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Abstract: The case of continuous effect modifiers in varying-coefficient models has

been well investigated. Categorial effect modifiers, however, have been largely ne-

glected. In this paper a regularization technique is proposed that allows for selection

of covariates and fusion of categories of categorial effect modifiers in a linear model.

A distinction is made between nominal and ordinal variables, since for the latter

more economic parameterizations are warranted. The proposed methods are illus-

trated and investigated in simulation studies and data evaluations. Moreover, some

asymptotic properties are derived.

Key words and phrases: Categorial predictors, fused lasso, linear model, variable

selection, varying-coefficient models.

1. Introduction

Varying-coefficient models (Hastie and Tibshirani (1993)) offer a flexible

framework for regression modeling. In a standard linear model (with one ef-

fect modifier) regression coefficients βj are allowed to vary with the values of a

variable u – the so-called effect modifier, say

y = β0(u) + x1β1(u) + · · ·+ xpβp(u) + ϵ,

where the βj(u) may depend on the effect modifier u, j = 0, . . . , p, E(ϵ) = 0 and

V ar(ϵ) = σ2.

The case of metric effect modifiers has been investigated thoroughly, in the

linear model as given above and in other situations (see for example Cardot

and Sarda (2008); Hoover et al. (1998); Kim (2007); Mu and Wei (2009); or

Qu and Li (2006)). The classical approach is to estimate functions βj(·) non-

parametrically, for example using splines (see e.g., Lu, Zhang, and Zhu (2008))

or localizing techniques (Fan, Yao, and Cai (2003)); or Kauermann and Tutz

(2000)). Recently, Wang, Li, and Huang (2008) and Wang and Xia (2009) pro-

posed penalty approaches for selecting relevant predictors xj , while Leng (2009)

used penalized likelihood estimation to investigate which functions βj(·) actually
vary over u. The latter problem means to distinguish between the cases where
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βj(u) is a constant or not, while selection of predictors is equivalent to determine

if βj(u) = 0.

In the present paper methods for categorial effect modifiers are proposed for

the classical linear model. The main problem with categorial effect modifiers is

that the number of parameters to be estimated and – more importantly – the

number of potential models may be very large. For categorial u ∈ {1, . . . , k} the

varying functions have the form βj(u) =
∑k

r=1 βjrI(u = r), which means that k

parameters have to be estimated. Correspondingly the model with p predictors,

y =

k∑
r=1

β0rI(u = r) +

k∑
r=1

x1β1rI(u = r) + · · ·+
k∑

r=1

xpβprI(u = r) + ϵ,

contains (p + 1)k parameters. The interpretation is that on level r of u the

model y = β0r + x1β1r + · · · + xpβpr + ϵ holds. In many situations, however,

the number of parameters has to be reduced – in order to stabilize estimation

of parameters and/or to facilitate interpretation. For that purpose we propose

a penalty approach that accounts for both variable selection with respect to

predictors xj and investigation if functions βj(·) are (partially) constant; the aim
is to decide if some of the parameters βjr and βjs are equal for fixed j. Moreover,

the presented method allows for level specific variable selection in that predictors

may be excluded (i.e. corresponding coefficients are set to zero) for specific values

of u only. Of course, all potential models could also be estimated using pure

maximum likelihood/ordinary least squares estimation and model selection may

be based on information criteria like AIC or BIC. Such complete enumeration,

however, is feasible only for data sets with a very small number of covariates

x1, . . . , xp and a very small k (denoting the number of levels of u). More precisely,

the exact number of potential models is

M(p, k) = C(k)
(
1 +

k∑
s=1

(
k

s

)
C(s)

)p
, (1.1)

with

C(s) =

s∑
v=1

S(s, v), and S(s, v) =
1

v!

v∑
l=1

(−1)v−l

(
v

l

)
ls. (1.2)

A derivation of (1.1) is given in the Appendix. For example M(7, 2) = 156, 250,

which may still be feasible. But M(p, k) grows very rapidly with growing p and

k; so alreadyM(10, 3) > 1012. In cases like this, stepwise procedures like forward

or backward selection (based e.g., on the AIC) could be used. However, these

suffer from high variability (cf., Hastie, Tibshirani and Friedman (2009)). Hence,

regularization techniques that induce sparsity are a promising approach for model
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selection. Beside stability, the advantage of regularization techniques is that the

extent of regularization – and hence sparsity – is typically controlled by a tuning

parameter. Selection of that parameter implicitly determines the model.

A well-known regularization technique designed for grouped variables is the

Group Lasso (Yuan and Lin (2006)), which can be used to select pre-specified

groups of variables. When applied to the considered regression problem, co-

efficients βj1, . . . , βjk may be set to zero simultaneously, which means variable

selection with respect to predictors xj . However, due to the Ridge-type penalty

within groups of coefficients, in Group Lasso estimated coefficients β̂jr and β̂js
cannot be enforced to be equal.

An example shows that our approach is also useful in the case of few predic-

tors. Even then it simplifies the assumed structure of the predictors. We consider

the data collected by Derek Whiteside, reported by Hand et al. (1994) and an-

alyzed by Venables and Ripley (2002). Given are weekly gas consumption (in

1,000 cubic feet) and average external temperature (in degree C) at Whiteside’s

house in south-east England during two ‘heating seasons’ – one before and one

after cavity-wall insulation was installed, cf., Venables and Ripley (2002). The

most complex model used there fits gas consumption as a quadratic function of

temperature separately for both seasons before and after insulation. Thus, with

u ∈ {1, 2} = {Before,After}, x denoting temperature and y gas consumption,

one has the linear predictor

η(x, u) = β0(u) + xβ1(u) + x2β2(u) = E(y|x, u),

and η(x, u = r) = β0r + xβ1r + x2β2r = E(y|x, u = r) for fixed r. In Figure

1 the data are shown along with estimated regression curves. Though results

look quite similar, our model has one degree of freedom less since the coefficients

of the quadratic term (β21 and β22) are set equal for the two heating seasons.

Venables and Ripley’s speculation that the quadratic term is possibly needed for

the after-insulation group only is not confirmed.

The paper is organized as follows. We introduce the method and discuss some

computational aspects in Section 2. Large sample properties are investigated in

Section 3, and the proposed methods are tested in simulation studies reported

on in Section 4. In Sections 5 and 6, some data are evaluated and generalizations

to multiple effect modifiers are discussed.

