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Abstract: Gegenbauer processes and their generalizations represent a general way

of modeling long memory and seasonal long memory; they include ARFIMA, sea-

sonal ARFIMA, and GARMA processes as special cases. Models from this class

of processes have been used extensively in economics, finance, and in the physical

sciences. An obstacle to using this class of models is in finding explicit formulas

for the autocovariances that are valid for all lags. We provide a computationally

efficient method of computing these autocovariances, by determining the moving

average representation of these processes, and also give an asymptotic formula for

the determinant of the covariance matrix. This allows feasible calculation of the

exact Gaussian likelihood, while also making simulation, forecasting, and signal

extraction practicable. The techniques are illustrated using maximum likelihood

estimation to model atmospheric CO2 data.
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1. Introduction

Gegenbauer processes (Gray, Zhang, and Woodward (1989)) provide a flex-

ible way of modeling time series data that exhibit long memory and seasonal

long memory. These processes and their generalizations (k-factor GARMA, dis-

cussed in Woodward, Cheng, and Gray (1998)) are easily seen to include standard

ARFIMA (Hosking (1981)) and seasonal ARFIMA (Porter-Hudak (1990)) pro-

cesses, as demonstrated below. If such a model is fitted to data using maximum

likelihood estimation, it is essential that a fast, convenient method for comput-

ing the autocovariances is available. The same need is also present in Bayesian

approaches to long memory (see Holan, McElroy, and Chakraborty (2009) and

the references therein). This article provides a general method for computing
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autocovariances that is quite computationally efficient when there are multiple

Gegenbauer polynomial terms in the model spectral density (i.e., multiple frac-

tional memory parameters).

Over the past two decades there has been substantial interest in applying

models that capture seasonal long-range dependance. In particular, since the ini-

tial introduction of the k-factor GARMA (Woodward, Cheng, and Gray (1998)),

these models have become pervasive in economics (e.g., Bisaglia, Bordignon, and

Lisi (2003); Soares and Souza (2006)), finance (e.g., Ferrara and Guégan (2000))

and in the physical and natural sciences (e.g., Gil-Alana (2008); Talamantes,

Behseta and Zender (2007). Because successful fitting of these models is compu-

tationally expensive, our approach is critical for practical implementation.

We briefly mention related recent literature. In special cases, such as a

pure ARFIMA(0,d,0) process, the exact autocovariances are known and can be

convolved with any “short memory” portions of the model. See Brockwell and

Davis (1991) for the ARFIMA example. An efficient approach to approximating

this convolution is achieved through the so-called “splitting method” outlined in

Bertelli and Caporin (2002) and Hurvich (2002). In principal, using the results of

Lapsa (1997), this technique can also be extended to GARMA processes (Gray,

Zhang, and Woodward (1989)), since there is only one seasonal long memory

parameter.

Although there is an extensive literature on long memory time series (see

Palma (2007), Beran (2010), and the references therein), this literature does not

discuss the computation of autocovariances when multiple fractional memory

parameters are present. Instead, the computation of autocovariances associ-

ated with single fractional memory parameter models (e.g., ARFIMA models)

has been typically addressed; see Doornik and Ooms (2003) and the references

therein. Two exceptions to this are Giraitis and Leipus (1995), which provides

asymptotic formulas for autocovariances at high lags, and Bisognin and Lopes

(2009), which provides results for autocovariances of the SARFIMA model.

Specifically, Bisognin and Lopes (2009) explicitly derive the autocovariance gen-

erating function (at all lags) for the case of the SARFIMA(P, D, Q)s. In the

case of a SARFIMA(p, d, q) × (P, D, Q)s the authors mention that this can be

achieved through additional convolution.

In theory, the case of multiple seasonal factors can be handled by adding

another convolution for each extra term, i.e., iterated splitting. Unfortunately,

this is exceedingly expensive computationally; also since each convolution must

be truncated, there is an additional loss of accuracy involved. The method we

propose avoids splitting by instead computing the coefficients of the infinite order

moving average representation of the Gegenbauer process explicitly through a

recursive formula. The autocovariances are computed from these coefficients
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in the usual way, although this involves an infinite summation that must be

truncated. We show how this truncation error can be accurately estimated using

an asymptotic formula for the moving average coefficients, which is also fast to

compute.

The Gaussian likelihood function requires computation of the determinant

of the covariance matrix as well. This matrix is likely to be ill-conditioned due to

multiple poles in the spectral density; instead, we can compute an approximation

to this quantity by generalizing the approach of Chen, Hurvich, and Lu (2006) to

this problem. Together, our results allow for computationally efficient maximum

likelihood and/or Bayesian estimation of a broad class of processes exhibiting

seasonal (and trend) long range dependence.

Although our primary focus is on rapid accurate computation of the auto-

covariances for generalized Gegenbauer processes, the results provided here also

facilitate solutions across a broad range of applications. For example, our results

can be used to efficiently compute the exact Gaussian likelihood and, thus, used

to obtain maximum likelihood estimates. Other references for maximum like-

lihood estimation for long range dependent processes include Chan and Palma

(2005), Reisen, Rodriguez, and Palma (2006), Palma (2007), and the references

therein. Combined with the asymptotic properties of the Gaussian maximum

likelihood estimates for seasonal long range dependent processes presented in

Palma and Chan (2005), our results increase the utility of these models in prac-

tice (e.g., see Section 5). In addition, having efficient methods to compute the

exact likelihood associated with generalized Gegenbauer processes also facilitates

Bayesian estimation. Previous research on Bayesian long memory has primarily

been restricted to ARFIMA models (e.g., see Pai and Ravishanker (1998) and

Ko and Vannucci (2006)) or FEXP models (Holan, McElroy, and Chakraborty

(2009)); however, utilizing the approach described here Bayesian estimation for

seasonal long memory process becomes relatively straightforward. Finally, given

an efficient method for computing the autocovariances, a host of other problems

can be readily addressed including simulation, signal extraction, and imputation,

among others.

The remainder of this paper proceeds as follows. Section 2 presents the

so-called k-factor GEXP model and draws connections to the ARFIMA and

SARFIMA models. Asymptotic results for moving average coefficients and auto-

covariances are presented in Section 3, providing theoretical justification for our

methodology. In addition, Section 3 develops an asymptotic formula for calculat-

ing the determinant of the covariance matrix. Section 4 provides relevant details

regarding model computation, and also discusses several possible applications.

An empirical study is presented in Section 5, illustrating the effectiveness and

accuracy of our approach. Section 6 presents an application of our methodology
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to modeling atmospheric CO2 data using maximum likelihood. Finally, Section

7 provides discussion; all proofs are left to the Appendix.

2. The k-GEXP Model

Let {Xt} be a mean zero covariance stationary time series. We suppose

that {Xt} follows a k-factor Generalized Exponential model, or k-GEXP, whose

spectral density can be written as

f(λ) = |1− e−iλ|−2a |1 + e−iλ|−2b
k∏

ℓ=1

|1− e−iωℓe−iλ|−2cℓ |1− eiωℓe−iλ|−2cℓ
g(λ),

(2.1)

where the parameters a, b, c1, · · · , ck are each bounded in (−1/2, 1/2) in order

to guarantee stationarity. The frequencies ωℓ are distinct from one another,

and not equal to zero or π. When a parameter a, b, or cl is positive, there is a

corresponding pole in the spectral density at frequency zero, π, or ωℓ respectively

– this is the case of long memory. On the other hand, negative parameters

correspond to a zero in the spectrum, and correspond to intermediate memory

(or negative memory, also called anti-persistence by some authors; see Beran

(2010) and the references therein). The function g is bounded, and represents

the short memory portion of the spectrum; in particular, it corresponds to an

EXP(q) model (Bloomfield (1973)) so that

g(λ) = exp
{ q∑

j=1

gj cos(λj)
}
σ2 = exp

{
g0 +

1

2

∑
0<|j|≤q

gje
−iλj

}
, (2.2)

where g−j = gj . So the innovation variance σ2 of the model is exp(g0). It is

convenient to define κ(z) = exp{(1/2)
∑q

j=1 gjz
j} and

β(z) = (1− z)−a(1 + z)−b
k∏

ℓ=1

(1− e−iωℓz)
−cℓ(1− eiωℓz)

