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Abstract: We re-examine the original Group Lasso paper of Yuan and Lin (2007).
The form of penalty in that paper seems to be designed for problems with uncor-
related features, but the statistical community has adopted it for general problems
with correlated features. We show that for this general situation, a Group Lasso
with a different choice of penalty matrix is generally more effective. We give insight
into this formulation and show that it is intimately related to the uniformly most
powerful invariant test for inclusion of a group. We demonstrate the efficacy of
this method– the “standardized Group Lasso”– over the usual group lasso on real
and simulated data sets. We also extend this to the Ridged Group Lasso to pro-
vide within group regularization as needed. We discuss a simple algorithm based
on group-wise coordinate descent to fit both this standardized Group Lasso and
Ridged Group Lasso.

Key words and phrases: Lasso, group Lasso, penalized regression, regularization,
standardization, high dimensional data.

1. Introduction

Consider the usual linear regression framework. Our data consists of an
n-response vector y, and an n by p matrix of features, X. In many recent appli-
cations p >> n: a case where standard linear regression fails. In these scenarios
we often have the prior belief that few of the measured covariates are “impor-
tant.” A number of different approaches have attempted to incorporate this prior
belief. One widely used approach of Tibshirani (1996) regularized the problem
by penalizing the ℓ1 norm of the solution. This approach, known as the lasso,
minimizes

1

2

∥∥∥y −Xβ
∥∥∥2
2
+ λ||β||1. (1.1)

The ℓ1 norm penalty promotes sparsity in the solution vector β̂. Suppose, further,
that our predictor variables were divided into m different groups— for example
in categorical data, we may want to group by question. We are given these group
memberships and rather than sparsity in individual elements of β, we would like
a solution that uses only a few of the groups. Yuan and Lin (2007) proposed the
Group Lasso criterion for this problem: find

min
β

1

2

∥∥∥y − m∑
l=1

X(l)β(l)
∥∥∥2
2
+ λ

m∑
l=1

||Wlβ
(l)||2, (1.2)
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where X(l) is the submatrix of X with columns corresponding to the predictors

in group l, β(l) is the coefficient vector of that group, and Wl is some penalty

matrix. In the original paper, they chose Wℓ =
√
plI, where pl is the number of

covariates in group l, yielding the criterion

min
β

1

2

∥∥∥y − m∑
l=1

X(l)β(l)
∥∥∥2
2
+ λ

m∑
l=1

√
pℓ||β(l)||2. (1.3)

This criterion exploits the non-differentiability of ||β(l)||2 at β(l) = 0; setting

groups of coefficients to exactly 0. The sparsity of the solution is determined by

the magnitude of the tuning parameter λ.

In proposing (1.3), Yuan and Lin (2007) assume that the data is orthonormal,

or sphered within each group (i.e. that X(l)⊤X(l) = I for each l), and provide

an algorithm for that case. For group matrices that are non-orthonormal, this

requires sphering before application of the Group Lasso. However they do not

point out the fact that this normalization changes the problem. Specifically,

suppose that we start with non-orthonormal matrices Xℓ at (1.3), If we sphere

each Xℓ and re-express (1.3) in terms of the new data, we get a problem that is

not equivalent to the original one.

In the subsequent literature on the Group Lasso, there has been much confu-

sion about orthonormalizing within groups. Many works explicitly do not sphere

(Puig, Wiesel, and Hero (2009), Foygel and Drton (2010), Jacob, Obozinski, and

Vert (2009), Hastie, Tibshirani, and Friedman (2008), among others), and many

more make no mention of normalization. For the remainder of this paper we

refer to the solution to (1.3) without orthonormalization within group as the

unstandardized Group Lasso.

In this paper we consider the following simple variant which we henceforth

refer to as the standardized Group Lasso

min
β

1

2

∥∥∥y − m∑
l=1

X(l)β(l)
∥∥∥2
2
+ λ2

m∑
l=1

√
pl

∥∥∥X(l)β(l)
∥∥∥
2
. (1.4)

This is the Group Lasso with penalty matrix changed from Wl =
√
plI to Wl =√

plX
(l).

For problems with no overdetermined groups (all pl ≤ n), it turns out that

the standardized Group Lasso is exactly equivalent to orthonormalizing within

groups, running the unstandardized Group Lasso, then transforming the coeffi-

cients back to the original basis (it is, in fact, just the vanilla Group Lasso with

standardization). This gives us a nice interpretation of sphering within groups: it

is equivalent to penalizing the fit of each group X(l)β(l) rather than the individual

coefficients.
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This is not a new idea for model selection: Ravikumar et al. (2009) proposed

a similar but more general criterion to fit additive models in a sparse way (spAM)

min
β

1

2

∥∥∥y − m∑
l=1

fl(X)
∥∥∥2
2
+ λ2

m∑
l=1

∥∥∥fl(X)
∥∥∥
2
, (1.5)

where fi are flexible functions of X used to estimate y. In particular, if we

consider each X(l) as a linear basis for some function, spAM reduces to a very

similar problem

min
β

1

2

∥∥∥y − m∑
l=1

X(l)β(l)
∥∥∥2
2
+ λ2

m∑
l=1

∥∥∥X(l)β(l)
∥∥∥
2
. (1.6)

Though not a new idea, it appears that this connection to orthonormalization

has been largely overlooked, and the unstandardized Group Lasso is in common

use.