2. Penalized Estimation

Let (yi, xi, ui), i = 1, . . . , n, denote the data and write βj(u) = βju. Instabil-

ity of the ordinary least squares estimate can be avoided by penalized estimation:

β̂ = argmin
β

Qp(β), (2.1)
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Figure 1. Whiteside’s data showing the effect of insulation on household gas
consumption with estimated quadratic regression curves; dashed lines refer
to the full model, solid ones to the regularized model with coefficients of
quadratic terms set equal.

with

Qp(β) =

n∑
i=1

(
yi − β0(ui)−

p∑
j=1

xijβj(ui)
)2

+ λJ(β)

= (y − Zβ)T (y − Zβ) + λJ(β), (2.2)

where y = (y1, . . . , yn)
T and β = (βT1 , . . . , β

T
k )

T , with βr = (β0r, β1r, . . . , βpr)
T .

The ith row of design matrix Z is ((1, xTi )I(ui = 1), . . . , (1, xTi )I(ui = k)). With-

out the penalty term J(β) one has ordinary least squares estimation. With

increasing λ the influence of J(β) is increased. The crucial point is to chose an

adequate penalty. Classical penalties are the Ridge J(β) =
∑

j,r β
2
jr (Hoerl and

Kennard (1970)) and the Lasso J(β) =
∑

j,r |βjr| (Tibshirani (1996)). While

the Ridge only shrinks estimates β̂jr toward zero, the Lasso additionally allows

some β̂jr to be set to zero. Though variable selection is also included, the pure

Lasso penalty is not adequate since it does not enforce β̂jr = β̂js for some r ̸= s,

and this is needed to obtain potentially (piecewise) constant functions β̂j(u). In

the following we present an approach that allows for such fusion of coefficients.

We distinguish between nominal and ordinal effect modifiers because of their

different information content.
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2.1. Nominal and ordinal effect modifiers

For nominal u we propose the penalty

J(β) =

p∑
j=0

∑
r>s

|βjr − βjs|+
p∑

j=1

k∑
r=1

|βjr|. (2.3)

The first term enforces the collapsing of categories of the effect modifier. In the

case of very strong penalization, the effects of covariates do not depend on the

category of u and one obtains β̂j1 = β̂j2 = · · · = β̂jk = β̂j.. The second term in

(2.3) steers selection/exclusion of covariates. In the extreme case, β̂j1 = β̂j2 =

· · · = β̂jk = 0 is obtained and covariate xj is omitted.

If u is ordinal, levels can be reasonably ordered. Here we use

J(β) =

p∑
j=0

k∑
r=2

|βjr − βj,r−1|+
p∑

j=1

k∑
r=1

|βjr|. (2.4)

That means, within each predictor xj one uses a Fused Lasso-type penalty (com-

pare Tibshirani et al. (2005)), since only differences of ‘adjacent’ coefficients βjr
and βj,r−1 are penalized.

Following Tibshirani et al. (2005) the selection and the fusion part of the

penalty may be differentially weighted. That means, with ψ ∈ (0, 1), one can

also use

J(β;ψ) = ψ

p∑
j=0

∑
r>s

|βjr − βjs|+ (1− ψ)

p∑
j=1

k∑
r=1

|βjr|, (2.5)

or, depending on the scale level of u,

J(β;ψ) = ψ

p∑
j=0

k∑
r=2

|βjr − βj,r−1|+ (1− ψ)

p∑
j=1

k∑
r=1

|βjr|. (2.6)

The use of a flexible ψ means, however, that another tuning parameter is intro-

duced, and it is not clear if this modification really has better performance than

the use of (2.3) or (2.4), where ψ = 0.5 is fixed. This issue is investigated further

in simulation studies in Section 4. In practice, tuning parameters like λ (or ψ)

are typically selected using K-fold cross-validation, where K = 5 or K = 10

ist commonly chosen (cf., Hastie, Tibshirani and Friedman (2009)). Since we

are in the context of the classical linear model, we select the tuning parameter

minimizing the (cross-validated) squared error of prediction.
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2.2. Computational issues

When computing estimates it is useful to consider (2.2) as the constrained

optimization problem

β̂ = argmin
β

n∑
i=1

(
yi − β0(ui)−

p∑
j=1

xijβj(ui)
)2
, subject to J(β) ≤ s,

where the tuning parameter s plays a role comparable to that of λ; see, for

example, Hastie, Tibshirani and Friedman (2009). In matrix notation we have

β̂ = argmin
β

(y − Zβ)T (y − Zβ), subject to J(β) ≤ s,

with y and Z chosen as in (2.2). Furthermore, if ν = (βT , δT )T with δT =

(δT0 , . . . , δ
T
p ), and δj = (βj2 − βj1, βj3 − βj1, . . . , βjk − βj,k−1)

T , we can write

δ = Dβ with adequately chosen D. Then, for (2.3), β̂ can be computed via

ν̂ = argmin
ν

(y − Uν)T (y − Uν), subject to ∥ν∥1 ≤ s and Aν = 0,

where ∥ν∥1 denotes the L1-norm of ν, a possible choice of U is U = (Z|0), and
A = (D| − I) since Aν = Dβ − δ = 0. If every entry of ν is split into positive

and negative parts, this constrained minimization problem can (in principle) be

solved via quadratic programming, for example using methods from the R add-on

package kernlab (Karatzoglou et al. (2004); R Development Core Team (2010)).

For (2.4), computation can be done in a completely analogous way. With a

flexible ψ, the constraint becomes (1− ψ)∥β∥1 + ψ∥δ∥1 ≤ s.

The problem with quadratic programming is that the solution can only be

computed for a single value s. To obtain a coefficient path in s the procedure

needs to be applied repeatedly. Moreover, in some cases we found numerical

problems, especially when s was small. To attack these problems, we propose an

approximate solution that can be computed using methods for the usual Lasso

estimation, as e.g., the R add-on package lars (Efron et al. (2004)), where “ap-

proximate” means that only Aν ≈ 0 holds. The idea is to exploit that the

proposed estimator can be seen as the limit of a generalized Elastic Net. The

original Elastic Net (Zou and Hastie (2005)) uses a combination of simple Ridge

and Lasso penalties. We use a generalized form where the quadratic penalty term

is modified. Let

ν̂γ = argmin
ν

{
(y − Uν)T (y − Uν) + γ(Aν)TAν + λ∥ν∥1

}
= argmin

ν
{h(ν, γ)} .

Here the first penalty term, which is weighted by γ, penalizes violations ofAν = 0.

Since minν h(ν, γ) is a monotone function of γ bounded above by h(ν̂, ·), and
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h(ν, γ) a continuous and convex function of ν, (under the assumption that ν̂γ is
the unique minimizer of h(ν, γ) and ν̂ is unique) the exact solution of the opti-
mization problem considered here is obtained as the limit ν̂ = limγ→∞ ν̂γ . Hence,
with sufficiently large γ an acceptable approximation of ν̂ can be obtained as ν̂γ .
The advantage of using the estimate ν̂γ is that its whole path can be computed
using lars, since it can be formulated as a Lasso solution. When constructing
the extended design matrix to compute the Lasso/Elastic Net solution (see, e.g.,
Zou and Hastie (2005)), A is multiplied by

√
γ. We usually take

√
γ = 105

or
√
γ = 106. To find an adequate γ-value and to judge precision in general,

∆γ = (Aν̂γ)
TAν̂γ can be used (with ∆γ also depending on the chosen λ, resp. s).