−cℓκ(z), (2.3)

which can be written as
∑∞

ℓ=0βℓz
ℓ; then g(λ)= |κ(e−iλ)|2σ2 and f(λ)= |β(e−iλ)|2

σ2. Note, by setting b = c1 = · · · , ck ≡ 0, (2.1) reduces to the fractionally differ-

enced exponential model (FEXP). A model related to (2.1) was described in less

generality, and using a different formulation, in Hsu and Tsai (2009). However,

in that context, the authors conduct estimation using log-periodogram regres-

sion. Importantly, except for the 1-GEXP, the model they propose cannot be

estimated using a likelihood or Bayesian approach, due to the lack of specification

of the autocovariance sequence and the absence of methodology for estimating

the determinant.
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We claim that (2.1) is extremely general, including generalized Gegenbauer

processes, as well as ARFIMA and seasonal ARFIMA. Recall (Gray, Zhang,

and Woodward (1989)) that a Gegenbauer process has spectrum proportional to

|1− 2ue−iλ + e−i2λ|−2d
, with |u| ≤ 1 and |d| < 1/2. The polynomial 1−2uB+B2

has either two real roots or a pair of complex conjugate roots; in both cases, the

spectrum takes on the form (2.1). The spectrum of a generalized Gegenbauer

process contains many such factors multiplied together, which of course is also of

the form (2.1). The seasonal ARFIMA (of which the ARFIMA is a special case)

takes the form

f(λ) = |1− e−iλ|−2d|1− e−isλ|−2D
g(λ), (2.4)

where g is allowed to have infinite order (i.e., q = ∞) corresponding to an ARMA

process, d,D are restricted so as to guarantee stationarity, and s is the seasonal

period. Noting that 1 − Bs = (1 − B)U(B), with U(B) equal to the product

of factors corresponding to the s roots of unity (excepting the one at frequency

zero), the pole of f at frequency zero has exponent d + D, whereas the other

roots of unity generate poles with exponent D. Therefore this corresponds to

(2.1) with a = d+D, b = D, cℓ = D, and ωℓ = ±2πℓ/s, 1 ≤ ℓ ≤ s/2− 1.

3. Asymptotic Properties of the Model

We begin with some asymptotic properties of the moving average coefficients

and autocovariances. Although an initial treatment of this topic was given in Gi-

raitis and Leipus (1995), our asymptotics are written slightly differently, in a

form more convenient for the calculations presented in Section 4. Moreover, our

formulation explicitly provides an asymptotic expression for the truncation er-

ror and, in practice, accurate computation critically depends on accounting for

this error. Another distinction, albeit minor in theory, is that our short memory

dynamics are given by an EXP(q) spectral representation, whereas Giraitis and

Leipus (1995) work with an ARMA model. This distinction becomes increas-

ingly important in applications where parameter estimation is required. In this

context, the generality of the EXP(q) representation is advantageous because no

constraints need to be imposed on the short memory parameters to ensure the

resulting autocovariance matrix remains positive definite.

Consider β(z) in (2.3), and collect all of the factors associated with the min-

imal memory exponent α, i.e., α = min{−a,−b,−c1, · · · ,−ck}, and denote this

(possibly non-monomial) polynomial by Θ(z); the remaining factors are gathered

into Φ(z) (necessarily including κ(z) as a factor). Further, let Θ(z) consist of m

factors Θℓ(z) of the form (1− ζ−1
ℓ z)

α
, and denote β(z)/Θℓ(z) by β−ℓ(z) (which

has its pole at ζℓ removed).
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Theorem 1. Let α be the minimal memory exponent in (2.1) and (2.3), and

suppose α < 0. Then the overall rate of decay of βj is governed by πj(α) =

Γ(j − α)/{Γ(j + 1)Γ(−α)}, and

πj(α) =
j−α−1

Γ(−α)
{1 +O(j−1)}. (3.1)

Letting E(j) =
∑m

ℓ=1 ζ
−j
ℓ β−ℓ(ζℓ), the exact asymptotics for βj are

βj = πj(α)E(j){1 + o(1)}. (3.2)

Remark 1. This is a general result, and applies to any β(z) given as a product

of factors of the form (1− ζ−1z)
γ
for unit roots ζ and non-zero γ ∈ (−1/2, 1/2)

(times any bounded function). We are principally interested in the case that

(2.3) holds. It is easy to see that this result generalizes that of Chung (1996); in

terms of our notation, that paper’s equation (9) yields

βj ∼ πj(α) · cos
{
(j − α)ω +

απ

2

}
21+α sinα(ω),

where β(z) = (1− e−iωz)
α
(1− eiωz)

α
. One can rewrite cos{(j−α)ω+απ/2}s1+α

sinα(ω) as eijω(1− e−i2ω)
α
+ e−ijω(1− ei2ω)

α
, which agrees with (3.2).

Our (3.2) is identical to (10) in Giraitis and Leipus (1995) after accounting

for differences of notation; that paper’s expansion involves a sum over various

terms governed by the asymptotic behavior of πj(dℓ), where dℓ ranges over the

various memory exponents as ℓ increments. However, we have instead collapsed

these terms into one dominant asymptotic expression, with E(j) summarizing

the contribution due to the residual dynamics; in fact, each summand in the

formula for E(j) corresponds to the various D(ℓ) expressions – multiplied by

cosine sequences – of Theorem 1 of Giraitis and Leipus (1995). Writing the

asymptotics of βj in terms of the leading, or minimal, memory exponent is more

convenient for deriving the truncation error expression for the autocovariances

that is discussed in Section 4.

It is also of interest to know the asymptotic behavior of the autocovariances

γh as h → ∞. This can be useful in computations where many lags are involved,

and a quicker formula is needed. A notation that we use repeatedly is

Ah =

m∑
ℓ=1

|β−ℓ(ζℓ)|2ζ−h
ℓ . (3.3)

This is similar to E(h) in Theorem 1, but is appropriate for gauging the growth

of autocovariances rather than moving average coefficients.
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Theorem 2. Let α be the minimal memory exponent in (2.1) and (2.3), and

suppose α < 0. Then the autocovariances are

γh = h−2α−1 σ2Γ(1 + 2α)

Γ(−α)Γ(1 + α)
Ah {1 + o(1)} (3.4)

as h → ∞, where Ah is defined in (3.3).

Remark 2. In (3.4), specific information about the long memory poles at non-

zero frequencies is located in the Ah term – see (3.3) – which distinguishes this

asymptotic result from the more basic FEXP and ARFIMA processes. Of course,

estimation of GARMA processes can be handled using the same result, since (3.3)

holds for GARMA (only with the form of β(z) being somewhat different through

the specification of κ(z)).

This asymptotic form is similar to that of Theorem 1 of Giraitis and Leipus

(1995), although we have expressed things in terms of a single dominant exponent.

Formula (13) of Giraitis and Leipus (1995) sums various rates of growth over

the various memory exponents; accounting for this difference of presentation, the

asymptotics are identical, our Ah corresponding to their weighted sum of cosines.

We proceed by considering a few specific examples.

1-GEXP The 1-GEXP model has only one memory parameter a, which can be

associated with frequency 0, π or ω ∈ (0, π). In the latter case we can generalize

the calculation from Remark 1, using β(z) = (1− e−iωz)
−c
(1− eiωz)

−c
κ(z), and

obtain

Ah = 21−2c sin−2c(ω) exp
{ q∑

ℓ=1

gℓ cos(ωℓ)
}

cos(hω).

Also, as h → ∞, it follows that γh ∼ h2c−1[(σ2Γ(1− 2c))/(Γ(c)Γ(1− c))] × 2

×{2 sin(ω)}−2c × cos(hω)|κ(eiω)|2. Using Γ(c)Γ(1 − c) = π/ sin(πc) and Γ(h +

2c)/Γ(h+1) ∼ h2c−1, we see this agrees exactly with the formula of Chung (1996).