In contrast to the unstandardized Group Lasso solution, the standardized

solution behaves like a continuous version of stepwise regression with grouped

variables. In particular in the case of orthogonality between groups, we show in

Section 3 that the standardized Group Lasso chooses groups roughly according

to the uniformly most powerful invariant test and chooses the same groups as

grouped subset selection, while the unstandardized Group Lasso does not (these

connections will be discussed in more depth in Section 3). If the size of each

group is one, the standardized Group Lasso gives the usual lasso solution for X

with column norms standardized to one.

In this paper we explore properties of criterion (1.4). We show that in gen-

eral this is a more natural extension of the lasso to the group setting than the

unstandardized Group Lasso. We describe a simple modification of the algorithm

in Yuan and Lin (2007) to fit this for general X. We also show the efficacy of the

criterion on real and simulated data, and show that it decreases subset selection

and estimation error as compared to the unstandardized group lasso. Further-

more, for data that requires within group regularization as well, we propose the

ridged Group Lasso, a variant which fits a thresholded ridge operator within each

group.

2. Solution Properties

To better understand the advantages of our approach, we begin by charac-

terizing the solution to

min
β

1

2

∥∥∥y − m∑
l=1

X(l)β(l)
∥∥∥2
2
+ λ2

m∑
l=1

√
pl

∥∥∥X(l)β(l)
∥∥∥
2
. (2.1)
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We first note that in order to ensure a unique solution we need all X(l) to have

full column rank — in particular this means pl ≤ n for l = 1, . . . ,m. For the

most part, we assume this to be the case. In Section 4.3, we propose a revision

in the case that some X(l) is rank deficient.

If each X(l) has full column rank, then we can decompose it into X(l) =

U (l)R(l), where U (l) is an n × pl matrix with orthonormal columns and R(l) a

pl × pl invertible matrix. We can rewrite our criterion as

min
θ

1

2

∥∥∥y − m∑
l=1

U (l)θ(l)
∥∥∥2
2
+ λ2

m∑
l=1

√
pl

∥∥∥U (l)θ(l)
∥∥∥
2
, (2.2)

where

β̂(l) =
(
R(l)

)−1
θ̂(l). (2.3)

Now, noting that ∥U (l)θ(l)∥2 = ∥θ(l)∥2, we can simplify our criterion to

min
θ

1

2

∥∥∥y − m∑
l=1

U (l)θ(l)
∥∥∥2
2
+ λ2

m∑
l=1

√
pl

∥∥∥θ(l)∥∥∥
2
, (2.4)

where (2.3) still holds. This reduces things to the orthogonal case of Yuan and Lin

(2007); as in their work, if we consider the Karush-Kuhn optimality conditions,

we see that

θ̂(k) =

(
1−

√
pkλ

||U (k)⊤r(−k)||2

)
+

U (k)⊤r(−k)

with r(−k) = y −
∑

l ̸=kX
(l)β̂(l) the kth partial residual. Transforming back to

the original coordinates, this becomes

β̂(k) =

(
1−

√
pkλ

||Pcol(X(k))r
(−k)||2

)
+

(
X(k)⊤X(k)

)−1
X(k)⊤r(−k), (2.5)

where Pcol(X(k)) is the orthogonal projection operator onto the column space of

X(k). We use these optimality conditions in Sections 3 and 4 to explore properties

of the standardized Group Lasso solution, and in Section 5 to give an algorithm

for finding the solution.

3. Connections to Other Problems

From the optimality conditions in (2.5), we can draw connections between

the standardized Group Lasso and other statistical testing and estimation proce-

dures: usual linear regression, uniformly most powerful invariant testing, sparse

additive models, and the grouped ℓ0 subset selection problem.
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3.1. Connection to linear regression

Condition (2.5) is very similar to the optimality conditions for usual linear
regression,

β̂(k) =
(
X(k)⊤X(k)

)−1
X(k)⊤r(−k).

Contrasting this with (2.5), we see that for the standardized Group Lasso, in-
stead of fully fitting to the residual (as in regression), we soft threshhold the
norm of the fit, but keep the direction unchanged. This parallels the optimality
conditions for the usual lasso, which is just a soft-threshholding of the univariate
fit Friedman, Hastie, and Tibshirani (2009). This relationship is not paralleled
in the unstandardized case.

