VARIABLE SELECTION IN PARTLY LINEAR REGRESSION MODEL WITH DIVERGING DIMENSIONS FOR RIGHT CENSORED DATA

Shuangge Ma and Pang Du

Yale University and Virginia Tech

Supplementary Material

We first describe the following results, which is Lemma 1 of Huang and Ma (2010).
Let Let $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)^{T}$ and $\xi_{n}=\max _{1 \leq j \leq p}\left|\xi_{j}\right|$. Suppose that conditions (A2) and (A3) hold. Then

$$
\mathrm{E}\left(\xi_{n}\right) \leq C_{1} \sqrt{\log (p)}\left(\sqrt{2 C_{2} n \log (p)}+4 \log (2 p)+C_{2} n\right)^{1 / 2}
$$

where $C_{1}, C_{2}>0$ are constants. In particular, when $\log (p) / n \rightarrow 0$,

$$
\mathrm{E}\left(\xi_{n}\right)=O(1) \sqrt{n \log p} .
$$

S1 Proof of Theorem 1

Examination of Theorem 1 of Zhang and Huang (2008) suggests that the normality assumption is not necessary. As a matter of fact, as long as the tail probability \sim $\exp \left(-x^{2}\right)$, Theorem 1 and its proof in Zhang and Huang (2008) holds. Part (a) of our Theorem 1 thus follows.

Under assumption (A1), $\min _{j \in A_{1}}\left|\beta_{0 j}\right|>b_{1}>0$ for a constant b_{1}. Thus, if part (c) of Theorem 1 holds, then part (b) follows. Proof of part (c) proceeds as follows. The Lasso estimate satisfies

$$
\|\tilde{Y}-\tilde{X} \tilde{\boldsymbol{\beta}}\|^{2}+2 \lambda_{n} \sum_{j}\left|\tilde{\beta}_{j}\right| \leq\left\|\tilde{Y}-\tilde{X} \boldsymbol{\beta}_{0}\right\|^{2}+2 \lambda_{n} \sum_{j}\left|\beta_{0 j}\right|,
$$

which leads to

$$
\|\tilde{Y}-\tilde{X} \tilde{\boldsymbol{\beta}}\|^{2}+2 \lambda_{n} \sum_{j \in A_{1}}\left|\tilde{\beta}_{j}\right| \leq\left\|\tilde{Y}-\tilde{X} \boldsymbol{\beta}_{0}\right\|^{2}+2 \lambda_{n} \sum_{j \in A_{1}}\left|\beta_{0 j}\right| .
$$

Thus, we have

$$
\left\|\tilde{X}\left(\tilde{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right\|^{2}-2 \tau^{T} \tilde{X}\left(\tilde{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \leq 2 \lambda_{n} \sum_{j \in A_{1}}\left|\tilde{\beta}_{j}-\beta_{0 j}\right| .
$$

We note that

$$
\sum_{j \in A_{1}}\left|\tilde{\beta}_{j}-\beta_{0 j}\right| \leq \sqrt{\left|A_{1}\right|| | \tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}| |, ~}
$$

where $\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}=\left\{\tilde{\beta}_{j}: j \in A_{1} \cup \tilde{A}_{1}\right\}$ and $\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}=\left\{\beta_{0 j}: j \in A_{1} \cup \tilde{A}_{1}\right\}$. Combining the above equations, we have

$$
\begin{aligned}
& \left\|\tilde{X}_{A_{1} \cup \tilde{A}_{1}}\left(\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right)\right\|^{2}-2 \tau^{T}\left(\tilde{X}_{A_{1} \cup \tilde{A}_{1}}\left(\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right)\right) \\
& \quad \leq 2 \lambda_{n} \sqrt{\left|A_{1}\right|| | \tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}| | .}
\end{aligned}
$$

Define $\tau^{*}=\tilde{X}_{A_{1} \cup \tilde{A}_{1}}\left(\tilde{X}_{A_{1} \cup \tilde{A}_{1}}^{T} \tilde{X}_{A_{1} \cup \tilde{A}_{1}}\right)^{-1} \tilde{X}_{A_{1} \cup \tilde{A}_{1}}^{T} \tau$. From the Cauchy-Schwarz inequality, we have

$$
\left|2 \tau^{T}\left(\tilde{X}_{A_{1} \cup \tilde{A}_{1}}\left(\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right)\right)\right| \leq 2\left\|\tau^{*}\right\|^{2}+\frac{1}{2}\left\|\tilde{X}_{A_{1} \cup \tilde{A}_{1}}\left(\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right)\right\|^{2} .
$$