The frequency zero case is known as the FEXP, and β(z) = (1− z)−aκ(z); then

Ah = κ2(1). Similarly, the frequency π case has β(z) = (1 + z)−bκ(z) and Ah =

κ2(−1)(−1)h. As for the autocovariances, we obtain κ2(1) and κ2(−1)(−1)h

respectively, multiplied each by σ2Γ(1− 2c)h2c−1/{Γ(c)Γ(1− c)}.

2-GEXP The 2-GEXP model has two memory parameters. There are four

main cases depending on the locations of the poles: poles at 0 and π; poles at

0 and ω ∈ (0, π); poles at π and ω ∈ (0, π); poles at ω1 ̸= ω2 ∈ (0, π). In the

first case β(z) = (1− z)−a(1 + z)−bκ(z). If a > b then Ah = 2−2bκ2(1), but if

b > a then Ah = 2−2aκ2(−1)(−1)h. If a = b we just sum (this is true for all the
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cases below): Ah = 2−2bκ2(1) + 2−2aκ2(−1)(−1)h. In the second case β(z) =

(1− z)−a(1− e−iωz)
−c
(1− eiωz)

−c
κ(z). If a > c then Ah = |1− eiω|−4c

κ2(1),

but when c > a we instead obtain

Ah = 2|1− eiω|−2a|1− ei2ω|−2c|κ(eiω)|2 cos(hω).

Thirdly, suppose β(z) = (1 + z)−b(1− e−iωz)
−c
(1− eiωz)

−c
κ(z). If b > c we

have

Ah = |1 + eiω|−4c
κ2(−1)(−1)h,

and if c > b we obtain

Ah = 2|1 + eiω|−2b|1− ei2ω|−2c|κ(eiω)|2 cos(hω).

The final case is the most complicated. Here

β(z) = (1− e−iω1z)
−c1

(1− eiω1z)
−c1

(1− e−iω2z)
−c2

(1− eiω2z)
−c2

κ(z).

If c1 > c2 then we obtain

Ah = 2|1− ei2ω1 |−2c1 |1− ei(ω1−ω2)|−2c2 |1− ei(ω1+ω2)|−2c2 |κ(eiω1)|2 cos(hω1).

Clearly if c2 > c1, we just interchange ω1 and ω2 and c1 and c2 in the above

formula. As h → ∞, the autocovariances for any of these cases are given by

γh = h−2α−1ξ(α)Ah, with ξ(α) = σ2Γ(1 + 2α)/{Γ(−α)Γ(1 + α)}.

SFEXP We refer to a process following (2.4), with short memory EXP dynamics

(i.e., g(λ) ∼ EXP(q)), as a Seasonal Fractional EXP model, or SFEXP for short.

There are s poles at various seasonal frequencies, but we have b = ck for k ≤ s/2−
1. It is then straightforward to apply (4.2) and (4.4) to obtain βj for j < J (the

small index case). For the large index case, clearly we need to compute Ah; also

recall that α is the negative of the larger of a and b, the two memory parameters.

Now β(z) = (1−z)−aU−b(z)κ(z), and note that U(z)/(1−ζ−1z)|z=ζ = s/(1−ζ)

for any ζ unit root of U(z). So if a > b, then

βj ∼ πj(−a) s−b κ(1)

follows from (3.2), and Ah = s−2bκ2(1). Alternatively, if b > a we obtain

βj ∼ πj(−b) times the sum, over the s − 1 unit roots ζ of U(z), of the function

U−b(z)(1− z)−aκ(z)(1−ζ−1z)
b
ζ−j evaluated at z= ζ, i.e., (1−ζ)b−aκ(ζ)s−bζ−j .

Focusing on the case s = 12, we can simplify to

Ah = 12−2b
{
22(b−a)κ2(−1)(−1)h + 2

5∑
ℓ=1

|1− eiπℓ/6|2(b−a)|κ(eiπℓ/6)|2 cos
(πℓh

6

)}
.
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Finally, in this case a ̸= b unless either d or D equals zero. The above formula,

once plugged into (3.4), yields the asymptotic autocovariances at once.

Finally, it is of interest to know the asymptotic form of the determinant of the

dimension n autocovariance matrix Σn(f), which is defined as having jkth entry

γj−k, the autocovariance corresponding to spectral density f given by (2.1). An

approximate formula is obtained from Theorem 5.47 of Böttcher and Silbermann

(1999).

Proposition 1. Under model (2.1),

|Σn(f)| ∼ σ2n na2+b2+2
∑k

ℓ=1 c
2
ℓ E(f),

where the constant E(f) is

E(f) = exp
[ q∑
j=1

jg2j /4 +

q∑
j=1

gj

{
a+ b(−1)j + 2

k∑
ℓ=1

cℓ cos(ωℓj)
}]

·2−2ab
k∏

ℓ=1

{2− 2 cos(ωℓ)}−2acℓ{2 + 2 cos(ωℓ)}−2bcℓ{2− 2 cos(2ωℓ)}−c2ℓ

∏
m>ℓ

{2− 2 cos(ωm − ωℓ)}−2cmcℓ{2− 2 cos(ωm + ωℓ)}−2cmcℓ

·G
2(1− a)

G(1− 2a)

G2(1− b)

G(1− 2b)

k∏
ℓ=1

G4(1− cℓ)

G2(1− 2cℓ)
,

and G is the Barnes G function (Böttcher and Silbermann (1999)) given by

G(z + 1) = (2π)z/2 exp[−z(z + 1) + γz2

2
]
∏
n≥1

{
(1 +

z

n
)
n
e−z+z2/(2n)

}
with γ Euler’s constant ≈ 0.57721.

The proof is omitted, as the result directly follows from Böttcher and Silber-

mann (1999).

These results – asymptotic formulas for moving average coefficients, autoco-

variances, and the determinant – can be combined into a practical algorithm for

computing the autocovariances of (2.1), as Section 4 demonstrates.

4. Computation of the Model

We now turn to the practical issue of computing the autocovariances of

(2.1). The idea is to first compute the Fourier coefficients of the log spectrum,

and second to re-express the coefficients of the infinite moving average (MA)
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representation in terms of them, from which the autocovariances are determined

in standard fashion. The reason why this approach is computationally efficient

is that each extra multiplicative factor in (2.1) only adds an extra summand

to the Fourier coefficients of the log spectrum – whereas a direct approach at

obtaining the MA coefficients would involve an extra discrete convolution for

each additional term. Now, defining

θj =
1

π

∫ π

−π
log f(λ) cos(λj) dλ (4.1)

for j ≥ 1, we have f(λ) = exp{
∑

j≥1 θj cos(λj)}σ2. Here the innovation variance

satisfies log σ2 = (1/2π)
∫ π
−π log f(λ) dλ as usual. The following result tells us

how to compute these coefficients (4.1) at once from the parameters in (2.1).

Proposition 2. Under model (2.1), the coefficients in (4.1) are

θj =
2

j

{
a+ b(−1)j + 2

k∑
ℓ=1

cℓ cos(ωℓj)

}
+ gj . (4.2)

For Proposition 2 to be useful, one must know {gj}; either these are known

from the presumptive EXP(q) model for the short memory portion of the spec-

trum, or these coefficients are directly computed from known ARMA parameters.

Suppose that we have an invertible ARMA model for the short memory portion,

such that κ(z) =
∏

ℓ (1− ζℓz)
pℓ for (possibly complex) reciprocal roots ζℓ of the

moving average and autoregressive polynomials; here pℓ is one if ℓ corresponds to

a moving average root, but is negative one if ℓ corresponds to an autoregressive

root. Then

gj = 2
∑
ℓ

pℓζ
j
ℓ

j
. (4.3)

The derivation of (4.3) can be found in McElroy and Holan (2009) and Hsu and

Tsai (2009, Appendix B). Note that if ζℓ is complex, there exists a conjugate

factor ζℓ such that their sum is |ζℓ|j2 cos(jωℓ), where ωℓ is the angular portion.