3.2. Connection to UMPI testing

One of the strongest arguments in favor of the standardized group lasso is
its connection to uniformly most powerful invariant testing. Assume we have
fit a standard linear regression model on X =

(
X(1)X(2) . . . X(m−1)

)
and are

deciding whether or not to add a new group, X(m). If the variance of the noise
σ2 were known, then the uniformly most powerful invariant test of H : β̂(m) = 0
at level α is to reject H if∥∥ŷm − ŷm−1

∥∥2
2
≥ σ2χ2

ncolX(m),1−α
, (3.1)

where ŷi is the prediction from the linear fit on (X(1)X(2) . . . X(i)). The squared
difference in (3.1) is exactly ||Pcol(X(m))r

(−m)||22. In the standardized group lasso,

we also decide group inclusion based on the magnitude of ||Pcol(X(m))r
(−m)||22,

however we only infinitesimally fit each group at each step. Thus, in some sense,
the standardized Group Lasso is a continuous analogue to group stepwise regres-
sion. Notice that ||Pcol(X(m))r

(−m)||22 is highly dependent on the group size pm.

Under β(m) = 0 (ie X(m) not in the model), we have that

E

[∥∥∥Pcol(X(m))r
(−m)

∥∥∥2
2

]
= pmσ

2,

so for comparability of groups we include a factor
√
pm in our penalty. Because

σ2 is included in all terms, estimating it is unnecessary. For example if we use
cross-validation to choose λ, we implicity estimate σ2.

3.3. Connection to spAM

Ravikumar et al. (2009) suggest a similar “fit penalized” framework for ad-
ditive models,

min
fl

1

2

∥∥∥y − m∑
l=1

fl(X)
∥∥∥2
2
+ λ2

m∑
l=1

∥∥∥fl(X)
∥∥∥
2
.
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In fact, if one considers each fl to be a function with basis X(l), their approach

reduces to

min
β

1

2

∥∥∥y − m∑
l=1

X(l)β(l)
∥∥∥2
2
+ λ2

m∑
l=1

∥∥∥X(l)β(l)
∥∥∥
2
.

a very similar criteria to the standardized Group Lasso. However, because they

do not make the connection to testing, they miss the
√
pl factor in the penalty

term. The
√
pl factor is important to make sure that groups with larger column

spaces play on an even footing with smaller groups — though their is work

that does something similar using kernel norms Yu, Wainwright, and Raskutti

(2010) and smoothness penalties Meier, Van De Geer, and Buhlmann (2009).

Koltchinskii and Yuan (2008) and Koltchinskii and Yuan (2010) also give similar

kernel formalizations as well as impressive reconstruction results.

3.4. Connection to group ℓ0 subset selection

The Group Lasso is often used as a surrogate for the group ℓ0 subset selection

problem — to find

β̂ =argmin
β

L(β),

s.t. Number of nonzero groups ≤ c.

For the standardized Group Lasso this is very appropriate. To illustrate this

consider the case of equal group sizes (pi = pj for all i, j) and orthogonality

between groups (X(i)⊤X(j) = 0 for any i ̸= j). We have

L(β) =
1

2

∥∥∥y − m∑
l=1

X(l)β(l)
∥∥∥2
2

(3.2)

=
1

2

∥∥∥y⊥∥∥∥2 + m∑
l=1

∥∥∥Pcol(X(l))(y)−X(l)β(l)
∥∥∥2
2
, (3.3)

where y⊥ is the projection of y onto the orthogonal complement of all the X(l).

If we solve the group subset selection problem (in general a combinatorially hard

problem) we get

β̂(k) =

{(
X(k)⊤X(k)

)−1
X(k)⊤y : ||Pcol(X(k))(y)||2 > λc

0 : otherwise
.

This is a hard thresholding of the groups based on how well they fit the response,

where λc is defined such that exactly c groups surpass the threshold. This is easy

to see from (3.2) — the groups we include contribute 0 to the sum, and the
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groups we do not contribute ||Pcol(X(k))(y)||22. Referring to (2.5), we see that the

standardized Group Lasso solution is

β̂(k)=


1−

√
pkλc∥∥∥P

col(X(k))(y)
∥∥∥

2

(X(k)⊤X(k)
)−1

X(k)⊤y : ||Pcol(X(k))(y)||2>
√
pkλc

0 : otherwise

and, in particular, has the same order of active groups entering the model as

the group subset problem (though the penalty parameters are off by a constant

factor). Furthermore, the group solutions are given by soft-thresholding the ℓ2-

norm of the unrestricted fits. This soft versus hard thresholding parallels the

relationship between the regular lasso and the best subset selection problem in

the ungrouped orthogonal case.