An upper bound for ∆γ can be computed as was done in Gertheiss and Tutz
(2010). In our analyses we mostly obtained ∆γ-values of about 10

−20 or better,
comparable to results obtained by using the kernlab package. (Note also that
if quadratic programming is used to compute “exact” solutions, constraints are
just “numerically” met.) It has been our experience that the proposed algorithm
works well as long as the number of levels k and the number of predictors p is
modest (k < 10, p < 30). If k is small (k = 2, 3), p may be larger.

3. Large Sample Properties and Modifications

In the following we investigate asymptotic properties and introduce a modi-
fied version of the proposed estimator that is also consistent in terms of variable
selection and the identification of relevant differences βjr − βjs.

Proposition 1. Suppose 0 ≤ λ < ∞ is fixed, and all class-wise sample sizes nr
satisfy nr/n → cr, where 0 < cr < 1. Then β̂ from (2.1) with penalty (2.3) is
consistent in that limn→∞ P (||β̂ − β∗||2 > ϵ) = 0 for all ϵ > 0, with β∗ denoting
the vector of true coefficients.

The proof is given in the Appendix. If u is ordinal, (2.4) is employed and
consistency is proved in a completely analogous way. Employing the generalized
version (2.5) or (2.6) does not affect consistency results.

However, as pointed out by Zou (2006) regularization as applied so far does
not ensure consistency in terms of variable selection (and fusion) – the probability
that the correct model is identified does not necessarily tend to one if the number
of observations tends to infinity.

To counter the problem of selection inconsistency of the original Lasso, Zou
(2006) proposed an adaptive version with so-called oracle properties. A corre-
sponding modification is also possible here. Given nominal u, we employ the
adaptive penalty

J(β) =

p∑
j=0

∑
r>s

wrs(j)|βjr − βjs|+
p∑

j=1

k∑
r=1

wr(j)|βjr| (3.1)
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with weights

wrs(j) = ϕrs(j)(n)
∣∣∣β̂(LS)jr − β̂

(LS)
js

∣∣∣−1
and wr(j) = ϕr(j)(n)

∣∣∣β̂(LS)jr

∣∣∣−1
, (3.2)

β̂
(LS)
jr denoting the ordinary least squares estimator of βjr. For the sequences

ϕrs(j)(n) and ϕr(j)(n) we only need ϕrs(j)(n) → qrs(j) and ϕr(j)(n) → qr(j), re-

spectively, with 0 < qrs(j), qr(j) < ∞. Though these assumptions are quite gen-

eral, ϕrs(j)(n) and ϕr(j)(n) will usually be fixed, for example as ψ and (1−ψ) to

obtain a generalization like (2.5). In contrast to Proposition 1, λ at (2.2) is not

fixed, but increases with sample size n. More precisely, we need λ = λn, with

λn → ∞ for n→ ∞, but λn/
√
n→ 0 for n→ ∞.

Before giving the asymptotic properties of the adaptive version, we define

β−0,r = (β1r, . . . , βpr)
T , i.e. the vector of regression coefficients on level r of u

without the intercept, and δj = (βj2 − βj1, βj3 − βj1, . . . , βjk − βj,k−1)
T , i.e. the

vector of pairwise differences of regression coefficients belonging to predictor xj
(see also Subsection 2.2). Because also differences of intercepts are considered,

δj refers to j = 0, . . . , p. Furthermore, we define βT−0 = (βT−0,1, . . . , β
T
−0,k),

δT = (δT0 , . . . , δ
T
p ), and θT = (βT−0, δ

T ). Now, let C denote the set of indices

corresponding to entries of θ which are truly non-zero, and Cn denote the set

corresponding to those entries which are estimated to be non-zero with sample

size n, and based on estimate β̂ from (2.1) with penalty (3.1). If θ∗C denotes the

true vector of θ-entries included in C, and θ̂C denotes the corresponding estimate

based on β̂, then the following holds:

Proposition 2. If λ = λn with λn/
√
n → 0 and λn → ∞, and all class-wise

sample sizes nr satisfy nr/n → cr, where 0 < cr < 1, then for the penalty at

(3.1) with weights (3.2),

(a)
√
n(θ̂C − θ∗C) →d N(0,Σ),

(b) limn→∞ P (Cn = C) = 1.

The proof uses ideas from Zou (2006), Bondell and Reich (2009), and Gertheiss

and Tutz (2010), and is given in the Appendix. The concrete form of Σ results

from the asymptotic marginal distribution of a set of non-redundant truly non-

zero regression parameters or differences of parameters (see the proof). Since all

estimated differences are (deterministic) linear functions of estimated parame-

ters, Σ is singular. As seen from (b), the probability that the correct model is

identified tends to one if the number of observations tends to infinity.

If the effect modifier u is ordinal, the weighting scheme and the asymptotic

behavior of the corresponding estimator are completely analogous.
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Figure 2. Fitted β-coefficients as functions of tuning parameter s for the
standard penalty approach (left) and the adaptive version (right), s values
chosen by cross-validation are marked by the vertical lines; true coefficient
values are β01 = −1, β02 = 1, β11 = −2, β12 = −4, β21 = β22 = 2, β31 = 0,
β32 = 2, β41 = β42 = 0.

4. Numerical Experiments

Before the presented approach is applied to data, we evaluate the method in

simulation studies where the underlying model is known.

4.1. An illustrative example

At first, we assume an effect modifier u with only k = 2 levels. More precisely,

on level u = 1 we take model y = −1−2x1+2x2+ϵ, and y = 1−4x1+2x2+2x3+ϵ

on level u = 2. Here the coefficients of x2 do not vary with u, and x3 is relevant

only if u = 2. In addition, a pure noise variable x4 is considered as a potential

regressor in both models, i.e. β41 = β42 = 0. We generated n = 200 data

points with xij independently U [0, 1], class levels u1 = · · · = u100 = 1 and

u101 = · · · = u200 = 2, and standard normal error ϵ.

Figure 2 (left) shows fitted coefficient paths for all βjr as functions of the

tuning parameter s, when the standard (non-adaptive) approach with ψ = 0.5

was applied. At s/smax = 1 ordinary least squares (ols) estimates are obtained.