Thus gj is always real, and readily computed; due to the exponential decay in

(4.3), it is always safe to truncate the sum using a relatively small number of

terms (e.g., 100 terms).

Next, recall that we can write (2.1) as |β(e−iλ)|2σ2. Then applying the main

result of Pourahmadi (1984) – also see Hurvich (2002) for treatment of the FEXP

case – we obtain

βj =
1

2j

j∑
m=1

mθmβj−m (4.4)
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for j ≥ 1. This is a convolution, which is expensive to compute; moreover it must
be carefully monitored for decay – see Theorem 1 above. We can expect these
coefficients to decay slowly, e.g., in the case of an ARFIMA we have b = 0 = cl
and βj ∼ j−a−1 (Brockwell and Davis (1991, p.522)). Once we compute σ2, the
autocovariances are given by the usual formula:

γh = σ2
∑
j≥0

βjβj+h (4.5)

for h ≥ 0 (and γ−h = γh). So the algorithm amounts to the application of
(4.2), (4.4), and a truncated version of (4.5). Now for processes where the long
memory is pronounced (say a, b, or cl is close to 0.5), the decay of the coef-
ficients βj is extremely slow, and thus computing γh via a truncation in (4.5)
induces a substantial amount of error. One can take the truncation point farther
out, but for fairly pronounced long memory the number of βjs needed becomes
computationally prohibitive. (As an example, we found that with a = 0.49,
even taking greater than 100, 000 βjs yielded autocovariance values that severely
under-estimated the target.) Therefore, in practice, it is necessary to compute
the truncation error via asymptotic formulas. We approach this problem by using
the results of Theorem 1 to compute an asymptotic form for the truncation er-
ror. If at least one of the memory parameters (a, b, c1, · · · , ck ) is positive, then
we can use (3.2). However if they are all negative the process is intermediate
memory, the βj decay rapidly, and the problem of truncation error evaporates.

So for some cutoff J , we express (4.5) as

γh = σ2
J−1∑
j=0

βjβj+h + σ2
∞∑
j=J

βjβj+h = BJ(h) +RJ(h). (4.6)

The first term is computed using the exact βjs via (4.4), while the second term
uses the approximate βjs given in (3.2). This remainder term – denoted RJ(h)
– can be written as

σ2
∞∑
j=J

βjβj+h ∼ σ2

Γ2(−α)

m∑
s,ℓ=1

β−s(ζs)β−ℓ(ζℓ)
∞∑
j=J

j−α−1(j + h)−α−1ζ−j
s ζ−j−h

ℓ

as J → ∞. This remainder term can be approximated by an easily computed
expression, which is given in the proposition below. The result is proved using
methods discussed in the proof of Theorem 2, and hence its proof is included in
the Appendix at the end of that theorem’s proof.

Proposition 3. The remainder term RJ(h) for fixed h and J → ∞ is

RJ(h) =

{
J−1−2α σ2 F (1 + α; 1 + 2α; 2 + 2α;−h/J)Ah

Γ2(−α)(1 + 2α)

}
{1 + o(1)}, (4.7)

where F (1 + α; 1 + 2α; 2 + 2α; z) is the hypergeometric function evaluated at z.
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Remark 3. In a sense, (3.4) is a special case of (4.7) when h → ∞ and P =

h/J → ∞. In the last line of the proof, we let P → 0 in the integral and

use P = J/h to obtain h−1−2αΓ(−α)Γ(1 + 2α)/Γ(1 + α), again via 3.194.3 of

Gradshteyn and Ryzhik (1994), which produces (3.4).

Given the previous formulae, the autocovariances can be efficiently com-

puted. To summarize, the procedure is the following:

Step 1: determine all parameters of (2.1);

Step 2: compute a sufficient number of θj via (4.2);

Step 3: compute a sufficient number of βj via (4.4);

Step 4: compute BJ(h) for h small via (4.6);

Step 5: compute Ah for all desired h via (3.3);

Step 6: compute RJ(h) for h small via (4.7);

Step 7: compute γh for h large via (3.4).

This necessarily involves some choices, such as the cutoff between small and large

h, and the truncation level J . In practice it makes little difference how these are

chosen, but it is recommended that J be taken large relative to the lag cutoff, e.g.,

J ≥ 2, 000 and the h cutoff at 100. Additionally, in many cases, the number of

desired lags is sufficiently small, such that γh can be calculated for all h without

appealing to (3.4), i.e., omitting Step 7 of the above procedure.

For maximum likelihood (and Bayesian) estimation, it is also necessary to

compute the determinant of the covariance matrix Σn(f). In general, this can be

computationally expensive. One possibility is to use the Durbin-Levinson algo-

rithm applied to the autocovariance function (see Brockwell and Davis (1991)).

However, this can be computationally infeasible for large sample sizes (Chen,

Hurvich, and Lu (2006)). We instead propose to utilize the asymptotic result of

Proposition 1.

In summary, the preceding algorithm can be used to construct the autocovari-

ance matrix needed to compute the exact Gaussian likelihood. Up to constants,

the log Gaussian likelihood is given by

log |Σn(f)|+X ′Σ−1
n (f)X,

where X represents the sample of time series data of size n, written as a column

vector X = (X1, X2, · · · , Xn)
′. In many cases it is possible to invert the auto-

covariance matrix and to find its determinant directly using standard software

packages (e.g., R or Matlab - R Development Core Team (2010); Mathworks, Inc.

(2010)). When this is not possible, inversion can be handled using a conjugate

gradient (or pre-conditioned conjugate gradient) approach (Golub and Van Loan

(1996)) and the log determinant can be approximated using Proposition 1.
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Our method is also useful for computing the “exact” log Whittle likelihood

g0 + n−1X ′Σn

( 1

f

)
X.

(This expression follows at once from the definition of the Whittle likelihood

given in Taniguchi and Kakizawa (2000).) Note that no matrix inversion is

needed here, but instead we must compute autocovariances for the reciprocal

spectrum 1/f . This is actually trivial, given our preceding discussion and (4.2)

– we only need flip the sign of the θjs and run the same algorithm. Clearly the

term involving the determinant is not needed for the Whittle calculation, and

avoidance of the matrix inversion can potentially speed up computation for large

sample sizes (e.g., n ≫ 1, 000).

We briefly mention two other applications. First, in order to simulate Gaus-

sian processes following (2.1), accurate calculation of autocovariances is a pre-

requisite. With the autocovariances in hand, one only needs to construct a

Cholesky factor (or matrix square root) of Σn(f) and apply this to a vector of

white noise. Alternatively, given the autocovariances, simulation can proceed

using the Durbin-Levinson algorithm (e.g., see Brockwell and Davis (1991)) or

Davies-Harte algorithm (Davies and Harte (1987)).

Finally, any type of mean squared error optimal projections (cf., Hilbert

space treatment in Brockwell and Davis (1991)) involve linear filters and matrix

operations applied to the data vector, where the filter coefficients are determined

from the second order structure of the time series. In particular, forecasts, back-

casts, imputations, and signal extractions are based upon the autocovariances of

the model; see McElroy (2008) for an overview.

Given the need for autocovariances in many applications, the utility of our

results is far-reaching. Nevertheless, in some cases, quick estimation of model

parameters – such as the long memory parameters – may be the only target

of interest. In these contexts, use of a periodogram-based Whittle likelihood

approximation is less computationally intensive, and therefore requires substan-

tially less CPU time. However, one drawback to using any approximate likelihood

approach is a potential loss of accuracy (i.e., introduction of bias). For example,

in the simpler SARFIMA(0, d, 0) × (0, ds, 0)s setting Palma (2007, pp.253-258)

illustrated a downward bias for both estimated memory parameters when using

a Whittle approximation. Thus, in practice, it is important to carefully evaluate

the goals of the analysis, along with computation time, before considering the

use of any approximate likelihood over an exact likelihood method.