4. Comparison with the Unstandardized Group Lasso

The unstandardized Group Lasso lacks many of the attractive qualities of

its standardized counterpart. As shown in Meier, van de Geer, and Bühlmann

(2008), the unstandardized Group Lasso chooses groups for which

1
√
pk

||X(k)⊤r(−k)||2 > λc,

the “average” covariance is large. This ignores the multivariate nature of the

problem, and more obviously causes problems if the covariates are on different

scales. Furthermore, it has no relation to the UMPI test or to group ℓ0 subset

selection.

One disadvantage of the standardized Group Lasso is that it can only handle

problems with X(l) full column rank for all l (this is not a limitation of the

unstandardized Group Lasso). However in Section 6 we suggest a modification

to remedy this problem.

4.1. One active group

To look more closely at the differences between the two criteria, we delve

slightly further into the orthogonal case and consider a generative model with

one active group:

y = X(1)β + ϵ,

where ϵ ∼ N(0, I), the X
(k)
i are all unit vectors, and the empircal correlations

between group are all 0, ie. X(k)⊤X(l) = 0 for k ̸= l. We are interested in

differences between the standardized and unstandardized Group Lasso under
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this simplified scheme — we compare the ways by which the two criteria choose

the first group to enter the model.

For the standardized Group Lasso, we choose the group with the largest

(1/
√
pk)
∥∥∥Pcol(X(k))(y)

∥∥∥
2
. For k ̸= 1 (the null groups) we have

1

pk
||Pcol(X(k))(y)||

2
2 =

1

pk
||Pcol(X(k))

(
X(k)β

)
+ Pcol(X(k))(ϵ)||

2
2 (4.1)

=
1

pk
||Pcol(X(k))(ϵ)||

2
2 (4.2)

∼ 1

pk
χ2
pk
, (4.3)

where χ2
pk

is a chi-square distribution with pk degrees of freedom.

For the active group we have

1

p1
||Pcol(X(1))(y)||

2
2 =

1

p1
||Pcol(X(1))

(
X(1)β

)
+ Pcol(X(1))(ϵ)||

2
2 (4.4)

=
1

p1
||X(1)β + Pcol(X(1))(ϵ)||

2
2 (4.5)

∼ 1

p1
χ2
p1

(
||X(1)β||22

)
(4.6)

with χ2
p1

(
||X(1)β||22

)
a chi-square distribution with p1 degrees of freedom and

noncentrality parameter ||X(1)β||22.
To find the correct group, the standardized Group Lasso needs that (4.6) be

greater than (4.3) for all non-active groups (k ≥ 2). This criterion is invariant

under reparametrization within group. In particular these equations are remi-

niscent of the size and power of the uniformly most powerful invariant test for

inclusion of a group, as discussed in Section 3.2.

For the unstandardized Group Lasso, the first group is selected to have the

largest (
√
pk)

−1
∥∥∥X(k)⊤y

∥∥∥
2
. For k ̸= 1 (the null groups) we have

1

pk
||X(k)⊤y||22 =

1

pk
||X(k)⊤ϵ||22 (4.7)

=
1

pk
ϵ⊤X(k)X(k)⊤ϵ (4.8)

=
1

pk

pk∑
i=1

dk,i⟨uk,i, ϵ⟩2 (4.9)

∼ 1

pk

pk∑
i=1

dk,iχ
2
1, (4.10)
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where {uk,j}pkj=1 are the eigenvectors ofX
(k)X(k)⊤ with corresponding eigenvalues

{dk,j}pkj=1 (these are the same eigenvalues as forX(k)⊤X(k), the sample correlation

matrix). Note that while the expectation of this quantity is Trace(X(k)⊤X(k)) =

pk regardless of the correlation structure, its variance 2
∑

j d
2
k,j is greatly in-

creased by correlation.

For the first group we have

1

p1
||X(1)⊤y||22 =

1

p1
||X(1)⊤(X(1)β + ϵ)||22 (4.11)

=
1

p1

p1∑
i=1

d1,i⟨u1,i, X(1)β + ϵ⟩2. (4.12)

To find the correct group the unstandardized Group Lasso needs that (4.12) be

greater than (4.10) for all non-active groups (k ≥ 2). We see that this is more

likely to happen if ⟨u1,i, X(1)β⟩ is large for large d1,i. This means that to have

power we need the mean, X(1)β, to be in a direction similar to the majority

of columns of X(1). This is an unsatisfactory criterion — in particular it is

highly dependent on the parametrization of the group. The closer the columns

of X(k) are to orthogonal (within each group k), the closer the standardized and

unstandardized solutions (for a near orthogonal matrix the dk,j are all near 1).

