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Abstract: Varying-coefficient models with heteroscedasticity are considered in this

paper. Based on local composite quantile regression, we propose a new estimation

method to estimate the coefficient functions and heteroscedasticity simultaneously.

Moreover, we can get the estimated conditional quantile curves of the error part.

The conditional biases, variances, and asymptotic normalities of these estimators

are studied explicitly. A simple and quick plug-in bandwidth selector is employed to

select the optimal bandwidth. The estimators of the coefficient functions perform

efficiently and robustly regardless of the error distributions. When the error ε fol-

lows a non-normal distribution, the proposed estimators of the coefficient functions

are much more efficient than local polynomial weighted least squares estimators and

almost as efficient for normal random errors. The estimator of heteroscedasticity

also outperforms other classical estimators in the literature. A goodness-of-fit test

based on a bootstrap procedure is proposed to test whether the coefficient functions

are actually varying. Both simulations and data analysis are used to illustrate the

proposed method.

Key words and phrases: Goodness-of-fit test, heteroscedasticity, local composite
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1. Introduction

Varying-coefficient models, see, Hastie and Tibshirani (1993), arise naturally

when one wishes to examine how regression coefficients change over certain fac-

tors such as time. Their main appeal is that the modeling bias can significantly

be reduced and the “curse of dimensionality” can be avoided. Heteroscedasticity,

which occurs when the variance of the error varies across observations, exists

in many cases, and varying-coefficient models with heteroscedasticity have been

widely considered in the literature. Fan and Zhang (1999, 2000, 2008), among

others, considered the model

Yi = XT
i β(Ti) + σ(Ti)εi, (1.1)

where {(Ti, Xi, Yi) : i = 1, . . . , n} is an i.i.d. random sample from (T,X, Y ),

Ti ∈ R is called smoothing variable, Xi = (Xi1, Xi2, . . . , Xip)
T ∈ Rp and Yi ∈ R,
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β(·) = (β1(·), . . . , βp(·))T is an Rp-valued unknown smooth function, σ(·) is an

unknown positive function of the smoothing variable T , the εi are i.i.d. and

independent of (Ti, Xi), and Var(ε) = 1.

There are many estimates of β(·) in model (1.1). Hastie and Tibshirani

(1993) considered L2 estimation and penalized least squares estimation. Fan

and Zhang (1999) proposed a two-step local polynomial least squares estimation

procedure. Chiang, Rice, and Wu (2001) proposed a componentwise smoothing

spline method. Huang, Wu, and Zhou (2002) proposed a polynomial splines es-

timation method. All these methods are based on least squares, which suggests

that error is homoscedastic and normal with finite variance. The works aside

from Hastie and Tibshirani (1993) took the variance of the error to be an un-

known function of the smoothing variable, but none considered the estimation

of heteroscedasticity. Kim (2007) and Wang, Zhu, and Zhou (2009) considered

varying-coefficient models in quantile regression using spline polynomials to ap-

proximate β(·).
Some papers consider the estimation of heteroscedasticity in (1.1), most of

which are based on regression residuals. For example, Wu, Chiang, and Hoover

(1998) and Fan and Zhang (2000) used the weighted residual sum of squares from

the local polynomial least squares fit to estimate σ(·). Zhao (2001) proposed a

k-NN method based on residuals. The estimator in Tian and Chan (2010) was

also based on residuals. To our best knowledge, there is no literature considering

the simultaneous estimation of β(·) and σ(·) in (1.1). The estimation accuracies

of β(·) and σ(·) are relevant to each other, so it is meaningful to develop an

estimation approach that can estimate β(·) and σ(·) simultaneously.

Quantile regression, proposed by Koenker and Bassett (1978), is a statis-

tical technique designed to estimate and conduct inference about conditional

quantile functions, a more complete statistical model than mean regression.

Based on quantile regression, Zou and Yuan (2008) considered the linear model

Y =
∑p

j=1Xjβj + ε, and proposed composite quantile regression (CQR) esti-

mates of the coefficients. Let ρτk(s) = s(τk−I(s < 0)), k = 1, 2, . . . , q, be q check

loss functions at q quantile positions τk = k/(q+1). CQR estimates β by solving

(b̂1, . . . , b̂q, β̂
CQR) = argminb1,...,bq ,β

q∑
k=1

{ n∑
i=1

ρτk(Yi − bk −XT
i β)

}
,

where bk is the 100τk% quantile of ε. CQR can be more efficient and sometimes

arbitrarily more efficient than least squares for non-normal random errors, and

almost as efficient for normal random errors.

Based on CQR, Kai, Li, and Zou (2010) proposed local composite quantile

regression (LCQR) smoothing that outperforms local polynomial regression for
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various non-normal random errors and is efficient for normal random errors. The

theoretical properties and efficiency of LCQR motivate us to apply it to the

estimation of model (1.1).

Here we propose a new estimation method called local Composite Quan-

tile Regression with Averaged Quantile-Ratio estimation (CQR-AQR) that can

estimate β(·) and σ(·) in model (1.1) simultaneously. We also get estimated con-

ditional quantile curves of σ(t)ε in (1.1) so as to give a thorough description of

the error part. The local linear and quadratic CQR are employed to estimate

β(·) and its derivative, respectively. To estimate σ(·), we propose an estimator

called the Averaged Quantile-Ratio estimator (AQR), see (2.2) or (2.3). More

generally, local m-polynomial CQR-AQR is studied. A plug-in method, which

can be implemented easily, is employed to select the optimal bandwidth.

In a simulation study, we found the proposed CQR-AQR estimation to be

very efficient and robust. By comparison with local polynomial weighted least

squares estimation of β(·) in model (1.1), we find that local CQR estimation is

more efficient and robust for non-normal distributed ε, especially for the Cauchy

distribution, while it is almost as efficient for normal distributed ε. Thus the

estimation of β(·) requires no specification of error distributions. By comparison

with the triangular k-NN weight estimator (Zhao (2001)) of σ(·), the proposed

AQR estimator is also more efficient and accurate.

One important inference question in model (1.1) is whether the coefficient

functions are actually varying. A goodness-of-fit test procedure based on a re-

sampling bootstrap is proposed. Simulation suggests that the test procedure is

indeed powerful.

The rest of the paper is organized as follows. Section 2 and Section 3 study

the local linear and quadratic CQR-AQR estimation of model (1.1), respectively.

We discuss the plug-in bandwidth selector in Section 4. Section 5 presents a

hypothesis testing procedure. Section 6 and Section 7 present the results of sim-

ulations and empirical study. In Section 8, we consider a more general estimation

method for model (1.1), local m-polynomial CQR-AQR. Section 9 concludes the

paper with discussion. Proofs are presented in the Appendix.