5. Empirical Results

This section discusses the accuracy of the autocovariance approximations and

asymptotic formula for the determinant (Proposition 1). Exact quantification of
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the error necessarily depends on the ability to compute the true autocovariance

sequence and determinant. Unfortunately this is not always possible.

In some cases, such as fractional Gaussian noise (i.e., FGN or ARFIMA(0, d,

0)), the autocovariances can be computed exactly and the determinant calcu-

lated numerically. In this case we computed the log determinant numerically

using the autocovariance obtained from (4.6), the log determinant obtained from

Proposition 1, and the log determinant obtained numerically from the exact au-

tocovariances. In all cases, even for d = 0.45 (and J=5,000), the difference

between all three methods was less than 10−5. (A comprehensive breakdown of

these results is available upon request.)

In the case of the FEXP(q) model, the autocovariance sequence cannot be

computed exactly. Nevertheless, the autocovariance sequence can be computed

up to any degree of accuracy using the so-called splitting method (cf., Section 1

and Bertelli and Caporin (2002)). Similar to the case of FGN, we computed the

log determinant numerically using the autocovariances obtained from (4.6), the

log determinant obtained from Proposition 1, and the log determinant obtained

numerically from the autocovariances obtained using the splitting method. In all

cases, for various short memory specifications g and even for d = 0.45 (J=5,000),

the difference between the three methods was less than 10−4. (A comprehensive

breakdown of these results is available upon request.)

In principal, the autocovariances for 1-GEXP case can be computed to any

degree of accuracy. However, this requires use of the splitting method and the au-

tocovariance function associated with the Gegenbauer process (i.e., one seasonal

long memory factor). Alternatively, a formula for approximating the autoco-

variance of the Gegenbauer process has been derived by Chung (1996) and has a

complicated form involving Legendre functions that entails recursive calculations.

In order to avoid this complex form, Chung (1996) also provides an approximate

asymptotic formula that is seen to be a special case of Theorem 1 (cf. Remark

1).

In the case of the 1-GEXP, 2-GEXP and SFEXP the autocovariances se-

quence can not be computed exactly. Therefore, in practice, the true autocovari-

ances from these models are unknown. Additionally, use of the splitting method

for the 1-GEXP case requires an explicit formula for the autocovariances associ-

ated with the Gegenbauer process. Specifically, this requires the autocovariance

function of a GARMA(0,0) model, that has a complicated form (Chung (1996);

Lapsa (1997)). Therefore in order to assess the accuracy of our method for these

models, we computed the log determinant numerically using the autocovariance

obtained from (4.6) and the log determinant obtained from Proposition 1. Al-

though, in principal, the autocovariances for the multiple memory parameter case

could be obtained by numerically calculating the inverse Fourier transform of the
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Table 1. Log determinant of the autocovariance sequence for a 1-GEXP
model, obtained from (4.6) for a given J . The number in parenthesis below
the log determinant denotes the difference between the estimate from (4.6)
and log |Σprop|, the log determinant obtained from Proposition 1. Recall
that g0 = 0 implies unit innovation variance.

1-GEXP: g = (0, 0.75); ω = 0.56; n = 500

c = c0 (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

c = 0.1 (0.429917) 0.429932 0.429934 0.429934 0.429934 0.429934
(1.568073e-5) (1.779021e-5) (1.741245e-5) (1.748945e-5) (1.746436e-5)

c = 0.25 (1.582358) 1.582165 1.582420 1.582377 1.582400 1.582391
(-1.930936e-4) (6.205987e-5) (1.854933e-5) (4.148341e-5) (3.288235e-5)

c = 0.35 (3.058414) 3.055264 3.058549 3.058041 3.058518 3.058331
(-3.149895e-3) (1.351969e-4) (-3.730171e-4) (1.033682e-4) (-8.284450e-5)

c = 0.45 (5.973976) 5.939837 5.972566 5.968087 5.975760 5.972568
(-3.413864e-2) (-1.410034e-3) (-5.889043e-3) (-1.783619e-3) (-1.407956e-3)

Table 2. Log determinant of the autocovariance sequence for a 1-GEXP
model, obtained from (4.6) for a given J . The number in parenthesis below
the log determinant denotes the difference between the estimate from (4.6)
and log |Σprop|, the log determinant obtained from Proposition 1. Recall
that g0 = 0 implies unit innovation variance.

1-GEXP: g = (0, 0.75); ω = 0.56; n = 1, 000

c = c0 (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

c = 0.1 (0.443779) 0.443785 0.443789 0.443788 0.443783 0.443788
(5.240159e-6) (9.415287e-6) (8.660819e-6) (8.817557e-6) (8.765210e-6)

c = 0.25 (1.669002) 1.668565 1.669074 1.668987 1.669033 1.669016
(-4.361900e-4) (7.217425e-5) (-1.433973e-5) (3.161854e-5) (1.435415e-5)

c = 0.35 (3.228235) 3.221981 3.228549 3.227534 3.228488 3.228115
(-6.254165e-3) (3.133181e-4) (-7.010782e-4) (2.526479e-4) (-1.201864e-4)

c = 0.45 (6.254700) 6.186600 6.252189 6.243225 6.258590 6.252199
(-6.804101e-2) (-2.511493e-3) (-1.147568e-2) (3.889263e-3) (-2.501926e-3)

spectrum, this numerical integration can be prohibitively slow and becomes un-

stable, even for “moderate” size memory parameters. As a consequence, this

estimate is subject to numerical error and often not obtainable; thus, it is not

included in our comparison.

As shown in Tables 1 and 2, the approximations for the 1-GEXP agree closely

– for J ≥ 10, 000 and c ≤ 0.35 the difference is on the order of 10−4. In fact by

increasing J , even for c = 0.45, the difference in the approximations can be made

arbitrarily small. In the case of the 2-GEXP, Tables 3 and 4 provide a sense

of the accuracy of the approximations. Specifically, unless both c1 and c2 are

greater than or equal to 0.4, the difference in the approximations can be made
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Table 3. Log determinant of the autocovariance sequence for a 2-GEXP
model, obtained from (4.6) for a given J . The number in parenthesis below
the log determinant denotes the difference between the estimate from (4.6)
and log |Σprop|, the log determinant obtained from Proposition 1. Recall
that g0 = 0 implies unit innovation variance.

2-GEXP: g = (0, 0.75); ω = (ω1, ω2) = (0.1, 0.56); n = 500

c = (c1, c2) (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

c = (0.1, 0.2) (1.528072) 1.523229 1.525410 1.526801 1.527357 1.527665
(-4.843934e-3) (-2.662391e-3) (-1.271907e-3) (-7.154246e-4) (-4.072432e-4)

c = (0.1, 0.3) (2.714834) 2.708252 2.711868 2.713324 2.714080 2.714331
(-6.581986e-3) (-2.966315e-3) (-1.509996e-3) (-7.542180e-4) (-5.028845e-4)

c = (0.1, 0.45) (6.538299) 6.486128 6.519585 6.527094 6.538506 6.535380
(-5.217059e-2) (-1.871311e-2) (-1.120481e-2) (2.078213e-4) (-2.918457e-4)

c = (0.45, 0.2) (8.134616) 7.668759 7.90187 8.190575 8.13965 8.115619
(-0.465857) (-0.232746) (5.595938e-2) (0.0050335) (-1.899707e-2)

c = (0.45, 0.3) (9.492050) 8.550800 8.945401 9.494429 9.444705 9.411312
(-0.941250) (-0.546649) (2.378529e-3) (-4.734516e-2) (-8.073868e-2)

c = (0.45, 0.4) (11.682510) 9.423213 9.978965 11.261940 11.273010 11.220010
(-2.259298) (-1.703546) (-0.420568) (-0.409498) (-0.462501)

Table 4. Log determinant of the autocovariance sequence for a 2-GEXP
model, obtained from (4.6) for a given J . The number in parenthesis below
the log determinant denotes the difference between the estimate from (4.6)
and log |Σprop|, the log determinant obtained from Proposition 1. Recall
that g0 = 0 implies unit innovation variance.