5. Fitting the Model

Fitting the standardized Group Lasso is straightforward and fast and is,

in fact, significantly easier to fit than the unstandardized Group Lasso. The

algorithm we discuss is a block coordinate descent algorithm, optimizing over

each group given fixed coefficient values for all others. Since our problem is

convex and the non-differentiable part of our objective is group separable, our

algorithm converges to the global minimum (Tseng, 2001). We have seen in (2.5)

that if we choose k ≤ m and fix β(l) for all l ̸= k, then

β̂(k) =

(
1−

√
pkλ

||Pcol(X(k))r
(−k)||2

)
+

(X(k)⊤X(k))−1X(k)⊤r(−k) (5.1)

where, again, r(−k) is the partial residual r(−k) = y −
∑

l ̸=kX
(l)β(l). This gives

us the following algorithm.

Simple Algorithm for the standardized Group Lasso

1. Set r = y, β̂(k) = 0 for all k.

2. Cyclically iterate through the groups until convergence; for each group (k)

execute the following.
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(a) Update r(−k) by

r(−k) = r +X(k)β̂(k).

(b) Solve for β̂(k) by

β̂(k) =

(
1−

√
pkλ

||Pcol(X(k))r
(−k)||2

)
+

(X(k)⊤X(k))−1X(k)⊤r(−k).

(c) Update r by

r = r(−k) −X(k)β̂(k).

In contrast, the unstandardized Group Lasso implicitly applies a ridge penalty

within nonzero groups. Puig, Wiesel, and Hero (2009) and Foygel and Drton

(2010) use clever dual arguments to show that the ridge penalty can be found

with a 1-dimensional line search, however this still increases complexity, and

slows down the algorithm.

This algorithm is very similar to the original algorithm of Yuan and Lin

(2007) for the orthogonalized case, however, we work in the original coordinate

system. Because the only variables that change at each step in our algorithm are

β̂(k) and r(−k), we can speed this algorithm up by pre-multiplying and storing

(X(k)⊤X(k))−1X(k)⊤ and Pcol(X(k)). Taking this further, notice that solving for

β̂(k) at each step is unnecessary, we only need X(k)β̂(k), the fit of group k. If we

work in an orthogonal basis for each group then we can solve for the fit at each

iteration in time npi rather than n2 (recall that pi < n). This leads to a new

algorithm, similar to the old, with slightly more bookkeeping and speed.

More Efficient Algorithm for the standardized Group Lasso

1. QR factorize X(l) giving Ql and Rl for l = 1, . . . ,m (with Ql of dimension

n× pi).

2. Initialize the fit vectors F̃i = 0 for i = 1, . . . ,m, and the residual vector r = y.

3. Cyclically iterate through the groups until convergence; for each group, k,

execute a-e.

(a) Set r(−k) = r − F̃k.

(b) Solve for the coefficient vector in the orthogonalized basis by

θ(k) =

(
1−

√
pkλ

||QkQ
⊤
k r

(−k)||2

)
+

Q⊤
k r

(−k). (5.2)

(c) Solve for Fk =
(
X(k)β̂(k)

)
by

Fk = Qkθ
(k). (5.3)
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(d) Update the residuals r = r(−k) + Fk.

(e) Update the “old fit” F̃k = Fk.

4. After convergence, transform to the original coordinates by β̂(k) = R−1
k θ(k).

The details of this algorithm are the same as in Yuan and Lin (2007). It can

also be seen as the group analog to the coordinate descent algorithm described

in Friedman, Hastie, and Tibshirani (2010); as in the univariate case we can use

warm starts, active sets, and other bells and whistles to speed up this algorithm.

However, we do have the disadvantage that we must calculate a QR decomposi-

tion to all groups at the start (not just the active set). Ravikumar et al. (2009)

discuss a similar algorithm for fitting sparse additive models — this type of algo-

rithm is a very natural approach for solving problems of this nature (where the

penalty term matches the fit term).

5.1. Computational complexity

Computational complexity is somewhat tricky to calculate for iterative al-

gorithms as it depends greatly on the number of iterations. The noniterative

components, the QR decomposition and backsolve, are O(np2i ) and O(p2i ) per

group, respectively, and so are O(n
∑
p2i ) overall.

Within each iteration, we must update (5.2) for each group (which is O(npi)

due to the QR decomposition) and calculate new residuals by (5.3) (also O(npi)).

Thus, within each iteration, O(n
∑
pi) = O(np) calculations are required. In

practice we often find a set of active variables after only a few passes, iterate

over those few groups until convergence, then check the KKT conditions to make

sure no new groups should enter; most passes take only O(n
∑
pi), where this

sum is over groups in the eventual fit. While the overall calculation appears to

be dominated by the QR decomposition, often the groups are reasonably small

and most of the time is spent iterating.