Combining the above equations,

$$
\left.\| \tilde{X}_{A_{1} \cup \tilde{A}_{1}} \tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right)\left\|^{2} \leq 4\right\| \tau^{*}\left\|^{2}+4 \lambda_{n} \sqrt{\left|A_{1}\right|} \times\right\| \tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}} \| .
$$

Under assumption (A4),

$$
\left\|\tilde{X}_{A_{1} \cup \tilde{A}_{1}}\left(\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right)\right\|^{2} \geq n c_{*}\left\|\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right\|^{2} .
$$

Combining the above two equations, we have

$$
n c_{*}\left\|\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right\|^{2} \leq 4| | \tau^{*}\left\|^{2}+\frac{16 \lambda_{n}^{2}\left|A_{1}\right|}{2 n c_{*}}+\frac{1}{2} n c_{*}\right\| \tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}} \|^{2} .
$$

It follows that

$$
\begin{equation*}
\left\|\tilde{\boldsymbol{\beta}}_{A_{1} \cup \tilde{A}_{1}}-\boldsymbol{\beta}_{0 A_{1} \cup \tilde{A}_{1}}\right\|^{2} \leq \frac{8\left\|\tau^{*}\right\|^{2}}{n c_{*}}+\frac{16 \lambda_{n}^{2}\left|A_{1}\right|}{n^{2} c_{*}^{2}} . \tag{S1.1}
\end{equation*}
$$

Under the SRC, we also have

$$
\left\|\tau^{*}\right\|^{2} \leq \frac{\left\|\tilde{X}_{A_{1} \cup \tilde{A}_{1}} \tau\right\|^{2}}{n c_{*}} \leq \frac{\max _{B:|B| \leq p_{1}^{*}}\left\|\tilde{X}_{B} \tau\right\|^{2}}{n c_{*}} .
$$

We also have

$$
\max _{B:|B| \leq p_{1}^{*}}| | \tilde{X}_{B} \tau \|^{2} \leq p_{1}^{*} \max _{j}\left|\tilde{X}_{j}^{T} \tau\right| .
$$

Applying the result described in the beginning of this section,

$$
\max _{j}\left|\tilde{X}_{j}^{T} \tau\right|=O(n \log (p)) .
$$

Thus,

$$
\begin{equation*}
\left\|\tau^{*}\right\|^{2}=O\left(\frac{p_{1}^{*} \log (p)}{c_{*}}\right) . \tag{S1.2}
\end{equation*}
$$

Part (c) follows from equations (S1.1) and (S1.2).

VARIABLE SELECTION FOR SEMIPARAMETRIC REGRESSION

S2 Proof of Theorem 2

By the Karush-Kunh-Tucker condition, $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{1}, \ldots, \hat{\beta}_{p}\right)^{T}$ is the adaptive Lasso estimate if

$$
\begin{cases}\tilde{X}_{j}^{T}(\tilde{Y}-\tilde{X} \hat{\boldsymbol{\beta}})=\lambda_{n} v_{j} \operatorname{sign}\left(\hat{\beta}_{j}\right), & \hat{\beta}_{j} \neq 0 \tag{S2.1}\\ \left|\tilde{X}_{j}^{T}(\tilde{Y}-\tilde{X} \hat{\boldsymbol{\beta}})\right| \leq \lambda_{n} v_{j} & \hat{\beta}_{j}=0\end{cases}
$$

and the vectors $\left\{\tilde{X}_{j}: j \in \hat{A}_{1}\right\}$ are linearly independent. Define $\tilde{s}_{1}=\left(v_{j} \operatorname{sign}\left(\beta_{0 j}\right), j \in\right.$ $\left.A_{1}\right)^{T}, \tilde{X}_{A_{1}}=\left(\tilde{X}_{j}, j \in A_{1}\right)$, and $\boldsymbol{\beta}_{0 A_{1}}=\left(\beta_{0 j}, j \in A_{1}\right)^{T}$. Define

$$
\begin{align*}
\hat{\boldsymbol{\beta}}_{A_{1}} & =\left(\tilde{X}_{A_{1}}^{T} \tilde{X}_{A_{1}}\right)^{-1}\left(\tilde{X}_{A_{1}}^{T} \tilde{Y}-\lambda_{n} \tilde{s}_{1}\right) \\
& =\boldsymbol{\beta}_{0 A_{1}}+\left(\tilde{X}_{A_{1}}^{T} \tilde{X}_{A_{1}} / n\right)^{-1}\left(\tilde{X}_{A_{1}}^{T} \tau-\lambda_{n} \tilde{s}_{1}\right) / n . \tag{S2.2}
\end{align*}
$$

