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Abstract: Principal component analysis (PCA) is widely used as a means of di-

mension reduction for high-dimensional data analysis. A main disadvantage of the

standard PCA is that the principal components are typically linear combinations

of all variables, which makes the results difficult to interpret. Applying the stan-

dard PCA also fails to yield consistent estimators of the loading vectors in very

high-dimensional settings where the dimension of the data is comparable to, or

even larger than, the sample size. In this paper we propose a modification of the

standard PCA that works for such high-dimensional data when the loadings of prin-

cipal components are sparse. Our method starts with an initial subset selection,

and then performs a penalized PCA based on the selected subset. We show that

our procedure identifies correctly the sparsity of the loading vectors and enjoys the

oracle property, meaning that the resulting estimators of the loading vectors have

the same first-order asymptotic properties as the oracle estimators that use knowl-

edge of the indices of the nonzero loadings. Our theory covers a variety of penalty

schemes. We also provide some numerical evidence of the proposed method, and

illustrate it through gene expression data.

Key words and phrases: Adaptive lasso, eigenvalues, eigenvectors, high-dimensional

data, MC penalization, penalized principal component analysis, SCAD, sparsity.

1. Introduction

Let X1, . . . ,Xn be n observations on a d-dimensional random vector X =

(X1, . . . , Xd)
⊤. In this paper, we are interested in estimating the principal compo-

nents ofX based on the observationsXi. Principal components are β⊤
j X for those

orthonormal loading vectors βj that give the largest variances. The orthonor-

mal loading vectors are the eigenvectors of the covariance matrix Σ ≡ var(X)

that correspond to the largest eigenvalues. Principal component analysis (PCA)

has wide applications ranging from biology to finance and offers a way to com-

press the data with minimal information loss by capturing directions of maximal

variance in the data. A particular disadvantage of PCA is that the principal

components are typically linear combinations of all variables Xj , which makes

the results difficult to interpret, especially when d is very large. Recent years

have seen several proposals that give ‘sparse’ solutions, that is, solutions that
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involve only a few nonzero loadings; see Jolliffe, Trendafilov, and Uddin (2003),

Zou, Hastie, and Tibshirani (2006), d’Aspremont et al. (2007), d’Aspremont,

Bach, and Ghaoui (2008), Shen and Huang (2008), Leng and Wang (2009), and

Witten, Tibshirani, and Hastie (2009).

We are concerned with the case where d, the dimension of X, is comparable

to, or even larger than, the sample size n. The standard PCA is known to

yield inconsistent results in such a high-dimensional case, see Johnstone and Lu

(2009). We propose a method that gives consistent estimators of the principal

component loading vectors. The underlying assumption for our work is that

the principal loading vectors βj are sparse, which means that βjℓ = 0 for all

but a finite number of 1 ≤ ℓ ≤ d. The resulting estimators correctly identify

the nonzero loadings, and have the same first-order asymptotic properties as the

oracle estimators which use knowledge of the nonzero loadings.

Our method consists of two steps: initial dimension reduction; performing a

penalized PCA. In the first step, the method tries to choose the variables Xℓ such

that βjℓ ̸= 0 for some j. In the second, it solves a penalized PCA optimization

problem, using the observations on those variables chosen in the first step, to

extract a given number of leading eigenvectors βj . The theory for the method

is developed for a general penalty scheme, and covers various choices of penalty

such as the adaptive lasso of Zou (2006), the smoothly clipped absolute deviation

(SCAD) of Fan and Li (2001), and the minimax concave (MC) penalty of Zhang

(2010). A numerical algorithm for the second step is also provided.

The idea of initial dimension reduction is inspired by the work of Johnstone

and Lu (2009) that showed that the standard PCA gives consistent estimators

of the loading vectors if and only if d/n → 0. It also asserts that with an initial

dimension reduction the standard PCA gives consistent solutions under a single

component model that corresponds to the special case M = 1 of our model

(2.1). The main difference between our model and theirs is in the ‘sparsity’

assumption. In Johnstone and Lu (2009), both X and β1 are represented in a

fixed orthonormal basis, and the coefficients of the basis expansion for β1 decay

rapidly, a ‘sparsity’ that differs from ours.