2-GEXP: g = (0, 0.75); ω = (ω1, ω2) = (0.1, 0.56); n = 1, 000

c = (c1, c2) (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

c = (0.1, 0.2) (1.597387) 1.588833 1.592713 1.595149 1.596123 1.596659
(-8.554216e-3) (-4.673783e-3) (-2.238315e-3) (-1.263973e-3) (-7.277024e-3)

c = (0.1, 0.3) (2.853464) 2.841542 2.848285 2.850855 2.852228 2.852651
(-1.192180e-2) (-5.178798e-3) (-2.608591e-3) (-1.235417e-3) (-8.126799e-4)

c = (0.1, 0.45) (6.832886) 6.730148 6.796645 6.811344 6.834062 6.827721
(-0.102738) (-3.624135e-2) (-2.154171e-2) (1.175967e-3) (-5.165404e-3)

c = (0.45, 0.2) (8.470792) 7.557704 8.018156 8.591220 8.486669 8.436870
(-0.913088) (-0.452637) (0.120428) (1.587655e-2) (-3.392270e-2)

c = (0.45, 0.3) (9.897542) 8.142808 8.902406 9.972420 9.856134 9.776608
(-1.754733) (-0.995136) ( 7.487789e-2) (-4.140792e-2) (-0.120933)

c = (0.45, 0.4) (12.185040) 8.318515 9.338821 11.807010 11.764170 11.602530
(-3.866528) (-2.846222) (-0.378036) (-0.420872) (-0.582514)

on the order of 10−2 (for moderate size J).

The SFEXP exhibits similar behavior to the 2-GEXP model. In this case,

the trend long-memory parameter is d + D, whereas the seasonal long-memory

parameter is D. As shown in Tables 5 and 6, when both the trend (d+D) and
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Table 5. Log determinant of the autocovariance sequence for a SFEXP
model, obtained from (4.6) for a given J . The number in parenthesis below
the log determinant denotes the difference between the estimate from (4.6)
and log |Σprop|, the log determinant obtained from Proposition 1. Recall
that g0=0 implies unit innovation variance.

SFEXP: g=(0, 0.75); n=500

(d, D)=(d0, D0) (log |Σprop|) J=5, 000 J=10, 000 J=25, 000 J=50, 000 J=100, 000

(d, D)=(0.1, 0.2) (3.606141) 3.376883 3.455379 3.518562 3.547613 3.566701
(-0.229258) (-0.150762) (-8.757812e-2) (-5.852793e-2) (-3.943965e-2)

(d, D)=(0.1, 0.3) (8.584982) 7.459553 7.747775 8.011780 8.151985 8.256607
(-1.125429) (-0.837207) (-0.573202) (-0.432998) (-0.325376)

(d, D)=(0.1, 0.35) (12.714770) 10.422228 10.905550 11.373010 11.637300 11.846090
(-2.292494) (-1.809218) (-1.341755) (-1.077465) (-0.868684)

(d, D)=(0.2, 0.1) (1.648142) 1.622271 1.633137 1.640714 1.643690 1.645398
(-2.587158e-2) (-1.500525e-2) (-7.428354e-3) (-4.452358e-3) (-2.744174e-3)

(d, D)=(0.3, 0.1) (2.599647) 2.573756 2.584518 2.592081 2.595056 2.596761
(-2.589099e-2) (-1.512898e-2) (-7.565892e-3) (-4.590889e-3) (-2.886382e-3)

(d, D)=(0.35, 0.1) (3.472745) 3.446911 3.457536 3.465090 3.468067 3.469766
(-2.583382e-2) (-1.520905e-2) (-7.655405e-3) (-4.678368e-3) (-2.979346e-3)

Table 6. Log determinant of the autocovariance sequence for a SFEXP
model, obtained from (4.6) for a given J . The number in parenthesis below
the log determinant denotes the difference between the estimate from (4.6)
and log |Σprop|, the log determinant obtained from Proposition 1. Recall
that g0=0 implies unit innovation variance.

SFEXP: g=(0, 0.75); n=1,000

(d, D)=(d0, D0) (log |Σprop|) J=5, 000 J=10, 000 J=25, 000 J=50, 000 J=100, 000

(d, D)=(0.1, 0.2) (3.973509) 3.622366 3.745153 3.842621 3.887080 3.916191
(-0.351143) (-0.228356) (-0.130888) (-8.642860e-2) (-5.731751e-2)

(d, D)=(0.1, 0.3) (9.382102) 7.848874 8.257978 8.622112 8.812097 8.952638
(-1.53227) (-1.124124) (-0.759990) (-0.570004) (-0.429463)

(d, D)=(0.1, 0.35) (13.789150) 10.834780 11.496190 12.111980 12.451690 12.716670
(-2.954365) (-2.292958) (-1.677172) (-1.337460) (-1.072474)

(d, D)=(0.2, 0.1) (1.786772) 1.741965 1.761085 1.774356 1.779555 1.782536
(-4.480619e-2) (-2.568656e-2) (-1.241565e-2) (-7.216655e-3) (-4.235872e-3)

(d, D)=(0.3, 0.1) (2.786797) 2.742162 2.761073 2.774320 2.779518 2.782491
(-4.463461e-2) (-2.572414e-2) (-1.247751e-2) (-7.279237e-3) (-4.305617e-3)

(d, D)=(0.35, 0.1) (3.689353) 3.644970 3.663606 3.676836 3.682040 3.685002
(-4.438323e-2) (-2.574781e-2) (-1.251715e-2) (-7.313700e-3) (-4.350972e-3)

seasonal (D) long-memory parameters are larger than 0.3, approximation accu-

racy is diminished. However, for moderate size seasonal long-memory parameter

and substantial trend long memory parameter there is exceptional agreement

between the independent computations – a difference on the order of 10−2 for

J ≥ 5, 000 – indicating excellent accuracy.

As expected, when models have multiple memory parameters approaching

the nonstationary region of 0.5, there is decreased accuracy in the approxima-

tion of the autocovariance sequence. Nonetheless, it is important to note that no

exact formulas exist for the autocovariances associated with seasonal long mem-
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ory models having multiple memory parameters. Further, the cases where our

method suffers from loss of accuracy are exactly the cases that are intractable

using standard numerical approaches. In this context, our approach allows calcu-

lation of autocovariance sequences, with minimal loss of accuracy, that otherwise

would not be possible. Additionally, the comparison we have conducted is “cumu-

lative”, in the sense that the error in the autocovariance sequence is determined

through the log determinant rather than by comparison of each individual auto-

covariance, the latter being impossible to calculate directly in many situations.

Finally, by coupling (4.6) with (3.4), computational efficiency can be increased

for large sample sizes and/or substantial memory parameters.

6. Mauna Loa Data

To illustrate the utility of our approach we model 382 monthly atmospheric

CO2 measurements collected at the summit of Mauna Loa in Hawaii beginning

in March 1958 (Keeling et al. (1989)). These data were previously analyzed by

Woodward, Cheng, and Gray (1998) using a 2-factor GARMA model for the sec-

ond differences of the atmospheric CO2 data. Figures 1 and 2 display the original

data, its sample autocorrelations, the log periodogram of the second differenced

data, and the sample autocorrelation of the second differenced data. Looking

at the log periodogram, it is immediately apparent that the spectrum possesses

multiple peaks. To accommodate this behavior, we fit a 2-GEXP model using

maximum likelihood estimation. Using J = 25, 000 to compute the autocovari-

ances, we used the optim command in R (R Development Core Team (2010)),

with the “L-BFGS-B” option, to numerically determine the maximum of the

likelihood surface. This procedure is carefully monitored to insure convergence

and that none of the parameters lie on the boundary of the parameter space.

The goal of our analysis was to demonstrate the effectiveness of embedding

our autocovariance computations into a maximum likelihood analysis. As such,

no efforts were made in terms of formal model selection. To this end, we fit a 2-

GEXP(4) model with unknown peak frequencies. Figure 3 displays our estimated

model spectrum with the log periodogram plus γ superimposed. The value γ =

0.57211 is the Euler constant and is added to the log periodogram, as this forms

an unbiased estimate of the log spectrum (see Percival and Walden (2000) for a

comprehensive discussion).