2. Local Linear CQR-AQR Estimation

2.1. Estimation

In model (1.1), if β(·) is second-order differentiable, it can be approximated

locally as β(Ti) ≈ β(t) + β′(t)(Ti − t) for Ti in a neighborhood of any given grid

point t. Similarly, σ(Ti) can be approximated locally by a constant σ(t). Let

aτk(t) denote the 100τk% quantile of σ(t)ε, for k = 1, . . . , q, where τ1, τ2, . . . , τq
satisfy 0 < τ1 < τ2 < · · · < τq < 1. Typically, we use equally spaced quantile
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positions: τk = k/(q + 1) for k = 1, . . . , q. The estimators β̂(t), β̂′(t) and âτk(t),

for k = 1, . . . , q, are obtained by minimizing

q∑
k=1

n∑
i=1

ρτk
(
Yi − aτk(t)−XT

i

(
β(t) + β′(t)(Ti − t)

))
K

(
Ti − t

h

)
(2.1)

with respect to β(t), β′(t), and aτk(t) for k = 1, . . . , q, where K(·) is a kernel

function and h is a bandwidth.

For any grid point t, âτk(t) is the estimator of the 100τk% quantile of σ(t)ε,

for k = 1, . . . , q. Therefore, we can get q different estimated conditional quantile

curves of σ(t)ε at quantile positions τk, for k = 1, . . . , q. The q different estimated

conditional quantile curves reflect the properties of the error part σ(t)ε.

We denote the 100τk% quantile of ε by cτk , for k = 1, . . . , q. For brevity, we

assume that the density function of ε is non-vanishing everywhere. Therefore cτk
is uniquely defined for any 0 < τk < 1. Obviously, σ(t) can be easily estimated

by âτk(t)/cτk , which is called quantile-ratio estimator, for any k = 1, . . . , q, as

long as cτk ̸= 0. However, based on the idea of CQR, we combine the strength

of the quantile-ratio estimators (âτk(t)/cτk for k = 1, . . . , q) and propose a new

estimator of σ(t) for any grid point t as follows.

(a) If cτk ̸= 0 for any k = 1, . . . , q, then

σ̂(t) =
1

q

q∑
k=1

âτk(t)

cτk
. (2.2)

(b) If cτj = 0 for j ∈ {1, . . . , q}, then

σ̂(t) =
1

q − 1

q∑
k=1
k ̸=j

âτk(t)

cτk
. (2.3)

From (2.2), σ̂(t) is the average of q different Quantile-Ratio estimators. Thus,

we call the estimator of σ(t) presented in (2.2) or (2.3) the AQR, and the new

estimation method the CQR-AQR. By minimizing (2.1) and employing the AQR

estimator, we get simultaneous estimates of β(t) and σ(t).

Note that when we apply (2.2) or (2.3), the values of cτk for k = 1, . . . , q, have

to be known. If the distribution of ε is known, it is easy to get σ̂(t) using (2.2)

or (2.3). If it is unknown, we assume that ε is normal, and take cτk = Φ−1(τk).

2.2. Asymptotic properties of CQR estimator

In this subsection, we establish the asymptotic properties of β̂(t). Let

fT (·) denote the marginal density function of the covariate T and f(·) denote
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the density function of ε. The observed covariates vector is written as D =

(T1, . . . , Tn, X11, . . . , X1n, . . . , Xp1, . . . , Xpn)
T , and we impose the following reg-

ularity conditions.

1. β(t) is (m+ 1) times continuously differentiable in a neighborhood of t.

2. σ(t) is positive and continuous.

3. fT (·) and f(·) are positive continuous functions.

4. The kernel function K(·) is symmetric with a compact support.

5. E(XXT | T = t) is positive-definite and continuous in a neighborhood of any

given t.

6. The bandwidth h → 0, as n → ∞ and nh → ∞.

We use the notation

µj =

∫
ujK(u)du, νj =

∫
ujK2(u)du, j = 0, 1, 2, . . . ,

R1(q) =

∑q
k=1

∑q
k′=1 τkk′

(
∑q

k=1 f(cτk))
2
,

R2(q) =
1

q2

q∑
k=1

q∑
k′=1

1

cτkcτk′

τkk′

f(cτk)f(cτk′ )
,

R3(q) =
1

q2

q∑
k=1

q∑
k′=1

1

cτkcτk′

∑q
k=1 τkk′∑q

k=1 f(cτk)f(cτk′ )
,

where τkk′ ≡ min(τk, τk′) − τkτk′ . Let c = (1/q)
∑q

k=1(1/cτk), Ξ = E(XT | T =

t), ΣX = Var(X | T = t), Ψ = E(XXT | T = t), and Ω = E(XT | T =

t)
(
Var(XT | T = t)

)−1
E(X | T = t).

Theorem 1. Under Conditions 1− 6,

bias{β̂(t) | D} = 1

2
β′′(t)µ2h

2 + op(h
2),

cov{β̂(t) | D} =
ν0Σ

−1
X σ2(t)

nhfT (t)
R1(q) + op(

1

nh
).

Furthermore,

√
nh

{
β̂(t)− β(t)− 1

2
β′′(t)µ2h

2

}
d→ N

(
0,

ν0Σ
−1
X σ2(t)

fT (t)
R1(q)

)
,

where
d→ is convergence in distribution.
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By a simple calculation, we have

MSE(β̂(t)) =
1

4
β′′T (t)Ψβ′′(t)µ2

2h
4 +

ν0σ
2(t)tr{ΨΣ−1

X }
nhfT (t)

R1(q),

and global optimal bandwidth for β̂(t), obtained by minimizing the mean inte-

grated squared error, is

hopt =

(
ν0R1(q)tr{ΨΣ−1

X }
µ2
2

∫
σ2(t)dt∫

β′′T (t)Ψβ′′(t)fT (t)dt

)1/5

n−1/5 ∼ n−1/5. (2.4)

2.3. Asymptotic properties of AQR estimator

In this subsection, we state the asymptotic properties of σ̂(t) at (2.2); the

statistical properties of (2.3) are similar.

Theorem 2. Under Conditions 1− 6,

bias{σ̂(t) | D} = 1

2
Ξβ′′(t)µ2h

2c(1− Ω) + op(h
2)

Var{σ̂(t) | D} = 1

nh

ν0σ
2(t)

fT (t)
(R2(q)−R3(q)Ω) + op

(
1

nh

)
Furthermore,

√
nh

{
σ̂(t)−σ(t)− 1

2
Ξβ′′(t)µ2h

2c(1−Ω)

}
d→ N

(
0,

ν0σ
2(t)

fT (t)
(R2(q)−R3(q)Ω)

)
.

3. Local Quadratic CQR-AQR Estimation

3.1. Estimation

In many situations we are interested in estimating the derivatives of the

coefficient functions; local quadratic regression is often preferred, although we

can get estimators by employing local linear regression. The estimation of β′(t)

can be improved minimizing

q∑
k=1

n∑
i=1

ρτk

(
Yi−aτk(t)−XT

i

(
β(t)+β′(t)(Ti−t)+

1

2
β′′(t)(Ti−t)2

))
K
(Ti−t

h

)
(3.1)

with respect to aτk(t), for k = 1, . . . , q, β(t), β′(t) and β′′(t).

3.2. Asymptotic properties

We state the properties of the improved estimate β̂′(t).
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Theorem 3. Under Conditions 1− 6,

bias{β̂′(t) | D} = 1

6
β′′′(t)h2

µ4

µ2
+ op(h

2),

cov{β̂′(t) | D} = 1

nh3
ν2Ψ

−1σ2(t)

µ2
2fT (t)

R1(q) + op

(
1

nh3

)
.