With decreasing s (increasing penalty λ) coefficients are successively fused and

shrunken toward zero. First coefficient β31 is (correctly) set to zero, then β21 and

β22 are set equal, as well as β41 and β42; later, β41 and β42 are simultaneously

set to zero, as desired. Later still, β11 and β12 are (wrongly) fused and non-

zero coefficients are set to zero. Intercepts β01 and β02 are not fused until the

minimal s is chosen. Since only their difference is penalized, at s = 0 they equal
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ȳ – the empirical mean of y. However, if cross-validation is applied to determine

an adequate value of s (marked by the dotted vertical line), a model quite close

to the ols estimate is chosen. As seen on the right hand side of Figure 2, the

performance in terms of model selection was much better, when adaptive weights

were used. In the latter case, cross-validation results in a model where just β42
is wrongly fitted as non-zero.

4.2. Comparison of methods

In order to further investigate the potential impact of modifications proposed

in Sections 2 and 3, and to compare the proposed techniques to some alternative

methods, we extend the simulation setting from above.

Simulation setting

Consider two additional levels of u and two additional predictors, with

y = −1− 2x1 + 2x2 + 0x3 + 0x4 + 0x5 + 0x6 + ϵ on level u = 1,

y = +1− 4x1 + 2x2 + 2x3 + 0x4 + 0x5 + 0x6 + ϵ on level u = 2,

y = +1 + 2x1 + 2x2 + 2x3 − 4x4 + 0x5 + 0x6 + ϵ on level u = 3,

y = −1 + 1x1 + 2x2 + 3x3 − 4x4 − 2x5 + 0x6 + ϵ on level u = 4, (4.1)

where error ϵ is normal with mean zero and variance two. We independently

generated 400 training and 1,200 test data data points, both with balanced u, and

compared the standard and the adaptive version, both with fixed ψ = 0.5 as well

as with ψ treated as another tuning parameter, that was chosen via 10-fold cross-

validation. Parameter s was chosen via 10-fold cross-validation as well. This

procedure of data generation, tuning parameter determination, model estimation,

and evaluation was (independently) repeated 100 times. Results in terms of the

(empiric) MSE of parameter estimates and prediction accuracies are found in

Table 1 (left). Estimated standard errors are given in parentheses. Prediction

accuracy is measured by the Mean Squared Error of Prediction (MSEP) on the

test set. As a second scenario we introduced two additional pure noise input

variables x7 and x8, and repeated the analysis. Results are also shown in Table

1.

Reference methods

The proposed regularization techniques are compared to the ordinary least

squares estimate without model selection and a forward selection strategy based

on the AIC or BIC (assuming normality of the response y). Checking all possi-

ble models is too computationally intensive (e.g., M(8, 4) ≈ 1015). A standard

forward selection applied to the design matrix of the ols model is not adequate
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Table 1. Observed errors of parameter estimates (MSE) and predictions
accuracy (MSEP), estimated standard errors are given parentheses; simula-
tion scenario (4.1) (left), and with two additional pure noise input variables
(right).

scenario (4.1) + two noise covariates
method MSE MSEP MSE MSEP

ols 7.728 (0.264) 2.149 (0.010) 11.380 (0.380) 2.219 (0.011)
stdrd, fixed ψ 6.126 (0.218) 2.126 (0.010) 7.500 (0.240) 2.163 (0.010)
stdrd, flex. ψ 6.412 (0.229) 2.131 (0.010) 8.183 (0.455) 2.173 (0.010)
adapt, fixed ψ 5.855 (0.273) 2.117 (0.010) 6.920 (0.334) 2.149 (0.010)
adapt, flex. ψ 6.104 (0.293) 2.121 (0.010) 7.091 (0.334) 2.151 (0.010)

forward select, AIC 6.599 (0.302) 2.133 (0.010) 9.755 (0.414) 2.191 (0.011)
forward select, BIC 9.313 (0.489) 2.172 (0.013) 10.856 (0.698) 2.215 (0.016)

because it does not cover the fusion aspect. Therefore the procedure has to be

extended. The forward selection strategy we used was as follows:

1. Start with the non-varying intercept model with one degree of freedom (df).

2. At each step increase df by one and check all models that are based on the

model from the previous step in which, for j = 1, . . . , p, a group of zero

coefficients from {βj1, . . . , βjk} are changed, or a cluster of nonzero coefficients

is split. Select the model with minimum AIC/BIC.

3. Stop if the (minimum) AIC/BIC does not decrease.

The degrees of freedom are defined (Tibshirani et al. (2005)) as the number

of non-zero coefficient blocks in β̂.

Results

From Table 1 it is seen that regularized approaches performed better than the

ordinary least squares (ols) estimate in terms of accuracy of parameter estimation

(i.e. MSE) and prediction (i.e. MSEP). They also seem to be superior to an

AIC/BIC-based forward selection strategy without shrinkage. In addition, results

of the stepwise procedures had higher variability, as seen from the MSE standard

errors.

If a regularized approach is applied, using adaptive weights as at (3.2) seems

to increase accuracy of parameter estimates and prediction. Allowing flexible ψ,

by contrast, did not lead to better results.

In the second simulation we introduced two additional pure noise input vari-

ables. Then one might think that emphasis should be placed on the penalty’s

selection part, say ψ < 0.5 should be chosen in (2.5). Surprisingly, choosing ψ

via cross-validation was not superior to using ψ = 0.5. When looking at Ta-

ble 1, only differences between regularized and ordinary least squares estimates
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Figure 3. Sensitivity (light-colored) and specificity (dark) concerning vari-
able selection and the identification of differences between regression coeffi-
cients belonging to the same predictor, simulation scenario (4.1).

Figure 4. Sensitivity (light-colored) and specificity (dark) concerning vari-
able selection and the identification of differences between regression coef-
ficients belonging to the same predictor, simulation scenario (4.1) with two
additional pure noise covariates.

seem larger than before. Using the regularized version with adaptive weights, for

example, the MSE of the ols model was reduced by about 40%.

Beside accuracy of prediction and parameter estimation we examined selec-

tion and clustering performance. In Figure 3 and 4 we report sensitivities (light

colored) and specificities (dark) of variable selection and identification of relevant

differences between (potentially) varying coefficients. In our case, sensitivity is

the proportion of truly non-zero coefficients from (4.1), resp. differences thereof,

that are fitted as non-zero, while specificity is the proportion of truly zero coeffi-
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Table 2. Available data for the analysis of the relationship between income
and several explanatory variables.