Performing a penalized PCA without dimension reduction does not guaran-

tee a consistent result: this involves searching among many different vector com-

ponents for those that give a significant ‘spike’ on the covariance of X, allowing

stochastic fluctuations to be mistaken for information when many variables are

assessed. For example, the adaptive lasso of Zou (2006) needs initial consistent

estimators of βj to determine proper penalty weights, but this is possible only

when d/n → 0 as Johnstone and Lu (2009) and Paul (2007) demonstrate with

the standard PCA. There are some penalized versions of PCA that give sparse

solutions in our sense, but they do not appear to produce consistent results when
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d/n → ∞, since they put some type of penalization onto the standard PCA

without dimension reduction. An interesting result on the standard PCA was

obtained by Jung and Marron (2009) under the setting of fixed n and diverging

d.

Sparsity of the loading vectors is closely related to sparsity of the covariance

matrix Σ. To estimate a high-dimensional sparse covariance matrix, Bickel and

Levina (2008a,b) considered regularizing the sample covariance matrix by hard

thresholding, banding, or tapering. Other related works include Johnstone (2001)

and Paul (2007), in which the eigenstructure of the sample covariance matrix was

studied. In regression settings, a number of efforts have been made to deal with

the case where the number of predictors diverges. Some important developments

include Fan and Peng (2004), Bair, Hastie, and Tibshirani (2006), Paul et al.

(2008), Meinshausen and Yu (2009), Xie and Hunag (2009), and Zou and Zhang

(2009).

The rest of this paper is organized as follows. In the next section, we de-

scribe the underlying sparse model, introduce the penalized PCA method with

initial subset selection, and provide a numerical algorithm to calculate the sparse

loading vectors. In Section 3, we show the consistency and the oracle property

of the proposed method for a general penalty scheme. We report the results of

a simulation study, and illustrate the proposed method through gene expression

data. All the technical details are given in the Appendix.

2. Methodology

2.1. Underlying sparse models

Without loss of generality, assume E(X) = 0. We consider the M -factor

model

Xi =
M∑
j=1

λ
1/2
j Zi

j βj + σεi, (2.1)

where Zi
j are i.i.d. with mean 0 and variance 1, εi are i.i.d. having mean vector

0 and variance Id, independent of Z
i
j , and

λ1 > · · · > λM > 0.

Here and below, Id represents the identity matrix of dimension d. The vectors

βj are orthonormal, β⊤
j βj = 1 and β⊤

j βk = 0 for j ̸= k. Thus, the strength of

the signal is governed by the size of λj . From (2.1), the spectral decomposition

of var(X) is

var(X) =

M∑
j=1

λj βjβ
⊤
j + σ2Id.
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Our theory is based on this spectral decomposition, rather than on (2.1).

In our treatment, the dimension d tends to infinity as n goes to infinity.

Specifically, we assume d = O(nc) for some c > 0. In (2.1), we also allow M

to grow to infinity as n → ∞, and σ2 may vary with n. One should note that

λj and βj depend on d, and thus on the sample size n. Under this model, the

eigenvalues are λ0
j = λj +σ2 for 1 ≤ j ≤ M and λ0

j = σ2 for M +1 ≤ j ≤ d. The

corresponding eigenvectors are βj . Note that separation of the eigenvalues λ0
j for

1 ≤ j ≤ M makes the corresponding eigenvectors βj , 1 ≤ j ≤ M , identifiable.

We also assume that the M loading vectors βj in (2.1) are ‘sparse’ in the sense

that

βjℓ = 0 for all ℓ /∈ J (j), (2.2)

where card[J (j)] ≤ q and q is bounded. Let I =
∪M

j=1 J (j), d0 = card(I). Our

treatment includes the case where d0 → ∞ as n → ∞.