5.2. Generalization to other likelihoods

As with the unstandardized Group Lasso, one can generalize the standard-

ized Group Lasso to any log-concave likelihood, L, by

β̂ = argmin
β

{
− logL(β;X) + λ2

m∑
l=1

√
pl

∥∥∥X(l)β(l)
∥∥∥
2

}
.

For example a penalized logistic model would look like

β̂ = argmin
β

{
n∑

i=1

log
(
1 + ex

⊤
i β
)
− y⊤Xβ + λ2

m∑
l=1

√
pl

∥∥∥X(l)β(l)
∥∥∥
2

}
.
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Because the penalty function is convex and the negative log-likelihood is con-

vex, problems of this type are convex. Unfortunately this criterion no longer

corresponds to the UMPI test; however, because one can approximate the neg-

ative log-likelihood by quadratic loss, the penalty is still roughly correct from

a statistical testing viewpoint (it corresponds to more of a score test). Because

the Hessian of our likelihood is no longer constant as it was in the Gaussian

case (it has changed from X⊤X to X⊤W (β)X with W (β) diagonal in the case

of exponential families), we are not using the exact score statistic. Instead we

disregard W and just implicitly approximate it with a multiple of the identity

— in exponential families this is reasonable as W is just the estimated inverse

variances of the observations, and for these very overdetermined problems one

might want to shrink those variances towards each other. To more exactly use

the score statistic, our penalty would be
∑

||W (β(k))1/2X(k)β(k)||2 but this is no

longer convex, and while one might consider using a penalty of this type, it is

beyond the scope of this paper.

5.3. Fitting the model for other losses

We can fit the standardized Group Lasso for a general log-concave likelihood

using nearly the same algorithm as for Gaussian loss (combined with a penalized

quasi-Newton step). For a given estimate, β̃, of β̂, we can write a quadratic

approximation, Q(β, β̃), of the log likelihood, ℓ(β), centered about β̃ as

Q
(
β, β̃

)
= ℓ

(
β̃
)
+
(
Xβ −Xβ̃

)⊤
ℓ
′
(
β̃
)
+

1

2

(
Xβ −Xβ̃

)⊤
ℓ
′′
(
β̃
)(

Xβ −Xβ̃
)
,

where ℓ
′
, and ℓ

′′
are the gradient and Hessian of ℓ with respect to Xβ. We

can majorize this by dominating the negative Hessian, −ℓ′′ , by tI, the Lips-

chitz constant of the negative log-likelihood times the identity, and add in our

penalty term. This majorization is important because the penalized weighted

least squares problem is markedly less straightforward to solve than the un-

weighted. Thus, within each “Newton” step we solve

β̂ = argmin
β

−
(
Xβ −Xβ̃

)⊤
ℓ
′
(
β̃
)
+
t

2

(
Xβ −Xβ̃

)⊤ (
Xβ −Xβ̃

)
+λ2

m∑
l=1

√
pl

∥∥∥X(l)β(l)
∥∥∥
2
.

This reduces to

β̂ = argmin
β

t

2

∥∥∥Xβ̃ − 1

t
ℓ
′
(
β̃
)
−Xβ

∥∥∥2
2
+ λ2

m∑
l=1

√
pl

∥∥∥X(l)β(l)
∥∥∥
2

(5.4)



STANDARDIZATION AND THE GROUP LASSO PENALTY 995

which we can solve efficiently with groupwise descent. After solving (5.4), we use

our new β̂ to center the next Newton step. This “majorize-minimize” style of

optimization has been discussed for similar problems in Tseng and Yun (2009)

and Meier, van de Geer, and Bühlmann (2008), among others. As in the Gaussian

case, this algorithm converges to the global minimum (Nesterov, 2007).

6. Numerical Comparisons

In this section we compare the standardized and unstandardized Group Lasso

on simulated data. We simulated responses via the model

y =

g∑
l=1

X(l)β(l) + σϵ

with g groups with nonzero coefficients in the model (= 1, 2, 3 in our simulations)

and G total groups (all equally sized; in the categorical case, this is the number

of categorical predictors).

We chose X, β, and σ according to two different schemes. The first scheme

was meant to approximate problems with grouped continuous variables (eg. gene

pathways). Here, X was simulated as multivariate normal with between-group

correlation ψ and within-group correlation ρ. For each active group, l, We set

β(l) = (−2,−1, 0, 1, 2, 0, . . . , 0), and σ so that the signal to noise ratio was 1.