Response: Monthly income in Euro
Predictors: Age in years between 21 and 60

Job tenure in months
Body height in cm
Gender male/female
Married no/yes
Abitur (≈ A-levels) no/yes
Blue-collar worker no/yes

cients/differences that are set to zero. These are averages over all 100 simulation

runs. If the standard regularized approach is applied, specificity is rather low,

while using adaptive weights substantially increases specificity for both variable

selection and clustering. Differences between fixed ψ = 0.5 and ψ chosen via

cross-validation were rather negligible. However, cross-validation to determine

the strength of regularization seems to work well. The method that had the

highest specificity but the lowest sensitivity was the BIC-based forward selection

strategy. Compared to the AIC, the BIC tends to penalize complex models more

heavily, giving preferences to simpler/sparser models (cf., Hastie, Tibshirani and

Friedman (2009)). This apparently leads to comparably high errors in Table 1.

5. Data Evaluation

In the Introduction, results of an analysis of Whiteside’s data were shown. In

the following we give analyses of income data from Germany and data collected

in Austria during a study on the functioning of lungs of schoolchildren. As

simulations have suggested, we fix ψ = 0.5. Before our regularized methods are

applied, variables are scaled to have unit variance to make results independent

of the chosen units.

5.1. Analysis of income data

We analyzed the relationship of monthly income and several (potentially) ex-

planatory variables. The data were taken from the Socio-Economic Panel Study

(SOEP) of the year 2002. The SOEP is a representative longitudinal study of pri-

vate households in Germany, but we only used data from 2002 in a cross-sectional

analysis. Table 2 shows the response and predictors we considered for the regres-

sion analysis. The so-called Abitur is a diploma from German secondary school

qualifying for university admission or matriculation. It is comparable to the

British A-levels.

We fit (the logarithm of) monthly income using a linear regression model

but let coefficients vary with a person’s gender. From former studies it is known
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that the influence of age is rather quadratic than linear. Therefore Age2 was also

included. Thus

log(Income) = β0(Gender) + β1(Gender)Age + β2(Gender)Age2

+β3(Gender)Tenure + β4(Gender)Height

+β5(Gender)Married + β6(Gender)Abitur

+β7(Gender)Blue-collar + ϵ. (5.1)

Figure 5 shows coefficient paths for all predictors and the intercept. The dashed

lines refer to males, the solid ones to females. For small s (i.e. with high penalty

λ) regression coefficients are set to zero or equal for males and females. If s is

increased, it is seen that gender may play an important role as an effect modifying

factor. In particular, it is interesting that earnings of married men tend to be

higher than those of unmarried men, while the effect of marriage seems to be

the reverse for women. Qualitatively speaking, effects of job tenure, Abitur and

being a blue-collar worker are similar for males and females, but – particularly

in case of job tenure – effects tend to be stronger for females than for males.

The phenomenon that taller people earn more than shorter ones is observed

for both males and females – with coefficients being set as constant as long as

s/smax ≤ 0.96.

To evaluate if differences between men and women can be regarded as sub-

stantial, an adequate s-value is chosen via cross-validation. Since data were

plentiful, we used 5-fold cross-validation, thus reducing variance (and without

suffering from a large bias, cf., Hastie, Tibshirani and Friedman (2009)). The

vertical dotted line in each path plot in Figure 5 indicates the s with minimum

(quadratic) cross-validation score. It is seen that the best solution is found at a

point where most coefficients vary with gender. Only intercepts and the effect

of body height were fit as constant over gender. The fact (which is well known

for Germany) that earnings of males are (still) higher on average than those of

females, is (primarily) modeled via the different influence of age.

5.2. Lung capacities of schoolchildren

The data analyzed were collected by the University of Innsbruck, Austria,

during a study on the functioning of lungs and diseases of the respiratory tracts of

schoolchildren. The point of interest was the question of whether the functioning

of lungs is affected by industry-induced air pollution. The data came from a

cross-sectional study in the district of Brixlegg (Austria). A summary of the data

used is found in Table 3. We analyzed the relationship between the capacity of

the lungs (in liters) and the provided covariates. The degree of environmental

pollution at the place of residence was given as a categorial predictor with three
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Figure 5. Paths of coefficients (possibly) varying with gender given model
(5.1); dashed lines refer to males, solid ones to females, the vertical dotted
line indicates coefficients at cv score minimizing s/smax = 0.86.

levels: highly polluted zone, slightly polluted zone, or with high ozone exposure

because of altitude (Brixlegg is located in the Alps). Since levels can only be

partially ordered, the degree of pollution is treated as a nominal covariate. All

other explantory variables are metric (age, body weight, body height) or binary

factors (sex, smoking mother/father, etc.), see Table 3.

Since the main interest is on investigating the effect of pollution on the

capacity of lungs, a natural first step is to build a model with all predictors

except pollution – a so-called confounder model. Then it is to be checked if the

model is significantly improved if the degree of pollution is added. When we fit

main effect models – except, and then including pollution – the model was not

significantly improved if the degree of pollution was taken into account (F-test

based p-value 0.13). By contrast, if pollution was included as an effect modifying

factor, the initial model was significantly improved (p-value 0.02). However, most

regression parameters were far from being ‘significantly non-zero’. So we used

the proposed regularization technique to obtain a sparser representation.
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Table 3. Available data for the analysis of the functioning of lungs of
schoolchildren.

Response: Capacity of the lungs in liters
Predictors: Age in months

Body weight in kilograms
Body height in cm
Sex male/female
Parental level of education A-levels etc. (no/yes)
Existing allergies no/yes
Diseases of the respiratory tracts no/yes
Does the mother smoke? no/yes
Does the father smoke? no/yes
Suffering frequently from colds? no/yes
Suffering frequently from coughs? no/yes
Lung or bronchial tube diseases no/yes
Degree of environmental pollution categorial with zones/levels:
at place of residence 1: highly polluted

2: slightly polluted
3: high ozone exposure

Table 4. Fitted coefficients if the degree of pollution at the place of residence
of a child is taken as a (potentially) effect modifying factor when explaining
lung capacity; actually varying coefficients are underlined.

highly polluted slightly polluted ozone exposure
Intercept -3.35632 -3.31679 -3.31679
Age 0.00017 0.00017 0.00017
Body Weight 0.01689 0.01689 0.01689
Body Height 0.03703 0.03706 0.03703
Sex -0.15720 -0.15720 -0.15720
Parental Education 0.00000 0.00000 0.00000
Allergies 0.00000 0.00000 0.00000
Respiratory Diseases 0.00000 0.00000 0.00000
Smoking Mother 0.00000 0.00000 0.00000
Smoking Father 0.00000 0.00000 0.00000
Frequent Colds 0.00000 0.00000 0.00000
Frequent Coughs 0.00000 0.00000 0.00000
Lung Diseases 0.00000 0.00000 0.00000

Via (5-fold) cross-validation a rather small s was chosen (s/smax = 0.13).