Suppose we are interested in estimating the loading vectors β1, . . . ,βK corre-

sponding to the first K(≤ M) principal components, K fixed. Note that if ℓ /∈ I,
then βjℓ = 0 for all 1 ≤ j ≤ M . If we delete the variables that correspond to

ℓ /∈ I and perform the principal component analysis with the remaining variables,

then we get estimators of βjℓ for 1 ≤ j ≤ K and ℓ ∈ I. Thus, in the model (2.1)

with (2.2), if we were to know I, deleting Xi
ℓ for ℓ /∈ I is no harm for estimating

βj , 1 ≤ j ≤ K, since performing principal component analysis with the remain-

ing Xi
ℓ with ℓ ∈ I and setting those loading coefficients βjℓ, 1 ≤ j ≤ K, ℓ /∈ I to

be zero would give better estimators of βjℓ than performing principal component

analysis with the full data set.

Under (2.1),

σ2
ℓ ≡ var(Xℓ) =

M∑
j=1

λjβ
2
jℓ + σ2,

and under (2.2), for all ℓ /∈ I,

σ2
ℓ = σ2 < min

{
σ2
k : k ∈ I

}
.

Thus, if we select d0 indices according to the magnitudes of σ2
ℓ , then the set of

the selected indices is I. Since the sample variances σ̂2
ℓ are good estimators of

σ2
ℓ , we expect the subset selection rule based on ranking of the sample variances

to work well.

2.2. Penalized PCA

Here we describe our methods of estimating the sparse loading vectors of

the first K principal components. To identify the sparsity, we adopt the idea of
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variable selection in the linear regression setting where one adds a weighted L1-

penalty to the traditional least squares criterion. The latter works when d, the

dimension of X, is of moderate size. To handle the case where d is much larger

than the sample size n, we first perform an initial dimension reduction. The

subset of {Xℓ : 1 ≤ ℓ ≤ d} selected in this stage aims at {Xℓ : ℓ ∈ I}. Then, we

do a penalized version of PCA based on the observations on the selected variables

Xℓ. This stage identifies and estimates the nonzero βjℓ for each 1 ≤ j ≤ K.

Initial Dimension Reduction. Compute the sample variances σ̂2
j ≡ n−1

∑n
i=1X

i2
j

for 1 ≤ j ≤ d, and find

Î ≡
{
ℓ : σ̂2

ℓ ≥
[
1 + n−1/2(log n)C

]
σ̂2
}
,

where C is any constant such that C > 1/2 and σ̂2 is a consistent estimate of σ2.

Penalization. Let µjℓ for 1 ≤ j ≤ K and ℓ ∈ Î be the penalty weights, allowed to

be random or deterministic, given priori or chosen in some way. Let X̃i = (Xi
j :

j ∈ Î)⊤. Maximize, successively for j = 1, . . . ,K,

β⊤
j

(
n−1

n∑
i=1

X̃iX̃i⊤

)
βj −

∑
ℓ∈Î

µjℓ · |βjℓ| (2.3)

subject to β⊤
j βj = 1 and β⊤

j βk = 0 for 1 ≤ k < j, to obtain β̂jℓ, ℓ ∈ Î.

Filling Up Loading Vectors. Set β̂jℓ = 0 for 1 ≤ j ≤ K and ℓ /∈ Î.

In the initial dimension reduction step, one may use σ̂2 = median(σ̂2
ℓ ). This

is a consistent estimator of σ2 if d0/d → 0, see the discussion after Theorem 1 in

the next section. The proposed procedure does not depend on the knowledge of

M , q, or d0. The successive maximization of (2.3) for 1 ≤ j ≤ K is equivalent to

maximizing

K∑
j=1

β⊤
j

(
n−1

n∑
i=1

X̃iX̃i⊤

)
βj −

K∑
j=1

∑
ℓ∈Î

µjℓ · |βjℓ| (2.4)

subject to β⊤
j βj = 1 for 1 ≤ j ≤ K and β⊤

j βk = 0 for 1 ≤ j ̸= k ≤ K. Also, it

can be shown that

n−1
K∑
j=1

β⊤
j

(
n∑

i=1

X̃iX̃i⊤

)
βj = n−1

n∑
i=1

X̃i⊤X̃i − n−1
n∑

i=1

∥X̃i −BB⊤X̃i∥2,

(2.5)