Furthermore,

√
nh3

{
β̂′(t)− β′(t)− 1

6
β′′′(t)h2

µ4

µ2

}
d→ N

(
0,

ν2Ψ
−1σ2(t)

µ2
2fT (t)

R1(q)

)
.

4. Bandwidth Selection

Bandwidth selection is an important issue in local smoothing problems

and there are existing techniques, such as plug-in bandwidth selector (Rup-

pert, Sheather, and Wand (1995)), and cross-validation (Wu, Chiang, and Hoover

(1998)). In practice, leave-one-out cross-validation is quite computationally ex-

pensive, although it is natural and data-driven. We employ a plug-in method to

select the optimal bandwidth.

To deal with (2.4), let

Γ1 =

∫
β′′T (t)Ψβ′′(t)fT (t)dt, Γ2 =

∫
σ2(t)dt.

The estimator β̂′′(t) can be obtained by local cubic CQR fitting with an appro-

priate pilot bandwidth h∗, so a natural estimator of Γ1 is

Γ̂1 = n−1
grid

ngrid∑
i=1

β̂′′T (ti)Ψβ̂′′(ti), (4.1)

where {ti : i = 1, . . . , ngrid} are grid points in the support of T . The estimators

âτk(t), for k = 1, . . . , q, can be obtained as byproducts when we use local cubic

CQR fitting with a pilot bandwidth h∗ to estimate β̂′′(t). Then employing (2.2)

or (2.3), we can obtain the estimator σ̂2(t). The natural estimator of Γ2 is

Γ̂2 = n−1
grid

ngrid∑
i=1

σ̂2(ti). (4.2)

By replacing Γ1 and Γ2 in (2.4), respectively, with (4.1) and (4.2), we have the

selected optimal bandwidth for estimating β(t).

In the calculation of σ̂2(t) and R1(q) at (2.4), we take ε to be normal if its

true distribution is unknown.
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5. Hypothesis Testing

In model (1.1), it is often of practical interest to test whether coefficient
functions are actually varying. We consider the testing problem

H0 : βp(t) = βp ↔ H1 : βp(t) ̸= βp, (5.1)

where βp is an unknown constant. Cai, Fan, and Yao (2000) and Huang, Wu, and
Zhou (2002) developed goodness-of-fit tests of (5.1) based on the comparison of
the residual sum of squares under the null and alternative models. In this paper,
we propose a goodness-of-fit test based on the comparison of the residual sums of
quantiles (RSQ) from local linear CQR fits under both the null hypothesis and
the alternative. RSQ is an analog of residual sum of squares, see below. Under
the null hypothesis, model (1.1) can be written as

Yi =

p−1∑
j=1

XT
ijβj(Ti) + βpXip + σ(Ti)εi. (5.2)

Following Fan and Zhang (2000), we propose a method to estimate βp in
(5.2) under the null hypothesis. First, we ignore the fact that βp is a constant,
and treat it as an unknown function βp(t). Based on local linear CQR estimation,
we obtain an estimator β̂p(t). Each of {β̂p(Ti)} is an estimator of the unknown
parameter βp under the null hypothesis, and we average them to obtain the
estimator

β̂p =
1

n

n∑
i=1

β̂p(Ti).

The RSQ under H0 is

RSQ0 =

q∑
k=1

n∑
i=1

ρτk

(
Yi −

p−1∑
j=1

XT
ij β̂j(Ti)− β̂pXip − âτk(Ti)

)
.

The RSQ under H1 is

RSQ1 =

q∑
k=1

n∑
i=1

ρτk

(
Yi −

p∑
j=1

XT
ij β̂j(Ti)− âτk(Ti)

)
.

The goodness-of-fit test statistic is

Qn =
RSQ0 −RSQ1

RSQ1
=

RSQ0

RSQ1
− 1, (5.3)

and we reject H0 for large value of Qn. Let

η̂i = Yi −
p∑

j=1

XT
ij β̂j(Ti)
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and define

Y ∗
i =

p−1∑
j=1

XT
ij β̂j(Ti) + β̂pXip + η̂i.

We use a bootstrap procedure to evaluate the null distribution of Qn and the

p-values of the test.

Step 1. Resample n subjects with replacement from {(Y ∗
i , Xi, Ti) : i = 1, . . . , n}

and repeat the sampling procedure J times.

Step 2. From each bootstrap sample, calculate the test statistic Q∗
n and the em-

pirical distribution of Q∗
n based on the J independent bootstrap samples.

Step 3. Reject the null hypothesis H0 at level α if the observed test statistic Qn

is greater than the upper-α point of the empirical distribution of Q∗
n.

The p-value of the test is the relative frequency of the event {Q∗
n ≥ Qn} in

the J replications of the bootstrap sampling. For simplicity, we use the same

bandwidth in calculating Q∗
n as for Qn.

6. Simulation Study

In this section, we illustrate the performance of the proposed local CQR

and AQR estimators through simulation studies. The proposed estimators were

found using the majorization-minimization (MM) algorithm of Hunter and Lange

(2000).

6.1. Examples

The model, as in Fan and Zhang (2000) is

Y = β1(T )X1 + β2(T )X2 + σ(T )ε, (6.1)

where X1 and X2 are standard normal with correlation coefficient 2−1/2, T fol-

lows a uniform distribution on [0, 1]. Further, T , ε and (X1, X2) are independent.

The coefficient functions were β1(t) = cos(2πt), β2(t) = 4t(1 − t). To illustrate

the robustness and efficiency of the proposed estimators, we considered five dis-

tributions of ε (N(0, 1), t-distribution with 3 degrees of freedom, Lognormal(0,1),

mixed normal distribution 0.9N(0, 1)+0.1N(0, 102) and Cauchy(0,1)) and three

kinds of heteroscedasticity similar to the examples in Tian and Chan (2010):

Example 1. (Homoscedasticity)

σ(t) =
(
0.2var{E(Y | U,X1, X2)}

)1/2
.
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Example 2. (Small jumps heteroscedasticity)

σ(t) =


0.1, 0 ≤ t ≤ 0.3,

0.2, 0.3 < t ≤ 0.6,

0.1, 0.6 < t ≤ 1.

Example 3. (High frequency heteroscedasticity)

σ(t) =


|50t2 − 2|, 0 ≤ t ≤ 0.3,

|3t|, 0.3 < t ≤ 0.6,

|8t|, 0.6 < t ≤ 1.

To assess the performance of local linear CQR estimator, we compared it

with local linear least squares and local linear weighted least squares estimators

solved, respectively, by minimizing

n∑
i=1

{
Yi −

2∑
j=1

XT
ij

(
βj(t) + β′

j(t)(Ti − t)
)}2

K

(
Ti − t

h

)
, (6.2)

n∑
i=1

1

σ2(Ti)

{
Yi −

2∑
j=1

XT
ij

(
βj(t) + β′

j(t)(Ti − t)
)}2

K

(
Ti − t

h

)
. (6.3)

In (6.3), we used the true value of σ(Ti) as if the values of heteroscedasticity were

known. We computed the ratio of averaged square errors

RASE1(ĝ(tj)) =
ASE(ĝLS(tj))

ASE(ĝCQR(tj))
,

RASE2(ĝ(tj)) =
ASE(ĝWLS(tj))

ASE(ĝCQR(tj))
,

where ASE(ĝ(tj)) = n−1
∑ngrid

j=1 (ĝ(tj)− g(tj))
2, with g(·) either β(·) or β′(·), and

{tj , j = 1, . . . , ngrid} the grid points at which the functions {ĝ(·)} were evaluated.