The resulting regression coefficients on the different levels of pollution are shown

in Table 4 (values are back-transformed to the original scale for better interpre-

tation). Actually varying coefficients are underlined. All predictors are excluded,

except age, body weight/height, and sex. The intercept and the effect of body

height, however, additionally vary with the degree of pollution. If a child lives in



CATEGORIAL EFFECT MODIFIERS 973

a zone of high pollution his/her lung capacity is identified as being lower. The
fitted difference to children being exposed to ozone is about 40 ml, for example,
but also if the child is exposed to ozone there is a small negative effect, compared
to non/slightly polluted zones. According to the model, a child of 1.50 m (for
example) that lives in a slightly polluted area has 4.5 ml higher lung capacity
than a child that is highly exposed to ozone; the difference to highly polluted
zones is even 44.5 ml. Since there are more than 1300 observations available and
the minimum of the cross-validation score is well-defined (not shown), results can
be supposed to be reliable. Moreover, the fit was quite good, with the ratio of
residual and total sum of squares being 11.4%.

To obtain some measure of uncertainty, the asymptotic normal distribution
from Proposition 2 was used. Resulting 90% confidence intervals for estimated
nonzero regression coefficients are shown in Figure 6 (dashed). Computing in-
tervals this way, however, is not recommended for three reasons: no intervals are
available for regression coefficients (or differences thereof) that are set to zero;
variability induced by the selection process and the determination of tuning pa-
rameters is ignored; the distribution of adaptive Lasso estimates may be quite
far from normal (see Pötscher and Schneider (2009)). In Figure 6 (solid) we
additionally give 90% bootstrap percentile intervals using the R add-on package
boot (Canty and Ripley (2010); Davison and Hinkley (1997)). These intervals
tend to be asymmetric and larger than those using the asymptotic normal. The
influence of predictors with estimated nonzero coefficients is confirmed (with bor-
derline significance of ‘age’). Intervals of intercept values are clearly overlapping
(top left), but intervals for intercept differences between zones (bottom left) in-
dicate that a child living in a highly polluted zone has lower lung capacity. Since
the difference between zones 2 and 3 is estimated as zero, no interval can be
computed using the normal approximation. Still it can be noted that in the
case of truly nonzero regression parameters being almost zero bootstrap confi-
dence intervals for adaptive Lasso estimates are also unreliable (see Pötscher and
Schneider (2009)).

As the influence of the level of pollution on the coefficients of the other
covariates seems rather marginal, and for other reasons, we consider sex as an
additional (potentially) effect modifying factor in the next section.

6. Generalizations to Multiple Effect Modifiers

Because in many applications there is not only one potential effect modifying
factor, we show how a model with multiple categorial effect modifiers can be
specified and regularized.

Suppose two predictors x1 and x2 are given, with potential effect modifiers
u1 ∈ {1, . . . , k1} and u2 ∈ {1, . . . , k2}. We assume

η(x, u) = β01(u1) + β02(u2) + x1β11(u1) + x1β12(u2) + x2β21(u1) + x2β22(u2).
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Figure 6. 90% bootstrap percentile confidence intervals (solid) and confi-
dence intervals using the asymptotic normal distribution from Proposition
2 (dashed).

Thus, for the varying functions βj(u1, u2) an additive structure is imposed:

βj(u1, u2) = βj1(u1) + βj2(u2), (6.1)

with

βj1(u1) =

k1∑
r=1

βj1rI(u1 = r) and βj2(u2) =

k2∑
s=1

βj2sI(u2 = s).

For identifiability, functions βj2(·) need to be restricted, for example by βj21 =
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Table 5. Fitted coefficients as defined in (6.1) if the degree of pollution as
well as the child’s sex are taken as (potentially) effect modifying factors when
explaining lung capacity. Additive terms coefficients are build of are found
in Table 6.

highly polluted slightly polluted ozone exposure
Intercept male -3.52686 -3.49377 -3.49377

female -2.82959 -2.79650 -2.79650
Age male 0.00000 0.00000 0.00000

female 0.00340 0.00340 0.00340
Body Weight male 0.02063 0.02088 0.02063

female 0.01252 0.01277 0.01252
Body Height male 0.03744 0.03747 0.03744

female 0.03044 0.03047 0.03044

Table 6. Fitted coefficients β̂j,zone,r and β̂j,sex,s, i.e. the degree of pollution
as well as the child’s sex are taken as (potentially) effect modifying factors
when explaining lung capacity.

Intercept Age Body Weight Body Height
highly polluted -3.52686 0.00000 0.02062 0.03744
slightly polluted -3.49377 0.00000 0.02088 0.03747
ozone exposure -3.49377 0.00000 0.02062 0.03744
female 0.69727 0.00340 -0.00811 -0.00700

0, j = 0, . . . , p. The penalty term is

J(β) =
∑

m∈{1,2}

p∑
j=0

∑
r>s

wrs(j,m)|βjmr − βjms|+
p∑

j=1

k1∑
r=1

k2∑
s=1

vrs(j,1,2)|βj1r + βj2s|,

with adequately chosen weights wrs(j,m) and vrs(j,1,2) (for example taking ols

estimates into account as done in Section 3). Penalization of terms |βj1r| is

implicitly included in the second part of penalty J , since βj21 = 0 for all j. For

the same reason, terms |βj2r| are not explicitly penalized since they are implicitly

included in the first part of the penalty.

To illustrate the approach, we use the data from Table 3 but only consider

covariates that showed relevant effects in Table 4. In Table 5 fitted coefficients

are given if the degree of pollution at the place of residence and the child’s sex

are taken as (potentially) effect modifying factors. The value s/smax = 0.56 was

chosen via (5-fold) cross-validation. As before, the estimated intercept is lower

if the zone of residence is highly polluted. Moreover, the positive effect of body

weight and body height is stronger if the area of residence is just slightly polluted.

Because of the additive structure of βj(u1, u2), differences between intercepts and

differences between other coefficients are the same for both males and females.
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In general, the influence of ‘sex’ on the coefficients of the remaining covariates

seems to be higher than that for ‘zone’. For a better understanding, β̂j1(u1) and

β̂j2(u2) are given in Table 6 where u1 is ‘zone’ and u2 is ‘sex’. Since βj21 = 0 ∀j,
for each covariate there is only an u2-coefficient given for females – the difference

between females and males (implicitly) already seen in Table 5. Since coefficients

given in the last row of Table 6 are negative for body height and weight, resulting

coefficients of body weight and body height are higher for males than for females

(see also Table 5): the (absolute) difference in lung capacity between boys and

girls increases with age. According to the fitted model, changes in lung capacities

of boys are well explained by covariates body weight/height and the degree of

pollution, whereas for girls there is also a (small) effect of age. The ratio of

residual and total sum of squares is 10.8%, and the fit of our first model is

improved.