where B = (β1, . . . ,βK) is a d̂0×K matrix. Here and below, d̂0 = card(Î). Note

that maximization of (2.5) is the usual eigen-analysis problem.
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The theory we develop covers various choices of the penalty scheme µjℓ. For

example, it includes the adaptive lasso (Zou (2006)) where µjℓ = τj |β̃jℓ|−γ for

some γ > 0 and a regularization parameters τj > 0. Here, β̃jℓ are some ini-

tial estimators of βjℓ. Furthermore, it includes treatment of a general penalty

function in which
∑

ℓ∈Î µjℓ · |βjℓ| is replaced by
∑

ℓ∈Î pτj (|βjℓ|) for some nonneg-

ative, monotone increasing and differentiable functions pτj with a regularization

parameter τj . By linear approximation

pτj (|βjℓ|) ≃ pτj (|β̃jℓ|) +
[
∂

∂β
pτj (β)

]
β=|β̃jℓ|

(|βjℓ| − |β̃jℓ|),

and taking µjℓ = [∂pτj (β)/∂β]β=|β̃jℓ|, reduces the general penalty scheme to (2.3).

The general penalty scheme pτj includes various penalization methods as special

cases. For example, pτj (x) = τj x corresponds to the lasso, pτj (x) = τ2j p(x/τj)

with p′(x) = I(x ≤ 1)+ (γ−x)+
γ−1 I(x > 1) for some γ > 2 to the SCAD penalty (Fan

and Li (2001)), and pτj (x) = τ2j
∫ x/τj
0 (1 − u/γ)+ du for some γ > 0 to the MC

penalty (Zhang (2010)). The one-step approximation of a non-convex penalty

function pτj is known to have various theoretical and computational advantages,

see Zou and Li (2008) and Noh and Park (2010) for more details.

2.3. Numerical algorithm

Due to (2.5), maximization of (2.3) is equivalent to minimization of

n−1
n∑

i=1

∥X̃i −BB⊤X̃i∥2 +
K∑
j=1

∑
ℓ∈Î

µjℓ · |βjℓ|.

A difficulty is that the optimization problem has the constraint B⊤B = IK . We

suggest using an iterative algorithm that is a slight modification of the general

SPCA algorithm proposed by Zou, Hastie, and Tibshirani (2006).

An iterative algorithm.

[S1] Take the d̂0×K matrix A whose jth column vector is the normalized eigen-

vector corresponding to the jth largest eigenvalue of n−1
∑n

i=1 X̃
iX̃i⊤.

[S2] Minimize

n−1
n∑

i=1

∥X̃i −AB⊤X̃i∥2 +
K∑
j=1

∑
ℓ∈Î

µjℓ · |βjℓ|

with respect to B.
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[S3] Maximize

tr[A⊤(X̃⊤X̃)B] =

K∑
j=1

α⊤
j

(
n∑

i=1

X̃iX̃i⊤

)
βj

with respect to A subject to A⊤A = IK .

[S4] Repeat [S2] and [S3] until B converges, and normalize B by β̂j = βj/∥βj∥.

3. Theoretical Properties

3.1. Oracle properties

In this section we give some theoretical properties of our sparse PCA method.

Without loss of generality, assume I = {1, . . . , d0}. The first theorem demon-

strates that, with probability tending to one, the initial dimension reduction

correctly identifies the index set I of the variables Xℓ that make nonzero contri-

bution to some of the first M principal components.

Theorem 1. Under (2.1) and (2.2), suppose d = O(nc) for some c > 0, σ2
ℓ ≥

(1 + αn)σ
2 for all ℓ ∈ I, where αn = n−1/2(log n)κ for some κ > C and C is the

constant in the definition of Î. Assume that the Xi
ℓ have m moments for some

m > 4(c + 1), and that P
[
|σ̂2 − σ2| > n−1/2(log n)C1σ2

]
→ 0 for some C1 with

1/2 < C1 < C. Then, P (Î = I) → 1.