Several salient features of our analysis are important to note. First, the

estimated peak frequencies are ω = (ω1, ω2) = (0.5239, 1.048). These corre-

spond to 12- and 6-month cycles and corroborate the analysis of Woodward,

Cheng, and Gray (1998). Additionally, the corresponding memory parame-

ters c = (c1, c2) = (0.4972, 0.4970) also coincide with the analysis of Wood-

ward, Cheng, and Gray (1998). The associated standard errors can be obtained
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(a) (b)

Figure 1. (a) Mauna Loa CO2 data, 382 monthly observations beginning
March 1958; (b) Autocorrelation function of the Mauna Loa CO2 data.

(a) (b)

Figure 2. (a) Log periodogram + 0.57721 of the twice differenced Mauna
Loa CO2 data; (b) Autocorrelation function of the twice differenced Mauna
Loa CO2 data.

from the estimated inverse Hessian. For the peak frequencies the standard er-

rors are 1.42 × 10−7 and 6.66 × 10−7 for ω1 and ω2, respectively. The stan-

dard errors for the memory parameters are 5.33 × 10−6 and 4.29 × 10−6 for c1
and c2, respectively. Finally, the short memory portion of the model is given

by (g0, g1, g2, g3, g4) = (−2.162,−1.188,−1.175, 1.150, 0.161) with standard error
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Figure 3. Log periodogram + 0.57721 of the twice differenced Mauna Loa
CO2 data with the estimated 2-GEXP(4) model superimposed.

(1.54×10−2, 4.99×10−2, 3.17×10−2, 1.70×10−2, 1.22×10−2) and the estimated

mean (of the twice differenced data) is 0.198, with standard error 3.98× 10−4.

7. Conclusion

Flexible modeling of seasonal long-range dependent processes has been

severely hampered by the lack of computationally efficient methods for calcu-

lating the associated model autocovariances. Additionally, for seasonal long-

memory models, approaches to approximating the determinant of the autoco-

variance matrix needed for evaluating the exact Gaussian likelihood have been

lacking. As a result, generalized Gegenbauer processes have experienced limited

use. Further, in their limited usage, these models have been necessarily estimated

using log periodogram regression or periodogram-based Whittle approximations

to the Gaussian likelihood.

The approach presented here allows for fast accurate computation of the

autocovariances for seasonal long-memory models having multiple memory pa-

rameters. As a consequence, flexible models for long-range dependent data can

be estimated using exact likelihood or Bayesian methods. To assess the accu-

racy of our method we presented the results of an empirical study that compares
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independent estimates of the log determinant. The comparisons were achieved

using the estimated autocovariance sequence directly and through the proposed

asymptotic approximation to the log determinant. In general, we found that the

estimated autocovariance sequences produced log determinants that agreed with

high accuracy to their asymptotic approximation counterpart.

Additionally, we illustrated the utility of the autocovariance computation

approach by embedding our approximations in a maximum likelihood analysis

for the Mauna Loa data. The results obtained from this analysis are seen to

provide sensible estimates that corroborate the analysis of Woodward, Cheng,

and Gray (1998).
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Appendix - Proofs of Results

Proof of Theorem 1. As a first step, consider the single factor case Θ(z) =

(1− ζ−1z)
α
. Expanding in z yields (see Theorem 13.2.1 of Brockwell and Davis

(1991)) Θ(z) =
∑

j≥0 πj(α)ζ
−jzj , with the asymptotic form of πj(α) given by

(3.1). Now Φ(z) consists of κ(z), whose coefficients decay at exponential rate

(see Hurvich (2002)), multiplied by various factors (1− ξ−1z)
γ
where γ > α. We

proceed by induction on the number of these factors; first suppose that Φ = κ.

Then

βj =

j∑
ℓ=0

πℓ(α)ζ
−ℓϕj−ℓ (A.1)

follows from β(z) = Θ(z)Φ(z), with ϕj the coefficients of Φ. We split the sum

(A.1) into four parts using a sequence τ(j) such that 1/τ(j) + τ(j)/j → 0: sum

over 0 ≤ ℓ < τ(j) − 1 (part I); sum over τ(j) ≤ ℓ < j/2 (part II); sum over

j/2 ≤ ℓ < j − τ(j) (part III); sum over j − τ(j) ≤ ℓ ≤ j (part IV). For part I,

we have ϕj−ℓ is asymptotic to ϕj times a function of exponential decay, so that

ϕj−ℓ/ϕj ∼ r−ℓ (for some r < 1) times other bounded functions. Then the sum in

part I is asymptotic to ϕj
∑τ(j)

ℓ=0 πℓ(α)ζ
−ℓr−ℓ (leaving out the bounded functions,

since they don’t affect the argument), which tends to zero since ϕj is dominant.

For part II, we note that πℓ(α)’s asymptotic form (3.1) can be substituted since

ℓ ≥ τ(j) → ∞. The resulting sum converges (because ϕj−ℓ has exponential

decay), but since it is a tail sum starting at τ(j) part II converges to zero. For

parts III and IV we first make a change of variable so that the summands look
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like πj−ℓ(α)ζ
ℓ−jϕℓ. Since πj−ℓ(α)/πj(α) → 1 for ℓ ≤ τ(j), part III is asymptotic

to πj(α)ζ
−j times the tail sum of a convergent series, and hence is o(πj(α)).

Only part IV is left, which is asymptotic to πj(α)ζ
−j

∑τ(j)
ℓ=0 ζ

ℓϕℓ; this sum tends

to Φ(ζ), which yields (3.2).

Now suppose that Φ(z) consists of κ(z) times n factors of the form

(1− ξ−1z)
γ
, and consider β(z) = (1− ζ−1z)

α
Φ(z)(1− ξ−1z)

γ
. Group the first

term with Φ(z), and call this ∆(z); then by the induction hypothesis, we know

that its coefficients δj satisfy (3.2): δj ∼ πj(α)ζ
−jΦ(ζ). The second term

(1−ξ−1z)
γ
has coefficients ρj=πj(γ)ξ

−j . Now similar to (A.1), βj=
∑j

ℓ=0 δℓρj−ℓ,

and we can break the sum into four parts as in the base case. Although ρj
does not have exponential decay, we can use the fact that ρj/πj(α) → 0 – as

well as the summability of ρℓζ
−ℓξ−ℓ, as ξ and ζ are unit roots – to conclude

that the first three parts are o(πj(α)). Part IV is asymptotic to δj
∑τ(j)

ℓ=0 ξ
ℓρℓ ∼

πj(α)ζ
−jΦ(ζ)(1− ξ−1ζ)

γ
, as desired.

Finally, we induct on the number of factors in Θ(z). We have established

the base case of one factor, so suppose that (3.2) holds for m factors: β(z) =

Θ(z)(1− ζ−1
m+1z)

α
, and θj satisfies (3.2). Since the coefficients of this latter fac-

tor are exactly πj(α)ζ
−j
m+1, (A.1) yields βj =

∑j
ℓ=0 θℓπj−ℓ(α)ζ

ℓ−j
m+1. This can

be decomposed into four portions as before, but now only parts II and III are

negligible. This is because, for both these summations, we can asymptotically

pull out a πj(α) term leaving the tail sum of a convergent series (again, because

the presence of the unit roots ζl bring about convergence), making them both

o(πj(α)). For part I we have ζ−j
m+1πj(α)

∑τ(j)
ℓ=0 θℓζ

ℓ
m+1 ∼ πj(α)ζ

−j
m+1Θ(ζm+1). For

part IV we first observe that

θj−ℓ

θj
∼

∑m
s=1 ζ

−j+ℓ
s Θ−s(ζs)∑m

s=1 ζ
−j
s Θ−s(ζs)

,

and this ratio is asymptotic to θj
∑τ(j)

ℓ=0

∑m
s=1 ζ

−j+ℓ
s Θ−s(ζs)πℓ(α)ζ

−ℓ
m+1/

∑m
s=1 ζ

−j
s

Θ−s(ζs), which is πj(α)
∑m

s=1 ζ
ℓ
sΘ−s(ζs)(1− ζs/ζm+1)

α. Putting parts I and IV

together yields

βj
πj(α)

∼ ζ−j
m+1Θ(ζm+1) +

m∑
s=1

ζℓsΘ−s(ζs)
(
1− ζs

ζm+1

)α

=

m+1∑
s=1

ζℓsβ−s(ζs).