7. Summary and Discussion

We showed how regularization can be used to obtain sparser representations

of varying-coefficient models with categorial effect modifiers. The proposed reg-

ularization technique can lead to stabilization and higher accuracy of estimates,

and interpretability of the fitted models is increased. When weights of penalty

terms are included and adaptively chosen, selection consistency is obtained, as

already shown by Zou (2006) for the Lasso. Also for finite sample sizes, the

adaptive version has the potential to outperform the non-adaptive version in

both estimation/prediction accuracy and model selection, as shown in simula-

tion studies.

The analysis of data sets showed that the proposed method can be success-

fully applied in practice. And, indeed, can be applied when there are multiple

(categorial) effect modifiers. As for all selection procedures, however, it is diffi-

cult to give unbiased measures of uncertainty. We suggest bootstrap confidence

intervals as gauges of variability in most situations.

When regression coefficients are allowed to vary with time, time-dependent

effects of covariates are commonly captured by fitting them by smooth functions.

In some cases, however, observation points are fixed, for example if a certain

quantity is measured every day at the same time. Then time can be seen as a

discrete and ordered effect modifier, and the proposed regularization technique

applies; the result is a set of piecewise constant estimates, each comparable to

a Fused Lasso (Tibshirani et al. (2005)) estimate. The attractive feature of

the method is that locations of relevant changes – or ‘jumps’ – in coefficients

are identified. So it might be said, for example, that a relevant change occurs

between the second and the third day. The difference here is the need to specify

a correlation structure for the errors, autocorrelation for instance.
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Appendix

Derivation of (1.1). We take covariates x1, . . . , xp and a nominally scaled (pos-

sibly) effect modifying factor u with levels 1, . . . , k. Then for each j = 1, . . . , p,

there are
(
k
s

)
possibilities in selecting s nonzero coefficients from {βj1, . . . , βjk},

with s = 0, . . . , k. Among the selected s coefficients there are C(s) possible par-

titions with constant coefficients within each cluster. If intercepts are never set

to zero, but can be fused one obtains the number of potential models as

M(p, k) = C(k)
(
1 +

k∑
s=1

(
k

s

)
C(s)

)p
,

where

C(s) =
s∑

v=1

S(s, v).

Here S(s, v) is the number of possible assignments of s objects to v clusters, given

by Jain and Dubes (1988),

S(s, v) =
1

v!

v∑
l=1

(−1)v−l

(
v

l

)
ls.

Proof of Proposition 1. If β̂ minimizes Qp(β) at (2.2), then it also minimizes

Qp(β)/n. The ordinary least squares estimator β̂(LS) minimizes Q(β) = (y −
Zβ)T (y − Zβ), resp. Q(β)/n. Since Qp(β̂)/n →p Q(β̂(LS))/n and Qp(β̂)/n →p

Q(β̂)/n, we have Q(β̂)/n→p Q(β̂(LS))/n. Since β̂(LS) is the unique minimizer of

Q(β)/n, and Q(β)/n is convex, we have β̂ →p β̂
(LS) and consistency follows from

consistency of the ordinary least squares estimator β̂(LS), ensured by nr/n→ cr,

with 0 < cr < 1 ∀r.

Proof of Proposition 2. We first show asymptotic normality, following Zou

(2006), Bondell and Reich (2009), and Gertheiss and Tutz (2010). At (2.2), let

β = β∗ + b/
√
n, where β∗ denotes the true coefficient vector. Then we have

β̂ = β∗ + b̂/
√
n, with b̂ = argminbΨn(b), where

Ψn(b) =

(
y − Z

(
β∗ +

b√
n

))T (
y − Z

(
β∗ +

b√
n

))
+
λn√
n
J(b)
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with

J(b) =

p∑
j=0

∑
r>s

√
n

ϕrs(j)(n)

|β̂(LS)jr − β̂
(LS)
js |

∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣
+

p∑
j=1

k∑
r=1

√
n
ϕr(j)(n)

|β̂(LS)jr |

∣∣∣∣β∗jr + bjr√
n

∣∣∣∣ .
Furthermore, since y − Zβ∗ = ϵ, we have Ψn(b)−Ψn(0) = Vn(b), where

Vn(b) = bT
(
1

n
ZTZ

)
b− 2

ϵTZ√
n
b+

λn√
n
J̃(b)

with

J̃(b) =

p∑
j=0

∑
r>s

√
n

ϕrs(j)(n)

|β̂(LS)jr − β̂
(LS)
js |

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣− |β∗jr − β∗js|
)

+

p∑
j=1

k∑
r=1

√
n
ϕr(j)(n)

|β̂(LS)jr |

(∣∣∣∣β∗jr + bjr√
n

∣∣∣∣− |β∗jr|
)
.

As in Zou (2006) we consider the limit behavior of (λn/
√
n)J̃(b). If β∗jr ̸= 0, then

|β̂(LS)jr | →p |β∗jr|, and
√
n
(∣∣∣β∗jr+ bjr√

n

∣∣∣−|β∗jr|
)
=bjr sgn(β

∗
jr) (if n large enough);

similarly, if β∗jr ̸= β∗js,

|β̂(LS)jr − β̂
(LS)
js | →p |β∗jr − β∗js|, and

√
n

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣− |β∗jr − β∗js|
)

= (bjr − bjs) sgn(β
∗
jr − β∗js).

Since by assumption ϕrs(j)(n) → qrs(j) and ϕr(j)(n) → qr(j) (0 < qrs(j), qr(j) <

∞), and λn/
√
n→ 0, we have (by Slutsky’s theorem)

λn√
n

ϕr(j)(n)

|β̂(LS)jr |

√
n

(∣∣∣∣β∗jr + bjr√
n

∣∣∣∣− |β∗jr|
)

→p 0 and

λn√
n

ϕrs(j)(n)

|β̂(LS)jr − β̂
(LS)
js |

√
n

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣− |β∗jr − β∗js|
)

→p 0.

If β∗jr = 0 or β∗jr = β∗js, however,

√
n

(∣∣∣∣β∗jr + bjr√
n

∣∣∣∣− |β∗jr|
)

= |bjr|, and



CATEGORIAL EFFECT MODIFIERS 979

√
n

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣− |β∗jr − β∗js|
)

= |bjr − bjs|.