A proof of the theorem is given in the Appendix. There we prove

d∑
ℓ=d0+1

P
(
σ̂2
ℓ ≥

[
1 + c1n

−1/2(log n)C
]
σ2
)
→ 0, (3.1)

d0∑
ℓ=1

P
(
σ̂2
ℓ <

[
1 + c2n

−1/2(log n)C
]
σ2
)
→ 0 (3.2)

for all c1, c2 > 0. These two properties imply

P

(
sup

d0+1≤ℓ≤d
σ̂2
ℓ < inf

1≤ℓ≤d0
σ̂2
ℓ

)
→ 1. (3.3)

Also, one can prove similarly as in the proofs of (3.1) and (3.2) that

d∑
ℓ=d0+1

P
(
|σ̂2

ℓ − σ2| ≥ n−1/2(log n)C1σ2
)

→ 0, (3.4)

Let σ̂2 = median
(
σ̂2
ℓ

)
. Then, from (3.3) and (3.4) the estimator σ̂2 satisfies

the condition of Theorem 1: P
[
|σ̂2 − σ2| > n−1/2(log n)C1σ2

]
→ 0, provided

d0/d → 0.
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We note that the standard PCA fails under the condition of Theorem 1.

To see this, let σ2 = 1 and βj = (0, . . . , 0, 1, 0, . . . , 0)⊤ for 1 ≤ j ≤ M , with 1

appearing at the jth position for simplicity. Then, the covariance structure of Xi

in our model exactly matches the one considered in Paul (2007), and σ2
j = λj+1.

In this case I = {1, . . . ,M}. In Paul (2007), the case where σ2
j ≤ 1 +

√
γ with

γ > 0 being the limit of d/n corresponds to the “more difficult phase” where the

standard PCA fails. In our theorems we allow the case σ2
j = 1+n−1/2(log n)κ for

j ∈ I. Thus, all βj for 1 ≤ j ≤ M belong to this more difficult phase. Johnstone

and Lu (2009) also showed that the standard PCA fails when d/n → γ > 0.

Next, we present the oracle properties of the penalization method. These

properties are that, for each 1 ≤ j ≤ K and with probability tending to one,

our method selects the nonzero βjℓ correctly, and that our estimators β̂j have

the same first-order properties as those obtained from an oracle PCA that uses

knowledge of the true index sets J (j) for 1 ≤ j ≤ K.

Note that d0 ≤ Mq under (2.2). Let Ĵ (j) = {ℓ ∈ Î : β̂jℓ ̸= 0} and Σ̃ =

n−1
∑n

i=1X
iXi⊤. We assume

d0 ∼ nC′
(3.5)

for some 0 ≤ C ′ < 1/4. We let C ′ = 0 when d0 is a bounded number. For the

penalty constants we focus on the case where they are random, and assume that

for each 1 ≤ j ≤ K,

n1/2 max
ℓ∈J (j)

µjℓ → 0, n1/2−2C′
inf

ℓ/∈J (j)
µjℓ → ∞ (3.6)

in probability for any 0 < c < ∞. The theory we present is also valid for the

deterministic µjℓ if we assume (3.6).

Theorem 2. Under the conditions in Theorem 1, (3.5), and (3.6), suppose that

the Xi
ℓ have m moments for some m > 4(2C ′+1), that K is fixed and card(J (j))

for 1 ≤ j ≤ K are bounded numbers, that there exists a constant δ > 0 such that

infℓ∈J (j) |βjℓ| ≥ δ for all 1 ≤ j ≤ K, and that lim supn→∞ sup1≤ℓ≤d0 σ
2
ℓ < ∞.

Then, (i) with probability tending to one as n → ∞, the method correctly selects

those components βjℓ ̸= 0 in the sense that P [Ĵ (j) = J (j)] → 1 for all 1 ≤ j ≤
K, and (ii) the estimator

(
β̂jℓ : ℓ ∈ J (j), 1 ≤ j ≤ K

)⊤
has the same first-order

asymptotic properties that the PCA with the constraints βjℓ = 0 for ℓ /∈ J (j),

1 ≤ j ≤ K, would enjoy.