ĝLS and ĝWLS are the minimizers of (6.2) and (6.3), respectively. ĝCQR is the

local linear CQR estimator.

To assess the performance of AQR estimator, we compared it with the tri-

angular k-NN weight estimator (see, Stone (1997), Zhao (2001))

σ̂i =

n∑
j=1

wij |ε̂j |, i = 1, . . . , n,
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where (wi1, . . . , win) is the set of Stone’s triangular k-NN weights corresponding

to the ith observation, and ε̂j , for j = 1, . . . , n, are the residuals of local linear

least squares fitting.

To study how the performance of the proposed estimators varies with the

number of quantiles q, we considered q = 5, 9, 19, respectively. The results are

summarized in the following tables. CQR5, CQR9 and CQR19 correspond to

the local linear CQR estimates with q = 5, 9, 19, respectively.

In the simulation, we set ngrid = 200 and grid points evenly distributed over

the interval for which β(·) and β′(·) were estimated. We conducted 200 simula-

tions for each case with sample size n = 200. The kernel used is Epanechnikov

kernel K(u) = 3
4(1 − u2)I(|u| ≤ 1). The bandwidths were selected using the

plug-in method of Section 4.

6.2. Simulation results and findings

From Tables 1, 2 and 3, we can see that, for all types of heteroscedasticity

with ε normal distributed, the values of RASE1 and RASE2 are slightly less

than 1; it is clear that local linear weighted least squares is the best estimation

method. For all non-normal errors, the values of RASE1 and RASE2 are greater

than 1, indicating the CQR estimator’s huge gain in efficiency, especially for the

Cauchy distribution.

When error is homoscedastic, as in Table 1, CQR9 and CQR19 perform bet-

ter than CQR5, but when error is heteroscedastic, as in Tables 2 and 3, CQR19

performs better than CQR5 and CQR9. When error is heteroscedastic, com-

bining the strength of relatively more quantile regressions at different quantile

positions describe the data structures more thoroughly. However, the CQR esti-

mator is not very sensitive to the number of quantiles, q, and a moderate q, such

as q = 9, is enough.

Figure 1 is the plot of estimated coefficient functions when ε is Cauchy(0, 1)

and q = 9 in Example 1. We can see that the local CQR estimator performs

much better than local LS estimator; The least squares method fails when the

variance of ε is infinite, while CQR method does not.

Figure 2 is the plot of estimated conditional quantile curves of σ(t)ε at

at quantile positions τ = 0.1, 0.3, 0.5, 0.7, 0.9 of Examples 1, 2, and 3, with ε

Lognormal(0,1) and q = 9. From the left panel of Figure 2, we can see that the

five estimated conditional quantile curves are parallel and horizontal, indicating

that the model is homoscedastic, which is consistent with σ(t) in Example 1 being

constant. From the right panel of Figure 2, we can see that the five estimated

quantile curves are not parallel or horizontal. Moreover, with the increase of t,

the divergence of the quantile curves becomes more pronounced, indicating that

the model is heteroscedastic and the heteroscedasticity increases sharply with
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Table 1. Comparisons between local linear least squares (LS) and the local
CQR based on the RASE1 criterion for Example 1 (Homoscedasticity).

β̂1(t) β̂′
1(t) β̂2(t) β̂′

2(t)
ε method RASE1 RASE1 RASE1 RASE1

CQR5 0.7960 0.6976 0.7609 0.7232
N(0, 1) CQR9 0.8140 0.7108 0.7724 0.7401

CQR19 0.8231 0.7287 0.7826 0.7526
CQR5 1.4213 1.3712 1.4125 1.3399

t(3) CQR9 1.4367 1.3865 1.4201 1.3526
CQR19 1.4399 1.3927 1.4222 1.3572
CQR5 3.9290 3.9245 3.9097 4.1920

lognormal CQR9 4.0348 4.0540 3.9861 4.2845
CQR19 4.0720 4.1237 4.0057 4.3362
CQR5 5.2659 4.8938 4.6181 4.3297

mixnormal CQR9 5.2033 4.7991 4.5320 4.2606
CQR19 5.1107 4.7096 4.4733 4.2099
CQR5 64.551 32.156 166.57 127.59

Cauchy CQR9 32.023 16.169 86.699 66.483
CQR19 31.836 16.223 86.041 66.821

Table 2. Comparisons between local linear LS, local linear weighted LS,
and the local CQR based on the RASE1 and RASE2 criteria for Example 2
(Small jumps Heteroscedasticity).

β̂1(t) β̂′
1(t) β̂2(t) β̂′

2(t)
ε method RASE1 RASE2 RASE1 RASE2 RASE1 RASE2 RASE1 RASE2

CQR5 0.8382 0.8172 0.7909 0.7483 0.8497 0.8188 0.8147 0.7686
N(0, 1) CQR9 0.8551 0.8337 0.8133 0.7695 0.8709 0.8392 0.8377 0.7903

CQR19 0.8613 0.8397 0.8211 0.7769 0.8758 0.844 0.8481 0.8002
CQR5 1.5998 1.5467 1.4655 1.4266 1.6306 1.532 1.4628 1.3817

t(3) CQR9 1.5936 1.5407 1.4773 1.4381 1.6328 1.534 1.4716 1.3901
CQR19 1.5879 1.5351 1.4805 1.4413 1.6232 1.5249 1.4727 1.3911
CQR5 4.8572 4.6092 4.3506 4.0801 4.9943 4.7645 5.1367 4.8335

lognormal CQR9 4.9729 4.7190 4.4606 4.1832 5.1485 4.9116 5.2816 4.9699
CQR19 5.0064 4.7508 4.5250 4.2436 5.1885 4.9497 5.3755 5.0583
CQR5 3.6068 3.4957 3.4910 3.2647 4.2954 4.1432 3.9197 3.6984

mixnormal CQR9 3.5819 3.4716 3.4713 3.2463 4.2515 4.1009 3.8404 3.6236
CQR19 3.5511 3.4417 3.4613 3.2369 4.2103 4.0611 3.8107 3.5956
CQR5 1227.6 1221.7 1540.3 1536.0 249.70 247.00 372.80 359.40

Cauchy CQR9 1027.0 1022.0 1287.4 1283.7 208.40 206.20 313.80 302.50
CQR19 1089.4 1084.1 1372.7 1368.8 223.10 220.70 337.40 325.20

the increase of t if t is bigger than 0.6, also consistent with the variation of σ(t)

in Example 3.
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Table 3. Comparisons between local linear LS, local weighted LS, and the
local CQR based on the RASE1 and RASE2 criteria for Example 3 (High
frequency Heteroscedasticity).