If $\operatorname{sign}\left(\hat{\boldsymbol{\beta}}_{A_{1}}\right)=\operatorname{sign}\left(\boldsymbol{\beta}_{0 A_{1}}\right)$, then (S2.1) holds for $\tilde{\boldsymbol{\beta}}=\left(\hat{\boldsymbol{\beta}}_{A_{1}}^{T}, 0^{T}\right)^{T}$. Since $\tilde{X} \tilde{\boldsymbol{\beta}}=\tilde{X}_{A_{1}} \hat{\boldsymbol{\beta}}_{A_{1}}^{T}$, we have

$$
\operatorname{sign}(\hat{\boldsymbol{\beta}})=\operatorname{sign}\left(\boldsymbol{\beta}_{0}\right) \quad \text { if } \quad\left\{\begin{array}{l}
\operatorname{sign}\left(\hat{\boldsymbol{\beta}}_{A_{1}}\right)=\operatorname{sign}\left(\boldsymbol{\beta}_{0 A_{1}}\right) \tag{S2.3}\\
\left|\tilde{X}_{j}^{T}\left(\tilde{Y}-\tilde{X}_{A_{1}} \hat{\boldsymbol{\beta}}_{A_{1}}\right)\right| \leq \lambda_{n} v_{j}, \forall j \notin A_{1}
\end{array}\right.
$$

Define $H_{n}=I-\tilde{X}_{A_{1}}\left(\tilde{X}_{A_{1}}^{T} \tilde{X}_{A_{1}}\right)^{-1} \tilde{X}_{A_{1}}^{T}$. From the definition of $\hat{\boldsymbol{\beta}}_{A_{1}}$,

$$
\tilde{Y}-\tilde{X}_{A_{1}} \hat{\boldsymbol{\beta}}_{A_{1}}=\tau-\tilde{X}_{A_{1}}\left(\hat{\boldsymbol{\beta}}_{A_{1}}-\boldsymbol{\beta}_{0 A_{1}}\right)=H_{n} \tau+\tilde{X}_{A_{1}}\left(\tilde{X}_{A_{1}}^{T} \tilde{X}_{A_{1}}\right)^{-1} \tilde{s}_{1} \lambda_{n}
$$

Thus, following (S2.3),

$$
\operatorname{sign}(\hat{\boldsymbol{\beta}})=\operatorname{sign}\left(\hat{\boldsymbol{\beta}}_{0}\right) \quad \text { if } \quad \begin{cases}\operatorname{sign}\left(\beta_{0 j}\right)\left(\beta_{0 j}-\hat{\beta}_{j}\right) \leq\left|\beta_{0 j}\right|, & \forall j \in A_{1} \tag{S2.4}\\ \mid \tilde{X}_{j}^{T}\left(H_{n} \tau+\tilde{X}_{A_{1}}\left(\tilde{X}_{A_{1}}^{T} \tilde{X}_{A_{1}}\right)^{-1} \tilde{s}_{1} \lambda_{n} \mid<\lambda_{n} v_{j},\right. & \forall j \notin A_{1}\end{cases}
$$

Combining equations (S2.2) and (S2.4),

$$
\begin{aligned}
P\left\{\operatorname{sign}(\hat{\boldsymbol{\beta}}) \neq \operatorname{sign}\left(\boldsymbol{\beta}_{0}\right)\right\} \leq & P\left\{\left|e_{j}^{T}\left(\tilde{X}_{A_{1}}^{T} \tilde{X}_{A_{1}}\right)^{-1} \tilde{X}_{A_{1}}^{T} \tau\right| \geq\left|\beta_{0 j}\right| / 2 \text { for some } j \in A_{1}\right\} \\
& +P\left\{\left|e_{j}^{T}\left(\tilde{X}_{A_{1}}^{T} \tilde{X}_{A_{1}}\right)^{-1} \tilde{s}_{1}\right| \lambda_{n} / n \geq\left|\beta_{0 j}\right| / 2 \text { for some } j \in A_{1}\right\} \\
& +P\left\{\left|\tilde{X}_{j}^{T} H_{n} \tau\right| \geq \lambda_{n} v_{j} / 2 \text { for some } j \notin A_{1}\right\} \\
& +P\left\{\left|\tilde{X}_{j}^{T} \tilde{X}_{A_{1}}\left(\tilde{X}_{A_{1}}^{T} \tilde{X}_{A_{1}}\right)^{-1} \tilde{s}_{1}\right| \geq v_{j} / 2 \text { for some } j \notin A_{1}\right\},
\end{aligned}
$$

where e_{j} is the unit vector in the direction of the j-th coordinate. Following Huang et al. (2008), it can be proved that each of the above four probabilities converges to zero.