In the second set of simulations, we used categorical predictors. For each

simulation, each predictor had the same number of levels (pi = 3, 5, or 7 for

different simulations). The probability of an observation being from a particular

level of a factor was given according to one of two schemes, either equal proba-

bility of being in each level, or an overwhelming probability of being in the first

level (prob1 = (1 + pi)/2pi), with the rest of the probability split evenly between

the other levels. In both schemes there was independence between factors. For

a given simulation, the scheme for all groups was the same (either “equal prob-

ability”, or “overwhelm”). Regardless of scheme, β for the nonzero groups was

given as follows

β = (0,−1, 1) for pi = 3,

β = (0,−1, 1, 0, 0) for pi = 5,

β = (0,−2,−1, 1, 2, 0, 0) for pi = 7.

The leading 0 means that in the “overwhelm” scheme, the majority classification

has no effect. In all of the categorical simulations σ was set such that the signal

to noise ratio was 4.

We ran the both standardized and unstandardized Group Lasso on these

data and checked if the first g groups to enter each fit matched the true g groups
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in the model. We repeated this 100 times for each of several values of the different

parameters and calculated the proportion of times the true groups were correctly

identified. Table 1 has the results for the continuous predictors and Table 2 has

the results for the categorical predictors.

Referring to Table 1 one can see that standardized Group Lasso performs

uniformly better than the unstandardized for our continuous predictors. As

expected, this difference is particularly pronounced when there is high within

group correlation. However there is not nearly as substantial a difference in

Table 2. This is unsurprising — categorical variables are already orthogonalized

within group, so the standardized Group Lasso only scales columns to have the

same norm. In the case of equal probability per level the columns have nearly

the same norm without normalization, so the standardized and unstandardized

Group Lasso should have very similar solutions. In the case of “overwhelm”

(most observations belonging to a single level), the unstandardized Group Lasso

gives this level most of the importance, while the standardized gives all levels

equal importance. This is potentially useful, as sometimes the effects of being

in the “minority” groups are what is of interest, and the unstandardized Group

Lasso will tend to miss these.

6.1. Data example

We compared the prediction accuracy of the standardized and unstandard-

ized Group Lasso on the freely available horse colic dataset of Frank and Asuncion

(2010). The data consist of horse surgery measurements — 22 covariates for 300

horses, trying to predict a binary endpoint (whether or not a lesion is a surgical

issue). We used the penalized logistic model discussed in Section 5.2.

We limited our analysis to covariates with less than 50% missing (excluding

2). Of the remaining 20 variables, 14 were categorical and 6 were continuous. We

grouped together each set of indicator variables corresponding to a given categor-

ical covariate, and assigned each continuous variable its own group. There were a

number of missing values which we imputed by mode imputation for categorical

variables and mean imputation for continuous variables. We were interested in

the methods’ performaces in the case that n ∼ p (and n < p) so we considered

only a subset of the horses. We first ran our analysis on the 67 horses with fewer

than 3 missing covariates (46 of whom had surgical lesions), and then on the 32

with fewer than 2 missing covariates (24 of whom had surgical lesions). We ran

5-fold cross validation with each method to estimate the prediction accuracy of

each approach.

Referring to Figure 1 we see that on the smaller subset of 32 horses, the

unstandardized group lasso performed poorly, choosing the null model (only the

intercept), while the standardized Group Lasso improved from 24 (75%) correct
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Table 1. Proportions of correct nonzero group identifications for standard-
ized and unstandardized Group Lasso out of 100 simulated data sets for
continuous predictors.

Correlation (ψ, ρ)
(0, 0.2) (0, 0.8) (0.167, 0.33) (0.33, 0.67)

N = 50, p = 200, G = 10
1 group SGL 0.97 0.93 0.96 0.91

UGL 0.63 0.07 0.48 0.14
2 groups SGL 0.36 0.41 0.3 0.33

UGL 0.12 0.05 0.19 0.05
3 groups SGL 0.16 0.14 0.11 0.10

UGL 0.11 0.01 0.04 0.03
N = 50, p = 100, G = 20

1 group SGL 1.00 1.00 1.00 1.00
UGL 0.97 0.05 0.91 0.41

2 groups SGL 0.75 0.75 0.76 0.79
UGL 0.41 0.01 0.34 0.09

3 groups SGL 0.27 0.28 0.29 0.34
UGL 0.13 0.00 0.08 0.02

N = 100, p = 400, G = 40
1 group SGL 1.00 1.00 1.00 1.00

UGL 0.99 0.02 0.92 0.26
2 groups SGL 0.97 0.94 0.93 0.94

UGL 0.61 0.00 0.38 0.01
3 groups SGL 0.49 0.47 0.48 0.49

UGL 0.18 0.00 0.16 0.00

guesses with just the intercept, up to 26 (81%) with its “optimal” model. On the

larger problem, both methods chose non-null models, however the standardized

Group Lasso was able to correctly categorize 60 (89%) horses at its peak as

opposed to the 57 (85%) of the unstandardized. While these differences are not

large, the groups were categorical and the levels were reasonably well balanced,

so one would not expect large differences. However we do see improvement with

the standardized criterion.