β̂1(t) β̂′
1(t) β̂2(t) β̂′

2(t)
ε method RASE1 RASE2 RASE1 RASE2 RASE1 RASE2 RASE1 RASE2

CQR5 0.8288 0.8030 0.8021 0.7600 0.8245 0.7973 0.8201 0.7762
N(0, 1) CQR9 0.8388 0.8127 0.8137 0.7710 0.8477 0.8197 0.8504 0.8049

CQR19 0.8492 0.8227 0.8311 0.7874 0.8598 0.8314 0.8630 0.8167
CQR5 1.4344 1.3836 1.3256 1.2271 1.2008 1.1505 1.1785 1.0819

t(3) CQR9 1.4117 1.3617 1.3198 1.2217 1.1943 1.1442 1.1842 1.0872
CQR19 1.4113 1.3613 1.3221 1.2238 1.1951 1.1450 1.1911 1.0935
CQR5 5.0945 4.8374 4.7750 4.3203 3.1577 3.0029 3.5190 3.1936

lognormal CQR9 5.1421 4.8826 4.8802 4.4155 3.1479 2.9935 3.5583 3.2294
CQR19 5.1651 4.9044 4.9014 4.4347 3.1440 2.9898 3.5737 3.2433
CQR5 2.9348 2.8232 2.9681 2.7779 3.0945 2.9715 3.1311 2.9123

mixnormal CQR9 2.8358 2.7279 2.8835 2.6987 2.9779 2.8595 3.0390 2.8267
CQR19 2.8108 2.7038 2.8209 2.6400 2.9517 2.8344 2.9719 2.7642
CQR5 638.29 701.70 421.38 317.92 308.82 308.71 249.48 230.71

Cauchy CQR9 588.07 646.49 372.47 281.01 285.38 285.28 227.12 210.04
CQR19 578.52 635.99 367.47 277.25 281.32 281.21 223.77 206.94

Figure 3 is the plot of estimated σ(t), with ε Lognormal(0,1) and q = 9.

From Figure 3, we can see that the AQR estimator performs much better than

the triangular k-NN weight estimator. In the simulation study, we can conclude

that CQR-AQR estimation is an efficient and robust method to simultaneously

estimate the coefficient functions and the heteroscedasticity.

6.3. Hypothesis testing

To demonstrate the power of the goodness-of-fit test in Section 5, we consid-

ered the null hypothesis that β2(t) in model (6.1) is constant versus the alternative

that it is varying. We considered the case that σ(t) in (6.1) is the same as that

of Example 1 and ε is normal. The power was evaluated under a sequence of the

alternative models indexed by λ:

β2(t;λ) = c+ λ{β2(t)− c} (0 ≤ λ ≤ 1),

where c =
∫ 1
0 β2(t)dt. For each λ in {0, 0.1, 0.2, . . . , 1.0}, we applied the goodness-

of-fit test with 100 replications of sample size n = 200. For each replication, we

repeated the bootstrap resampling 100 times. The significance level α was 0.05.

Figure 4 shows the simulated power against λ, indicating the hypothesis testing

procedure worked appropriately.
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Figure 1. Plots of β̂1(t) and β̂2(t) in Example 1, where ε is Cauchy. Dot-
dashed curves: true functions; Long-dashed curves: local linear CQR esti-
mated functions; Dot curves: local linear LS estimated functions.

Figure 2. Plots of five estimated conditional quantile curves of σ(t)ε of Ex-
amples 1, 2, and 3 (from the left panel to the right), with ε Lognormal(0,1).

7. Empirical Application

We illustrate the methodology of this paper via an application to an air

pollution data set. The data were a subsample of 500 observations from a study

conducted by the Norwegian Public Roads Administration, investigating how the

air pollution at a road relates to the traffic volume and wind speed. The data

was obtained from StatLib. It is of interest to study the association between the

levels of pollutants and the traffic volume and wind speed, and to examine the

extent to which the association varies over time. We consider the relation among

the hourly values of the logarithm of the concentration of NO2 (Y ), measured

at Alnabru in Oslo, Norway, between October 2001 and August 2003, and the

logarithm of the number of cars per hour (X1), wind speed X2 (meters per
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Figure 3. Plots of σ̂(t) in Examples 1, 2, and 3 (from the left panel to the
right), with ε Lognormal(0,1). Dot-dashed curves: true functions; Long-
dashed curves: AQR estimated functions; Dot curves: triangular k-NN
weight estimated functions.

Figure 4. Plot of power against λ for the goodness-of-fit test.

second), and the hour of day (T ). All covariates except T are standardized. We
considered the following varying-coefficient model with heteroscedasticity

Y = β1(T )X1 + β2(T )X2 + σ(T )ε. (7.1)

to fit the given data.
The proposed CQR-AQR estimation was employed to estimate β1(t), β2(t),

and σ(t). In our applications, we chose q = 9. The Epanechnikov kernel was
employed and the plug-in selected bandwidth was 3.9357. The estimated coeffi-
cient functions are depicted in Figure 5. The figure shows that there is a strong
time effect on the coefficient functions β1(·) and β2(·). Moreover, the association
between the number of cars per hour and the concentration of NO2 is always
positive, and the association between the wind speed and the concentration of
NO2 is always negative.

When employing the AQR estimator to obtain σ̂(t), we took ε to be normal;
σ̂(t) is presented in Figure 6 (left panel). We can see that the values of σ̂(t)
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Figure 5. The estimated coefficient functions β̂1(t) and β̂2(t) of model (7.1).

Figure 6. The plot of σ̂(t) in model (7.1) (left panel); The plot of fitted y to
corresponding residuals of model (7.1) (right panel).

varies with time. Moreover, the plot of the fitted values of Y (that is, Ŷ =

β̂1(T )X1 + β̂2(T )X2) to the residuals (that is, Y − Ŷ ), presented in Figure 6

(right panel), also demonstrates that there is heteroscedasticity in model (7.1).

A natural question is whether the coefficient functions are really time varying.

We used the hypothesis testing procedure in Section 5 to answer this question.

The number of bootstrap replicates was J = 500. The observed statistics and

their p-values are summarized in Table 4. From Table 4, at the 0.05 significance

level, there is sufficient evidence to reject H01 and H02.
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Table 4. Test statistics and p-values for testing whether coefficient functions
are actually time-varying.

Null hypothesis Values of test statistic p-value
H01 : β1(·) = β1 0.1966 0.0260
H02 : β2(·) = β2 0.0494 0.0120

8. Local m-Polynomial CQR-AQR Estimation

As a generalization of local linear and quadratic CQR-AQR estimation, we

consider local m-polynomial CQR-AQR and establish the asymptotic theory for

local m-polynomial CQR-AQR estimators in model (1.1). For each given t, we

can get âτk(t), b̂j for k = 1, . . . , q, j = 0, . . . ,m, by minimizing

q∑
k=1

n∑
i=1

ρτk

(
Yi − aτk(t)−

m∑
j=0

XT
i bj(Ti − t)j

)
K
(Ti − t

h

)
, (8.1)

where bj = β(j)(t)/j!.

Let uk =
√
nh(aτk(t) − σ(t)cτk), vj = hj

√
nh(j!bj − β(j)(t))/j!, and θ =

(u1, u2, . . . , uq; v0, v1, . . . , vm)T .

