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We first describe the following results, which is Lemma 1 of Huang and Ma (2010).

Let Let 7 = (71,...,7,)T and &, = maxi<;<p |¢;|. Suppose that conditions (A2)
and (A3) hold. Then

E(&,) < C1+/log(p) (\/QC’gnlog(p) + 4log(2p) + Can) 1/2,

where Cy,Cy > 0 are constants. In particular, when log(p)/n — 0,

E(&,) = O(1)y/nlogp.

S1 Proof of Theorem 1

Examination of Theorem 1 of Zhang and Huang (2008) suggests that the normality
assumption is not necessary. As a matter of fact, as long as the tail probability ~
exp(—x?), Theorem 1 and its proof in Zhang and Huang (2008) holds. Part (a) of our
Theorem 1 thus follows.

Under assumption (Al), minjea, |Bo;| > b1 > 0 for a constant b;. Thus, if part (c)
of Theorem 1 holds, then part (b) follows. Proof of part (¢) proceeds as follows. The
Lasso estimate satisfies

1Y = XBI7 +2X0 Y1851 < [V = X Bl + 220 Y |Bojl
J J

which leads to
IV = XBIF+2X D 155 < IV = XBoll* +2xn > 15ol-
JEAL JEA;
Thus, we have

1X(B=Bo)ll> = 27" X(B = By) < 2Mn > |8 — Bojl.

JEAL
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‘We note that R R
> 185 = Bosl < V1ANIB A, w4, — Boaua,ll

JjEAL
where 'BAluA1 = {BJ :je A UA;} and Boa,ui, = 1Boj 1 J € Au UA;}. Combining the
above equations, we have
- . ) o .
HXAlLJAl(ﬁAluAl - BOAIUAI)H - 27 (XAlLJAl (5A1UA1 - IBOAluAl))

< 2>\n\/mnBA1UA1 - 180A1UA1||'

Define 7" = X 4 1, (X

we have

ZIUAXAIUA)’IXZIUAT. From the Cauchy-Schwarz inequality,

N - 1 - -
T *112 2
27 (XAluAl(IBAluAl _ﬁOAluA})” <2lI7|17 + §||XA1UA1(16A1UA1 _BOAlLJAl)H :

Combining the above equations,

1X 4,04, (Bayua, = Boaua) 1P S AT+ AN/ [A] < 118,04, — Boa,ua,ll-

Under assumption (A4),

||XA1UA1 (6A1UA1 7ﬁ0A1UA1)||2 Z nC*H/BAlUAl 7’60A1UA1||2'
Combining the above two equations, we have
~ 16X2|A;] 1 ~
2 *)|2 2
nC*HﬁAluAl _ﬂOAIUAIH < AT + 27720* + §nc*||ﬂA1uA1 _IBOAluAlﬂ .
It follows that
~ 8|7*[]2  16A2|A4|
2
HﬁAluA‘l - ﬂoAluAH < ne, + n;c2 : (S1.1)
Under the SRC, we also have
v 2 % 2
oo < Eawa IR mazmapisns I Xerll,
Nnecs nes
We also have } y
MaT .| B|<p; Xp|]* < meaxj‘XjTﬂ-
Applying the result described in the beginning of this section,
maxj|)~(f7| = O(nlog(p)).
Thus,
. pi log(p)
I7]* = O(F—==). (51.2)
k

Part (c) follows from equations (S1.1) and (S1.2).
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S2 Proof of Theorem 2

By the Karush-Kunh-Tucker condition, 8= (Bl, ce Bp)T is the adaptive Lasso estimate
if

(S2.1)

F¥ = XB) < Ay B;=0

T (Y = XB) = Ayvjsign(B;). B; #0
|
and the vectors {X; : j € A1} are linearly independent. Define §; = (v;sign(Bo;),J €
AT, X4, = (Xj,j € A1), and Boa, = (Boj,J € Ap)T. Define
Ba, = (XA, Xa) HXLY = Ad1)
~ ~ -1 .
= Boa, + (X5, Xar/n) (X5, = A1) /. (52.2)

If sz’gn(BAl) = sign(By4, ), then (S2.1) holds for B= (,32170T)T. Since X3 = XA13£17
we have

. s . . SiQ”(BA ) = sign(Boa,)
sign(B) = sign(B if o ! _ (52.3)
(P) = signlfh) {Xf(Y—XAlﬂAm < Aoy, 5 & Ar
Define H, = I — X4, (XT X4,)"1X7 . From the definition of 3, ,
1 A, 1 A, Ay
YV — Xa,Ba, =7 Xa,(Ba, — Bou,) = Hom + Xa, (X5, Xa,) 510
Thus, following (S2.3),
sign(B) = sign(B,) if Sl;gn(ﬂOj)(ﬂOjf 3]2 < |~50j|7 Vje A
’ X7 (Hor + X, (X5, Xa,) " 8100] < Aavj, V5 € Ay,
(52.4)

Combining equations (52.2) and (S2.4),

P {sign(B) # sign(By)} < P {|e] (X%, Xa,) " X%,7] = |8;]/2 for some j € A |
+P {|e?()2£1)~(,41)_1§1|)\n/n > |Bo;|/2 for some j € Al}
+P {|XJTHnT| > A\pv;/2 for some j & Al}
+P {|X].TXA1(X§1XA1)*1§1| > v;/2 for some j ¢ Al} :

where e; is the unit vector in the direction of the j-th coordinate. Following Huang et
al. (2008), it can be proved that each of the above four probabilities converges to zero.