Moreover, if β∗jr = 0 or β∗jr = β∗js, due to
√
n-consistency of the ordinary least

squares estimate,

lim
n→∞

P (
√
n|β̂(LS)jr | ≤ λ1/2n ) = 1, resp. lim

n→∞
P (

√
n|β̂(LS)jr − β̂

(LS)
js | ≤ λ1/2n ) = 1,

since λn → ∞ by assumption. Hence,

λn√
n

ϕr(j)(n)

|β̂(LS)jr |

√
n

(∣∣∣∣β∗jr + bjr√
n

∣∣∣∣− |β∗jr|
)

→p ∞, or

λn√
n

ϕrs(j)(n)

|β̂(LS)jr − β̂
(LS)
js |

√
n

(∣∣∣∣β∗jr − β∗js +
bjr − bjs√

n

∣∣∣∣− |β∗jr − β∗js|
)

→p ∞,

if bjr ̸= 0, resp. bjr ̸= bjs. That means, if for any r, s, j with β∗jr = β∗js (j ≥ 0) or

β∗jr = 0 (j > 0), bjr ̸= bjs or bjr ̸= 0, respectively, then (λn/
√
n)J̃(b) →p ∞. The

rest of the proof of (a) is similar to that of Bondell and Reich (2009). Let Z∗

denote the design matrix corresponding to the correct structure, i.e. columns of

variables with equal coefficients on different levels of u are added and collapsed,

and columns corresponding to zero coefficients are removed. Since ∀r nr/n→ cr
(0 < cr < 1), n−1Z∗TZ∗ → C > 0 and n−1/2ϵTZ∗ →d w, with w ∼ N(0, σ2C).

Let θCc denote the vector of θ-entries which are truly zero, and bCc be the subset of

entries of θCc which are part of b; analogously, bC denotes the subset of θC-entries

which are part of b. As in Zou (2006), by Slutsky’s theorem, Vn(b) →d V (b) for

every b, where

V (b) =

{
bTCCbC − 2bTCw if θCc = 0,

∞ otherwise.

Since Vn(b) is convex and the unique minimum of V (b) is (C−1w, 0)T (after

reordering of entries), we have (cf., Zou (2006); Bondell and Reich (2009)) b̂C →d

C−1w, b̂Cc →d 0, and b̂C →d N(0, σ2C−1). Writing β̃ = (β̃T0 , . . . , β̃
T
p )

T with

β̃j = (βjr − βj1, . . . , βjr, . . . , βjr − βjk)
T , asymptotic normality can be proven for

all entries of θ̂C .

To show consistency, we first note that limn→∞ P (I ∈ Cn) = 1, if I ∈ C,
follows from (a), where I denotes a triple of indices (j, r, s) or a pair (j, r). We

now show that if I /∈ C, limn→∞ P (I ∈ Cn) = 0. A similar idea is found in Bondell

and Reich (2009). Let Bn denote the (nonempty) set of indices I that are in Cn
but not in C. Without loss of generality we assume that the largest θ̂-entry

corresponding to indices from Bn is β̂lq > 0, l ≥ 1. If a certain difference β̂lr− β̂ls
is the largest θ̂-entry included in Bn, we reparameterize βl by β̃l as above, since
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all coefficients and differences thereof are penalized in the same way. If l = 0,
the reparametrization means choosing a reference category whose intercept is not
penalized. In this case the proof is analogous (with small modifications) to that
of Bondell and Reich (2009).

If we order categories so that β̂l1 ≤ . . . ≤ β̂lz ≤ 0 ≤ β̂l,z+1 ≤ . . . ≤ β̂lk,
estimate β̂ at (2.2) with penalty (3.1) is equivalent to

β̂ = argmin
B

{
(y − Zβ)T (y − Zβ) + λn

∑
j

Jj(β)
}
, with

B={β : β01, . . . , βl−1,k, βl1 ≤ . . . ≤ βlz ≤ 0 ≤ βl,z+1 ≤ · · · ≤ βlk, βl+1,1, . . . , βpk},

Jj(β) =
∑
r>s

ϕrs(j)(n)

|β̂(LS)jr − β̂
(LS)
js |

|βjr − βjs|+ I(j ̸= 0)
k∑

r=1

ϕr(j)(n)

|β̂(LS)jr |
|βjr|, j ̸= l, and

Jl(β) =
∑
r>s

ϕrs(l)(n)
βlr − βls

|β̂(LS)lr − β̂
(LS)
ls |

+
∑

r≥z+1

ϕr(l)(n)
βlr

|β̂(LS)lr |
−

∑
r≤z

ϕr(l)(n)
βlr

|β̂(LS)lr |
.

Since β̂lq ̸= 0 is assumed, at the solution β̂ this optimization criterion is differen-
tiable with respect to βlq. We consider this derivative in a neighborhood of the
solution where coefficients that are set to zero/ equal remain zero/equal, so terms
corresponding to pairs/triples of indices that are not in Cn can be omitted, since
they vanish in J(β̂) =

∑
j Jj(β̂). If z(l)q denotes the column of design matrix Z

corresponding to βlq, due to differentiability, β̂ must satisfy

Q′
q(β̂)√
n

=
2zT(l)q(y − Zβ̂)

√
n

= An +Dn,

with

An =
λn√
n

 ∑
s<q;(l,q,s)∈C

ϕqs(l)(n)

|β̂(LS)lq − β̂
(LS)
ls |

−
∑

r>q;(l,r,q)∈C

ϕrq(l)(n)

|β̂(LS)lr − β̂
(LS)
lq |

 ,

Dn =
λn√
n

∑
s<q;(l,q,s)∈Bn

ϕqs(l)(n)

|β̂(LS)lq − β̂
(LS)
ls |

+
ϕq(l)(n)

|β̂(LS)lq |
.

If β∗ denotes the true coefficient vector, Q′
q(β̂)/

√
n can be written as

Q′
q(β̂)√
n

=
2zT(l)q(y − Zβ̂)

√
n

=
2zT(l)qZ

√
n(β∗ − β̂)

n
+

2zT(l)qϵ√
n

.

From (a) and applying Slutsky’s theorem, 2zT(l)qZ
√
n(β − β̂)/n is asymptoti-

cally normal with mean zero; 2zT(l)qϵ/
√
n is as well (by assumption, and apply-

ing the Central Limit Theorem), cf., Zou (2006). Hence for any ε > 0, we
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have limn→∞ P (Q′
q(β̂)/

√
n ≤ λ

1/4
n − ε) = 1. Since λn/

√
n → 0, we also know

∃ ε > 0 such that limn→∞ P (|An| < ε) = 1. By assumption λn → ∞; due to
√
n-consistency of the ordinary least squares estimate, limn→∞ P (

√
n|β̂(LS)lq | ≤

λ
1/2
n ) = 1, if (l, q) ∈ Bn. Hence limn→∞ P (Dn > λ

1/4
n ) = 1. As a consequence

limn→∞ P (Q′
q(β̂)/

√
n = An +Dn) = 0, so if I /∈ C, limn→∞ P (I ∈ Cn) = 0.
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