Define

S =

(
S11 S12

S21 S22

)
,

where S11 is a q×q diagonal matrix with diagonal elements f(cτk), k = 1, 2, . . . , q,

S12 is a q × (m + 1) matrix with (k, j)-element f(cτk)E(XT | T = t)µj , k =

1, 2, . . . , q and j = 0, 1, . . . ,m, S21 = ST
12, and S22 is a (m+1)×(m+1) matrix with

(j, j′)-element E(XXT | T = t)µj+j′
∑q

k=1 f(cτk), j, j
′ = 0, 1, . . . ,m. Partition

S−1 into submatrices as follows:

S−1 =

(
S11 S12

S21 S22

)−1

=

(
(S−1)11 (S

−1)12
(S−1)21 (S

−1)22

)
where here and hereafter (·)11 denotes the top left-hand q×q submatrix and (·)22
denotes the bottom right-hand (m+ 1)× (m+ 1) submatrix.

Define

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11 is a q×q matrix with (k, k′)-element ν0τkk′ , k, k
′ = 1, 2, . . . , q, Σ12 is a

q×(m+1) matrix with (k, j)-element E(XT | T = t)νj
∑q

k′=1 τkk′ , k = 1, 2, . . . , q,

j = 0, 1, . . . ,m, Σ21 = ΣT
12, Σ22 is a (m+1)× (m+1) matrix with (j, j′)-element

E(XXT | T = t)νj+j′
∑q

k,k′=1 τkk′ , j, j
′ = 0, 1, . . . ,m.

Let di,k = cτk{σ(Ti) − σ(t)} + ri,m, ri,m = XT
i (β(Ti) −

∑m
j=0 β

(j)(t)(Ti −
t)j/j!), si = (Ti − t)/h and K(Ti − t)/h = Ki, and take η∗i,k to be I(εi ≤ cτk −
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di,k/σ(Ti))− τk. Let W
∗
n = (w∗

11, w
∗
12, . . . , w

∗
1q;w

∗
20, w

∗
21, . . . , w

∗
2m)T , where w∗

1k =

(
√
nh)−1

∑n
i=1Kiη

∗
i,k, w

∗
2j = (

√
nh)−1

∑q
k=1

∑n
i=1X

T
i Kis

j
iη

∗
i,k.

Theorem 4. Under Conditions 1−6, for k = 1, . . . , q, j = 0, . . . ,m,

θ̂ +
σ(t)

fT (t)
S−1E(W∗

n | D)
d→ N

(
0,

σ2(t)

fT (t)
S−1ΣS−1

)
. (8.2)

9. Discussion

In this section, we discuss some directions to further extend this work.

(a) The proposed CQR-AQR method is not very sensitive to the number of

quantiles q but, practically speaking, we can choose q by some tuning methods

such as K-fold cross-validation. To circumvent the problem of selecting q, we can

consider, instead of (2.1),∫ 1

0

n∑
i=1

ργ
(
Yi − aγ(t)−XT

i

(
β(t) + β′(t)(Ti − t)

))
K

(
Ti − t

h

)
ω(γ)dγ, (9.1)

where the weight function ω(γ) is a density function over (0, 1). In practice, we

need to discretize the integral in order to numerically compute the estimators.

Thus, a discrete distribution density ω(γ) is used to construct the weights. The

proposed method uses a discrete uniform distribution on {1/(q + 1), . . . , q/(q + 1)}.
(b) The model (1.1) can be extended to

Yi = XT
i β(Ti) + σ(Xi, Ti)εi,

where σ(Xi, Ti) is an unknown form positive function. We can estimate β(t) and

σ(x, t) by minimizing

q∑
k=1

n∑
i=1

ρτk
(
Yi − aτk(x, t)−XT

i

(
β(t) + β′(t)(Ti − t)

))
Ki,H , (9.2)

where x=(x1, . . . , xp), aτk(x, t)=σ(x, t)cτk , Ki,H =K((Ti−t)/h0, (Xi1−x1)/h1,

. . ., (Xip − xp)/hp) is a multivariate kernel function, and H = (h0, h1, . . . , hp)
T

is a vector of bandwidths. Denote the minimizers of (9.2) by β̂(t) and âτk(x, t),

for k = 1, . . . , q. If the AQR estimator is employed, we can easily get σ̂(x, t) =

(1/q)
∑q

k=1 âτk(x, t)/cτk , if cτk ̸= 0 for any k = 1, . . . , q; or σ̂(x, t) = (1/(q − 1))∑q
k=1
k ̸=j

âτk(x, t)/cτk , if cτj = 0 for certain j ∈ {1, . . . , q}.

Note that estimating σ(x, t) nonparametrically encounters the ‘curse of di-

mensionality’ and how to estimate β(t) is an open problem.
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Finally, we would like to point out that the proposed method is efficiently

implemented by using the MM algorithm. For the simulation example in the case

that q = 9 and the sample size is n = 5, 000, the proposed method fit at a given

location t was computed within 0.3280s on an Intel 2.8-GHz machine.

Acknowledgement

The authors gratefully acknowledge the helpful comments of an asso-

ciate editor and the referees. The research is partially supported by the Major

Project of Humanities Social Science Foundation of Ministry of Education (No.

08JJD910247), Key Project of Chinese Ministry of Education (No. 108120),

National Natural Science Foundation of China (No. 10871201), Beijing Natu-

ral Science Foundation (No. 1102021), the Fundamental Research Funds for the

Central Universities, and the Research Funds of Renmin University of China (No.

10XNL018).

Appendix

Proof of Theorem 4. Let

∆i,k =
uk +

∑m
j=0X

T
i vjs

j
i√

nh
.

Because Yi − aτk(t) − XT
i

∑m
j=0 bj(Ti − t)j = σ(Ti)(εi − cτk) + di,k − ∆i,k, θ̂ =

(û1, û2, . . . , ûq; v̂0, v̂1, . . . , v̂m)T is the minimizer of

Ln =

q∑
k=1

n∑
i=1

[
ρτk(σ(Ti)(εi − cτk) + di,k −∆i,k)− ρτk(σ(Ti)(εi − cτk) + di,k)

]
Ki.

Applying the identity

ρτ (r − s)− ρτ (r) = s(I(r ≤ 0)− τ) +

∫ s

0
[I(r ≤ z)− I(r ≤ 0)]dz,

we write Ln as

Ln =

n∑
i=1

q∑
k=1

uk +
∑m

j=0X
T
i vjs

j
i√

nh

(
I(εi ≤ cτk −

di,k
σ(Ti)

)− τk

)
Ki

+

n∑
i=1

q∑
k=1

Ki

∫ ∆i,k

0

(
I(σ(Ti)(εi − cτk) + di,k ≤ z)

−I(σ(Ti)(εi − cτk) + di,k ≤ 0)
)
dz



1094 JIE GUO, MAOZAI TIAN AND KAI ZHU

=

q∑
k=1

{ n∑
i=1

Kiη
∗
i,k√

nh

}
uk +

m∑
j=0

{ q∑
k=1

n∑
i=1

XT
i Kis

j
iη

∗
i,k√

nh

}
vj

+

q∑
k=1

n∑
i=1

Ki

∫ ∆i,k

0

(
I(σ(Ti)(εi − cτk) + di,k ≤ z)− cτk) + di,k ≤ z)

−I(σ(Ti)(εi − cτk) + di,k ≤ 0)
)
dz

=W∗T
n θ +

q∑
k=1

Bn,k(θ),

where Bn,k(θ) =
∑n

i=1Ki

∫ ∆i,k

0

(
I(σ(Ti)(εi− cτk)+di,k ≤ z)−I(σ(Ti)(εi− cτk)+

di,k ≤ 0)
)
dz.