7. Ridged Group Lasso

As noted in Section 4, sometimes we may be using very large groups (eg. gene

pathways in gene expression data), and regularization within group is necessary.

In particular the solution to (2.2) is undefined if any X(l) is column rank deficient

(which necessarily happens if any pi > n). One should also note that in this case

the X(l) cannot all be orthogonalized, so it would be impossible to orthogonalize

then run the original proposal of Yuan and Lin (2007). However, rather than

just using the unstandardized Group Lasso, we would like to combine penalizing
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Table 2. Proportions of correct nonzero group identifications for standard-
ized and unstandardized Group Lasso out of 100 simulated data sets for
categorical predictors.

Scheme
Equal Probs Overwhelm

N = 200, Levels = 7, G = 10
1 group SGL 0.81 0.94

UGL 0.83 0.57
2 groups SGL 0.33 0.45

UGL 0.33 0.21
3 groups SGL 0.12 0.14

UGL 0.09 0.06
N = 150, Levels = 5, G = 20

1 group SGL 0.86 0.78
UGL 0.87 0.53

2 groups SGL 0.32 0.33
UGL 0.32 0.13

3 groups SGL 0.10 0.04
UGL 0.09 0.00
N = 100, Levels = 3, G = 30

1 group SGL 0.92 0.87
UGL 0.92 0.72

2 groups SGL 0.28 0.32
UGL 0.32 0.16

3 groups SGL 0.05 0.08
UGL 0.06 0.02

Figure 1. Plots of cross-validated prediction accuracy for regularization path
in 32 and 67 horse subsets for standardized and unstandardized Group Lasso.
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the fit with some regularization within group. In this case we propose using the

objective

min
β

1

2

∥∥∥y − m∑
l=1

X(l)β(l)
∥∥∥2
2
+ λ

m∑
l=1

√
dfl

(∥∥∥X(l)β(l)
∥∥∥2
2
+ δl

∥∥∥β(l)∥∥∥2
2

)
+

m∑
l=1

δ2l
2
||β(l)||22

where

dfl =

pl∑
i=1

d2l,i
d2l,i + δl

,

for dl,i the ith singular value of X(l). This objective may seem unintuitive, but

we can rewrite it in augmented form as

min
β

1

2

∥∥∥∥∥∥∥∥∥∥∥


y

0
...

0

−




X(1)

δ1I

0
...

0

β(1) +


X(2)

0

δ2I

0
...

β(2) + . . .+


X(m)

0
...

0

δmI

β(m)



∥∥∥∥∥∥∥∥∥∥∥

2

2

(7.1)

+ λ


√
df1

∥∥∥∥∥∥∥∥∥∥∥

X(1)

δ1I

0
...

0

∥∥∥∥∥∥∥∥∥∥∥
2

+
√
df2

∥∥∥∥∥∥∥∥∥∥∥

X(2)

0

δ2I

0
...

∥∥∥∥∥∥∥∥∥∥∥
2

+ . . .+
√
dfm

∥∥∥∥∥∥∥∥∥∥∥

X(m)

0
...

0

δmI

∥∥∥∥∥∥∥∥∥∥∥
2

 . (7.2)

If we consider the optimality conditions for this model we get

β̂(k) =

(
1−

√
dfkλ

||P̃col(X(k))r
(k)||2

)
+

(
X(k)⊤X(k) + δkI

)−1
X(k)⊤r(−k),

where P̃col(X(k)) is no longer a projection, but instead

P̃col(X(k)) = X(k)
(
X(k)⊤X(k) + δkI

)−1
X(k)⊤.

This is just a shrunken ridge regression estimate. If δl > 0, then we add a

ridge penalty to group l, shrinking the covariance estimate of X(l) toward the

identity for each l. dfl is defined to be the degrees of freedom of the ridge fit

Hastie, Tibshirani, and Friedman (2008). With no prior knowledge of which

groups should be in the model, one might consider choosing δl so that all groups

have equal degrees of freedom. One should also note that if all δl > 0, then this

model is strictly convex and thus has a unique minimizer. We find this approach
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attractive because it maintains the same “soft-thresholding the norm” framework

as before, but extends to under-determined models.

8. Conclusion

We have shown that the standardized Group Lasso is the natural extension of

the lasso to grouped data. We have proven its efficacy on real and simulated data.

We have shown that it compares favorably to the unstandardized Group Lasso. In

the case of high dimensionality within group we have extended the standardized

Group Lasso to the ridged Group Lasso, and discuss a fast, straightforward

algorithm to fit both standardized and ridged Group Lasso models. We will soon

make available a public domain R package that implements these ideas.
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