We make some further comments on the order of approximation. By examining

the Gamma function and using results of Gradshteyn and Ryzhik (1994), it is

possible to show that πj(α) = j−(1+α)Γ−1(−α){1 + O(j−1)}. In the analysis of

βj , there are error terms that are o(πj(α)) and cannot be improved in general;

thus βj = πj(α)E(j){1 + o(1)}. This concludes the proof.
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Proof of Theorem 2 and Proposition 3. Without loss of generality, set

σ2 = 1. Let τ(h) play the same role as in the proof of Theorem 1, and break the

sum in γh into two parts: j ≤ τ(h) and j > τ(h). The first portion is

τ(h)∑
j=0

βjβj+h =

τ(h)∑
j=0

βj(j + h)−(1+α)Γ−1(−α)E(j + h){1 + o(1)}

= h−(1+α)Γ−1(−α)

τ(h)∑
j=0

βj(1 +
j

h
)
−(1+α)

E(j + h){1 + o(1)}.

The o(1) term is as h → ∞. Because of the asymptotic rate of decay of βj , a

bound on the divergence of the sum is τ(h)−α = o(h−α). Hence the overall bound

on the first term is O(h−(1+2α)). Turning to the second term, we have∑
j>τ(h)

βjβj+h = Γ−2(−α)
∑

j>τ(h)

j−(1+α)(j + h)−(1+α)E(j)E(j + h){1 + o(1)}.

(A.2)

Here there is error that is o(1) as j → ∞ and as j + h → ∞, which amounts to

just o(1) as h → ∞, since j > τ(h). Now writing out E(j) and E(j+h), we must

compute
∑

j>τ(h) j
−(1+α)(j + h)−(1+α)ζ−j

s ζ−j
ℓ for unit roots ζs, ζℓ. If ζsζℓ ̸= 1,

the sum is oscillatory, fostering convergence, such that we obtain a bound of

O(h−(1+α)); else if ζsζℓ = 1 the sum decays at the slower rate of h−(1+2α), as

shown below. Letting ℓ0 = τ(h) and ℓp = hp for p ≥ 1, we can rewrite as

h−2(1+α)
{∑

p≥1

ℓp∑
j=ℓp−1+1

(j/h)−(1+α)(1 + j/h)−(1+α)
}

∼ h−(1+2α)
∑
p≥1

∫ p

p−1
x−(1+α)(1 + x)−(1+α) dx,

since it is a Riemann sum. We also use the fact that τ(h)/h → 0. Now∫∞
0 x−(1+α)(1 + x)−(1+α) dx = Γ(−α)Γ(1 + 2α)/Γ(1 + α) by 3.194.3 of Grad-

shteyn and Ryzhik (1994). Next, we determine how many unit root pairs satisfy

ζsζℓ = 1. If the root is ±1, it is self-conjugate. Otherwise, there is always a con-

jugate root present in β(z) since these factors come in pairs. In any event, the

only terms in EjEj+h that need be considered have ζsζℓ = 1 for all 1 ≤ s, ℓ ≤ m,

which is

m∑
s,ℓ=1

1{ζsζℓ=1}β−s(ζs)β−ℓ(ζℓ)ζ
−h
ℓ =

m∑
ℓ=1

|β−ℓ(ζℓ)|2ζ−h
ℓ = Ah.

Putting this together with h−(1+2α)Γ(−α)Γ(1 + 2α)/Γ(1 + α) yields (3.4).
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Here we also prove Proposition 3 using the same techniques. Let J = hP ,

and suppose h is fixed but J and P are tending to infinity. Then RJ(h) can be

expressed by (A.2), but with τ(h) replaced by J . Similar arguments (but now

taking a J asymptotic instead of an h asymptotic) allow us to focus on unit roots

such that ζℓζs = 1, and the summation for such ℓ, s is

∞∑
j=J

j−α−1(j + h)−α−1 = J−2−2α
∑
r≥1

(r+1)J∑
j=rJ

( j

J

)−1−α( j

J
+

1

P

)−1−α

≈ J−1−2α

∫ ∞

1
x−1−α

(
x+

1

P

)−1−α

dx.

This is the Riemann integration approximation for bounded integrands, so the

error is O(J−2−2α). However, the approximation error from discounting the

ζℓζs ̸= 1 terms is lower order, namely o(J−1−2α). Using 3.194.2 of Gradshteyn

and Ryzhik (1994), the integral is

P 1+2α

∫ ∞

P
y−1−α(1 + y)−1−α dx =

F (1 + α; 1 + 2α; 2 + 2α;−1/P )

1 + 2α
,

using the change of variable y = Px. This completes the proof.

Proof of Proposition 2. Taking the logarithm of (2.1) yields

log f(λ) = −a log(2− 2 cosλ)− b log(2 + 2 cosλ)

−
k∑

ℓ=1

cℓ log [{2− 2 cos(ωℓ − λ)} {2− 2 cos(ωℓ + λ)}] + log g(λ).

Using integration by parts we obtain, for j ≥ 1,

1

π

∫ π

−π
log(2− 2 cosλ) cos(λj) dλ = − 1

π

∫ π

−π

sin(λj) sinλ

j(1− cosλ)
dλ.

For rigor, the integral is broken into two integrals over [−π, 0) and (0, π] and

re-assembled, which shows that the boundary terms in the integration by parts

amount to zero. Next, letting Ω denote the unit circle in the complex plane, we

have

− 1

π

∫ π

−π

sin(λj) sinλ

j(1− cosλ)
dλ = − 1

2πij

∫
Ω
z−(j+1)(z + 1)

2j−1∑
ℓ=0

zℓ dz

= − 1

jj!

∂j

∂zj

{
(z + 1)

2j−1∑
ℓ=0

zℓ
}∣∣∣∣

z=0

= −2

j
,
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since there is a pole of order j+1 at zero, making use of the residue formula (see

Henrici (1974)). Similarly,

1

π

∫ π

−π
log(2 + 2 cosλ) cos(λj) dλ =

1

π

∫ π

−π

sin(λj) sinλ

j(1 + cosλ)
dλ

=
1

2πij

∫
Ω
z−(j+1)(z − 1)

2j−1∑
ℓ=0

(−z)ℓ dz

=
1

jj!

∂j

∂zj

{
(z − 1)

2j−1∑
ℓ=0

(−z)ℓ
}
|z=0

= −2(−1)j

j
.

Finally, suppose that ω ̸= 0, π. Then

1

π

∫ π

−π
log {2− 2 cos(λ+ ω)} cos(λj) dλ

= − 1

π

∫ π

−π

sin(λj) sin(λ+ ω)

j{1− cos(λ+ ω)}
dλ

= − 1

2πij

∫
Ω

(zeiω + 1)z−(j+1)(z2j − 1)

zeiω − 1
dz.

The integrand has a simple pole at e−iω, unless eiω2j = 1 (in which case there is

a cancellation). The residue is 2(e−iωj − eiωj), which gets halved because it lies

on Ω. The pole at zero is of order j + 1, and its residue comes out to be 2eiωj .

As a final result we obtain −2 cos(ωj)/j if eiω2j ̸= 1, and −2/jeiωj otherwise.

However, in this latter case we have cos(ωj) = eiωj , so that −2 cos(ωj)/j is a

valid formula for both cases. Finally, note that these roots ω ∈ (0, π) found in

(2.1) always occur in pairs, which accounts for the doubling of these terms in

(4.2). This concludes the derivation.
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