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We first describe the following results, which is Lemma 1 of Huang and Ma (2010).

Let Let τ = (τ1, . . . , τn)T and ξn = max1≤j≤p |ξj |. Suppose that conditions (A2)
and (A3) hold. Then

E(ξn) ≤ C1

√
log(p)

(√
2C2n log(p) + 4 log(2p) + C2n

)1/2
,

where C1, C2 > 0 are constants. In particular, when log(p)/n → 0,

E(ξn) = O(1)
√

n log p.

S1 Proof of Theorem 1

Examination of Theorem 1 of Zhang and Huang (2008) suggests that the normality
assumption is not necessary. As a matter of fact, as long as the tail probability ∼
exp(−x2), Theorem 1 and its proof in Zhang and Huang (2008) holds. Part (a) of our
Theorem 1 thus follows.

Under assumption (A1), minj∈A1 |β0j | > b1 > 0 for a constant b1. Thus, if part (c)
of Theorem 1 holds, then part (b) follows. Proof of part (c) proceeds as follows. The
Lasso estimate satisfies

||Ỹ − X̃β̃||2 + 2λn

∑

j

|β̃j | ≤ ||Ỹ − X̃β0||2 + 2λn

∑

j

|β0j |,

which leads to

||Ỹ − X̃β̃||2 + 2λn

∑

j∈A1

|β̃j | ≤ ||Ỹ − X̃β0||2 + 2λn

∑

j∈A1

|β0j |.

Thus, we have

||X̃(β̃ − β0)||2 − 2τT X̃(β̃ − β0) ≤ 2λn

∑

j∈A1

|β̃j − β0j |.
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We note that ∑

j∈A1

|β̃j − β0j | ≤
√
|A1|||β̃A1∪Ã1

− β0A1∪Ã1
||,

where β̃A1∪Ã1
= {β̃j : j ∈ A1 ∪ Ã1} and β0A1∪Ã1

= {β0j : j ∈ A1 ∪ Ã1}. Combining the
above equations, we have

||X̃A1∪Ã1
(β̃A1∪Ã1

− β0A1∪Ã1
)||2 − 2τT (X̃A1∪Ã1

(β̃A1∪Ã1
− β0A1∪Ã1

))

≤ 2λn

√
|A1|||β̃A1∪Ã1

− β0A1∪Ã1
||.

Define τ∗ = X̃A1∪Ã1
(X̃T

A1∪Ã1
X̃A1∪Ã1

)−1X̃T
A1∪Ã1

τ . From the Cauchy-Schwarz inequality,
we have

|2τT (X̃A1∪Ã1
(β̃A1∪Ã1

− β0A1∪Ã1
))| ≤ 2||τ∗||2 +

1
2
||X̃A1∪Ã1

(β̃A1∪Ã1
− β0A1∪Ã1

)||2.

Combining the above equations,

||X̃A1∪Ã1
(β̃A1∪Ã1

− β0A1∪Ã1
)||2 ≤ 4||τ∗||2 + 4λn

√
|A1| × ||β̃A1∪Ã1

− β0A1∪Ã1
||.

Under assumption (A4),

||X̃A1∪Ã1
(β̃A1∪Ã1

− β0A1∪Ã1
)||2 ≥ nc∗||β̃A1∪Ã1

− β0A1∪Ã1
||2.

Combining the above two equations, we have

nc∗||β̃A1∪Ã1
− β0A1∪Ã1

||2 ≤ 4||τ∗||2 +
16λ2

n|A1|
2nc∗

+
1
2
nc∗||β̃A1∪Ã1

− β0A1∪Ã1
||2.

It follows that

||β̃A1∪Ã1
− β0A1∪Ã1

||2 ≤ 8||τ∗||2
nc∗

+
16λ2

n|A1|
n2c2∗

. (S1.1)

Under the SRC, we also have

||τ∗||2 ≤ ||X̃A1∪Ã1
τ ||2

nc∗
≤ maxB:|B|≤p∗1 ||X̃Bτ ||2

nc∗
.

We also have
maxB:|B|≤p∗1 ||X̃Bτ ||2 ≤ p∗1maxj |X̃T

j τ |.
Applying the result described in the beginning of this section,

maxj |X̃T
j τ | = O(n log(p)).

Thus,

||τ∗||2 = O(
p∗1 log(p)

c∗
). (S1.2)

Part (c) follows from equations (S1.1) and (S1.2).
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S2 Proof of Theorem 2

By the Karush-Kunh-Tucker condition, β̂ = (β̂1, . . . , β̂p)T is the adaptive Lasso estimate
if

{
X̃T

j (Ỹ − X̃β̂) = λnvjsign(β̂j), β̂j 6= 0
|X̃T

j (Ỹ − X̃β̂)| ≤ λnvj β̂j = 0
(S2.1)

and the vectors {X̃j : j ∈ Â1} are linearly independent. Define s̃1 = (vjsign(β0j), j ∈
A1)T , X̃A1 = (X̃j , j ∈ A1), and β0A1

= (β0j , j ∈ A1)T . Define

β̂A1
= (X̃T

A1
X̃A1)

−1(X̃T
A1

Ỹ − λns̃1)

= β0A1
+

(
X̃T

A1
X̃A1/n

)−1

(X̃T
A1

τ − λns̃1)/n. (S2.2)

If sign(β̂A1
) = sign(β0A1

), then (S2.1) holds for β̃ = (β̂
T

A1
, 0T )T . Since X̃β̃ = X̃A1 β̂

T

A1
,

we have

sign(β̂) = sign(β0) if

{
sign(β̂A1

) = sign(β0A1
)

|X̃T
j (Ỹ − X̃A1 β̂A1

)| ≤ λnvj , ∀j 6∈ A1.
(S2.3)

Define Hn = I − X̃A1(X̃
T
A1

X̃A1)
−1X̃T

A1
. From the definition of β̂A1

,

Ỹ − X̃A1 β̂A1
= τ − X̃A1(β̂A1

− β0A1
) = Hnτ + X̃A1(X̃

T
A1

X̃A1)
−1s̃1λn.

Thus, following (S2.3),

sign(β̂) = sign(β̂0) if

{
sign(β0j)(β0j − β̂j) ≤ |β0j |, ∀j ∈ A1

|X̃T
j

(
Hnτ + X̃A1(X̃

T
A1

X̃A1)
−1s̃1λn| < λnvj , ∀j 6∈ A1.

(S2.4)
Combining equations (S2.2) and (S2.4),

P
{

sign(β̂) 6= sign(β0)
}

≤ P
{
|eT

j (X̃T
A1

X̃A1)
−1X̃T

A1
τ | ≥ |β0j |/2 for some j ∈ A1

}

+P
{
|eT

j (X̃T
A1

X̃A1)
−1s̃1|λn/n ≥ |β0j |/2 for some j ∈ A1

}

+P
{
|X̃T

j Hnτ | ≥ λnvj/2 for some j 6∈ A1

}

+P
{
|X̃T

j X̃A1(X̃
T
A1

X̃A1)
−1s̃1| ≥ vj/2 for some j 6∈ A1

}
,

where ej is the unit vector in the direction of the j-th coordinate. Following Huang et
al. (2008), it can be proved that each of the above four probabilities converges to zero.