Take

Sn =

(
Sn,11 Sn,12

Sn,21 Sn,22

)
,

where Sn,11 is a q× q diagonal matrix with diagonal elements (1/nh)f(cτk)
∑n

i=1

Ki/σ(Ti), k = 1, 2, . . . , q, Sn,12 is a q × (m + 1) matrix with (k, j)-elements
(1/nh)f(cτk)

∑n
i=1X

T
i Kis

j
i/σ(Ti), j = 0, 1, . . . ,m, Sn,21 = ST

n,12, Sn,22 is a (m+

1)× (m+ 1) matrix with (j, j′)-elements (1/nh)
∑q

k=1 f(cτk)
∑n

i=1XiX
T
i Kis

j+j′

i

/σ(Ti), j, j
′ = 0, 1, . . . ,m.

E[Bn,k(θ) | D] = E
[ n∑

i=1

Ki

∫ ∆i,k

0
{I(εi ≤ cτk +

z − di,k
σ(Ti)

)

−I(εi ≤ cτk −
di,k
σ(Ti)

)}dz | D
]

=

n∑
i=1

Ki

∫ ∆i,k

0
{F (cτk −

di,k
σ(Ti)

+
z

σ(Ti)
)− F (cτk −

di,k
σ(Ti)

)}dz

=

n∑
i=1

Ki

∫ ∆i,k

0
{ z

σ(Ti)
f(cτk −

di,k
σ(Ti)

) + o(z)}dz

=

n∑
i=1

Ki∆
2
i,k

f(cτk − di,k/σ(Ti))

2σ(Ti)
+ op(1)

=
n∑

i=1

Ki∆
2
i,k

f(cτk)

2σ(Ti)
+ op(1).

As well,

Var[Bn,k(θ) | D] = Var
[ n∑

i=1

Ki

∫ ∆i,k

0
{I(σ(Ti)(εi − cτk) + di,k ≤ z)



NEW EFFICIENT AND ROBUST ESTIMATION IN VARYING-COEFFICIENT MODELS 1095

−I(σ(Ti)(εi − cτk) + di,k ≤ 0)}dz | D
]

≤
n∑

i=1

E
[(

Ki

∫ ∆i,k

0
{I(σ(Ti)(εi − cτk) + di,k ≤ z)

−I(σ(Ti)(εi − cτk) + di,k ≤ 0)}dz
)2

| D
]

≤
n∑

i=1

K2
i

∫ |∆i,k|

0

∫ |∆i,k|

0
{F (cτk −

di,k
σ(Ti)

+
|∆i,k|
σ(Ti)

)

−F (cτk −
di,k
σ(Ti)

)}dz1dz2

≤ o(

n∑
i=1

K2
i ∆

2
i,k).

= op(1).

Hence
∑q

k=1Bn,k(θ)
p→
∑q

k=1

∑n
i=1Ki∆

2
i,kf(cτk)/2σ(Ti), and we can write

the limit,
∑q

k=1

∑n
i=1Ki∆

2
i,kf(cτk)/2σ(Ti), into the matrix 1

2θ
TSnθ. That is,

q∑
k=1

Bn,k(θ)
p→ 1

2
θTSnθ.

As in Parzen (1962), we have

1

nh

n∑
i=1

Ki
p→ fT (t),

1

nh

n∑
i=1

XiKis
j
i

p→ fT (t)E(X | T = t)µj ,

1

nh

n∑
i=1

XiX
T
i Kis

j
i

p→ fT (t)E(XXT | T = t)µj ,

where
p→ stands for convergence in probability. Thus,

Sn
p→ fT (t)

σ(t)
S.

This leads to

Ln(θ)
p→ 1

2

fT (t)

σ(t)
θTSθ +W∗T

n θ.

Since Ln is a convex function, following Knight (1998) we have

θ̂
p→ − σ(t)

fT (t)
S−1W∗

n.
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Let ηi,k = I(εi ≤ cτk)− τk, and Wn = (w11, . . . , w1q, w20, . . . , w2m)T with

w1k =
1√
nh

n∑
i=1

Kiηi,k and w2j =
1√
nh

q∑
k=1

n∑
i=1

XT
i Kis

j
iηi,k.

By the Cramer-Wald Theorem and the Central Limit Theorem, we have

Wn | D − E[Wn | D]√
cov(Wn | D)

d→ N(0, I(m+q+1)×(m+q+1)).

Note that cov(ηi,k, ηi,k′) = τkk′ and cov(ηi,k, ηj,k′) = 0, if i ̸= j. As in Parzen

(1962), we have

1

nh

n∑
i=1

K2
i

p→ fT (t)ν0,

1

nh

n∑
i=1

K2
i s

j
iXi

p→ fT (t)νjE(X | T = t),

1

nh

n∑
i=1

K2
i s

j+j′

i XiX
T
i

p→ fT (t)νj+j′E(XXT | T = t).

Therefore, cov(Wn | D)
p→ fT (t)Σ and

Wn | D d→ N(0, fT (t)Σ).

Moreover,

Var(w∗
1k − w1k | D) = Var

( 1√
nh

n∑
i=1

Ki(η
∗
i,k − ηi,k) | D

)
=

1

nh

n∑
i=1

K2
i Var

(
I(εi ≤ cτk −

di,k
σ(Ti)

)− I(εi ≤ cτk) | D
)

≤ 1

nh

n∑
i=1

K2
i E
∣∣∣[I(εi ≤ cτk −

di,k
σ(Ti)

)− I(εi ≤ cτk)] | D
∣∣∣

≤ 1

nh

n∑
i=1

K2
i [F (cτk +

|di,k|
σ(Ti)

)− F (cτk)]

= op(1),

Var(w∗
2j − w2j | D) = Var

( 1√
nh

q∑
k=1

n∑
i=1

XT
i Kis

j
i (η

∗
i,k − ηi,k) | D

)
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=
1

nh

n∑
i=1

XT
i XiK

2
i s

2j
i Var

( q∑
k=1

(η∗i,k − ηi,k) | D
)

≤ q2

nh

n∑
i=1

XT
i XiK

2
i s

2j
i max

k
E
∣∣∣[I(εi ≤ cτk −

di,k
σ(Ti)

)

−I(εi ≤ cτk)] | D
∣∣∣

≤ q2

nh

n∑
i=1

XT
i XiK

2
i s

2j
i max

k
[F (cτk +

|di,k|
σ(Ti)

)− F (cτk)]

= op(1).

Thus, we have

W∗
n | D p→ Wn | D.

By Slutsky’s theorem, conditioning onD, we haveW∗
n|D−E[W∗

n|D]
d→ N(0, fT (t)Σ),

and so

θ̂ +
σ(t)

fT (t)
S−1E(W∗

n | D) →d N
(
0,

σ2(t)

fT (t)
S−1ΣS−1

)
.

This completes the proof of Theorem 4.

Proof of Theorem 1. The asymptotic normality follows Theorem 4 withm = 1.

We calculate the conditional bias and variance of β̂(t) in this section. When

m = 1,

S11 = diag{f(cτ1), . . . , f(cτq)},
S12 = {(f(cτ1)E(X | T = t), . . . , f(cτq)E(X | T = t))T ,0q×1},

S22 = diag{E(XXT | T = t)

q∑
k=1

f(cτk), E(XXT | T = t)µ2

q∑
k=1

f(cτk)}.

Note that

(S−1)22 = (S22 − S21S
−1
11 S12)

−1 = diag
{(Var(X | T = t))−1∑q

k=1 f(cτk)
,
(E(XXT | T = t))−1

µ2
∑q

k=1 f(cτk)

}
,

(S−1)21 = −(S−1)22S21S
−1
11 =

(
−
{E(X | T = t)(Var(X | T = t))−1∑q

k=1 f(cτk)

}
1q×1,0q×1

)T
,

E(w∗
1k | D) =

n∑
i=1

Ki√
nh

(
F (cτk −

di,k
σ(Ti)

)− F (cτk)
)
,

E(w∗
2j | D) =

n∑
i=1

XT
i Kis

j
i√

nh

q∑
k=1

(
F (cτk −

di,k
σ(Ti)

)− F (cτk)
)
,
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Write e1 = (1, 0)T . By Theorem 4,

bias{β̂(t) | D} = − 1√
nh

σ(t)

fT (t)
eT1 {(S−1)21E[W∗

1n | D] + (S−1)22E[W∗
2n | D]}

= − σ(t)

nhfT (t)

(Var(X | T = t))−1∑q
k=1 f(cτk)

n∑
i=1

(Xi − E(X | T = t))

·Ki

q∑
k=1

(
F (cτk −

di,k
σ(Ti)

)− F (cτk)
)
.

It is easy to check that

F (cτk −
di,k
σ(Ti)

)− F (cτk) = − ri,1
σ(Ti)

f(cτk){1 + op(1)},

and therefore

bias(β̂(t) | D)

=
1

nh

σ(t)

fT (t)
(Var(X | T = t))−1

n∑
i=1

(Xi − E(X | T = t))Ki
ri,1
σ(Ti)

{1 + op(1)}

=
1

2nh

σ(t)

fT (t)

n∑
i=1

Ki
β′′(t)(Ti − t)2

σ(Ti)
{1 + op(1)} =

1

2
β′′(t)µ2h

2 + op(h
2).

Furthermore, the conditional covariance of β̂(t) is

cov(β̂(t) | D) =
σ2(t)

nhfT (t)
eT1 (S

−1ΣS−1)22e1

=
σ2(t)

nhfT (t)

ν0
∑q

k=1

∑q
k′=1 τkk′

(
∑q

k=1 f(cτk))
2

(Var(X | T = t))−1 + op(
1

nh
)

=
ν0(Var(X | T = t))−1σ2(t)

nhfT (t)
R1(q) + op(

1

nh
).

This completes the proof of Theorem 1.

Proof of Theorem 2. Here we only calculate the conditional bias and variance

of σ̂(t) as presented in (2.2). The proof of the asymptotic normality of (2.3) is

similar. Let ek be a q × 1 vector, whose kth element is 1 and all other elements

are 0. According to Theorem 4,

bias{âτk(t) | D}

= − 1√
nh

σ(t)

fT (t)
eTk
{
(S−1)11E(W∗

1n | D) + (S−1)12E(W∗
2n | D)

}
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= − 1√
nh

σ(t)

fT (t)

[ 1

f(cτk)

n∑
i=1

Ki√
nh

(
F (cτk −

di,k
σ(Ti)

)− F (cτk)

)

−E(XT |T = t)(Var(XT |T = t))−1∑q
k=1 f(cτk)

n∑
i=1

XiKi√
nh

q∑
k=1

(
F (cτk−

di,k
σ(Ti)

)−F (cτk)

)]
=

1

nh

σ(t)

fT (t)

n∑
i=1

Ki
ri,1
σ(Ti)

(
1− E(XT | T = t) (Var(X | T = t))−1Xi

)
{1 + op(1)}

=
1

nh

σ(t)

fT (t)

n∑
i=1

Ki
XT

i β
′′(t)(Ti − t)2

2σ(Ti)

·
(
1− E(XT | T = t) (Var(X | T = t))−1Xi

)
{1 + op(1)}

=
1

2
E(XT | T = t)β′′(t)µ2h

2(1− Ω) + op(h
2).

Because σ̂(t) = 1
q

∑q
k=1 âτk(t)/cτk , we can get

bias{σ̂(t) | D} = 1

q

q∑
k=1

1

cτk
bias{âτk(t) | D}

=
1

2
E(XT | T = t)β′′(t)µ2h

2

(
1

q

q∑
k=1

1

cτk

)
(1− Ω) + op(h

2)

=
1

2
E(XT | T = t)β′′(t)µ2h

2c(1− Ω) + op(h
2).

The conditional variance of σ̂(t) is

Var(σ̂(t) | D)

=
1

q2

q∑
k=1

q∑
k′=1

1

cτkcτk′
cov(âτk(t), âτk′ (t))

=
1

nhq2
σ2(t)

fT (t)

q∑
k=1

q∑
k′=1

1

cτkcτk′

(
S−1ΣS−1

)
kk′

=
1

nh

ν0σ
2(t)

fT (t)

[ 1
q2

q∑
k=1

q∑
k′=1

1

cτkcτk′

τkk′

f(cτk)f(cτk′ )

− 1

q2

q∑
k=1

q∑
k′=1

1

cτkcτk′

∑q
k=1 τkk′∑q

k=1 f(cτk)
E(XT |T = t)

(
Var(XT |T = t)

)−1
E(X |T = t)

]
+op(

1

nh
)

=
1

nh

ν0σ
2(t)

fT (t)
(R2(q)−R3(q)Ω) + op

(
1

nh

)
.
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This completes the proof of Theorem 2.

Proof of Theorem 3. The asymptotic normality follows from Theorem 4 with

m = 2, and the proof of Theorem 3 is very similar to that of Theorem 1. Let

e2 = (0, 1, 0)T . We calculate the conditional bias and variance of β̂′(t)

bias(β̂′(t) | D) = − σ(t)

h
√
nhfT (t)

eT2 {(S−1)21E(W∗
1n | D) + (S−1)22E(W∗

2n | D)}

=
σ(t)

nh2fT (t)

1

E(XXT | T = t)µ2

n∑
i=1

XiKisi
ri,2
σ(Ti)

{1 + op(1)}

=
σ(t)

nh2fT (t)

1

E(XXT | T = t)µ2

n∑
i=1

XiKisi
XT

i β
′′′(t)s3ih

3

6σ(Ti)
{1+op(1)}

=
1

6
β′′′(t)h2

µ4

µ2
+ op(h

2).

Furthermore, we can easily get the conditional covariance of β̂′(t),

cov(β̂′(t) | D) =
σ2(t)

nh3
1

fT (t0)
eT2 (S

−1ΣS−1)22e2

=
σ2(t)

nh3
ν2(E(XXT | T = t))−1

µ2
2fT (t)

∑q
k=1

∑q
k′=1 τkk′

(
∑q

k=1 f(cτk))
2

+ op

(
1

nh3

)
=

σ2(t)

nh3
ν2(E(XXT | T = t))−1

µ2
2fT (t0)

R1(q) + op

(
1

nh3

)
.

This completes the proof of Theorem 3.
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