One may extend the results of the above theorem to the case where K is

not fixed but tends to infinity as the sample size n grows. This requires stronger

conditions on the penalty weights µjℓ than those given at (3.6) and conditions

on K.
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The constrained PCA in the above theorem is an oracle procedure that is

based on the knowledge of βjℓ = 0 for ℓ /∈ J (j), 1 ≤ j ≤ K. Let β̂
ora

j denote the

resulting oracle estimators of βj . The constrained PCA is performed as follows.

First, set β̂ora
1ℓ = 0 for ℓ /∈ J (1), and maximize

∑
ℓ∈J (1)

∑
ℓ′∈J (1) Σ̃ℓℓ′β1ℓβ1ℓ′

subject to
∑

ℓ∈J (1) β
2
1ℓ = 1 to get β̂ora

1ℓ for ℓ ∈ J (1), where Σ̃ℓℓ′ is the (ℓ, ℓ
′)th entry

of Σ̃. Next, set β̂ora
2ℓ = 0 for ℓ /∈ J (2), and maximize

∑
ℓ∈J (2)

∑
ℓ′∈J (2) Σ̃ℓℓ′β2ℓβ2ℓ′

subject to
∑

ℓ∈J (2) β
2
2ℓ = 1 and

∑
ℓ∈J (1)∩J (2) β̂

ora
1ℓ β2ℓ = 0 to get β̂ora

2ℓ for ℓ ∈ J (2).

Continue the procedure to obtain β̂ora
j for j = 3, and so on until j = K.

The success of the procedure hinges on the success of the initial dimension

reduction. In fact, what we need asymptotically in the dimension reduction is

P
( K∪

j=1

J (j) ⊂ Î
)

→ 1. (3.7)

This means that we do not need to recover the set I =
∪M

j=1 J (j) but only

J (j) for j ≤ K, where K is the number of loading vectors that we want to

estimate. Note that the conclusion of Theorem 1 implies (3.7). If Î misses some

indices in
∪K

j=1 J (j), the estimators β̂j (1 ≤ j ≤ K) target vectors different from

the true βj . For example, suppose that M = K = 2, λ1 = 3, λ2 = 2, σ2 =

1, β1 = (1/
√
3, 1/

√
3, 1/

√
3, 0, . . . , 0), and β2 = (1/

√
2,−1/

√
2, 0, . . . , 0), and

that one chooses Î = {2, 3} missing X1. The resulting estimates β̂1 and β̂2 aim

at β∗
1 = (0, v12, v13, 0, . . . , 0) and β∗

2 = (0, v22, v23, 0, . . . , 0), where (v12, v13) and

(v22, v23) are the normalized eigenvectors of the covariance matrix of (X2, X3).

3.2. Penalty weights

In this section we consider the one-step approximation of the general penalty

function pτj discussed in Section 2.2. We discuss how the conditions on the

penalty weights µjℓ at (3.6) are satisfied for µjℓ = [∂pτj (β)/∂β]β=|β̃jℓ|, where β̃jℓ
are some initial estimators of βjℓ. We consider two forms of penalty function

pτj : pτj = τ2j p(·/τj) and pτj = τjp, for a nonnegative, monotone increasing and

differentiable function p. The former was studied by Noh (2009) and Zhang

(2010), and the latter by Lv and Fan (2009) in the linear regression problem.

The SCAD and MC penalization methods take the first form, with p′(x) = I(x ≤
1)+ (γ−x)+

γ−1 I(x > 1) for the SCAD and p(x) =
∫ x
0 (1− u/γ)+ du for the MC. The

adaptive lasso corresponds to the second form with p′(u) = u−γ for some γ > 0.

We derive a set of sufficient conditions on the function p and the regularization

parameters τj , in each form of pτj , for the the penalty weights µjℓ to satisfy (3.6).

The initial estimators β̃j , 1 ≤ j ≤ K, we take are those d̂0-dimensional

orthonormal eigenvectors obtained from performing PCA on X̃i = (Xi
j : j ∈ Î)⊤.
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The initial estimators need to have a certain rate of convergence. For this we

assume

λj − λj+1 ≥ (log n)−C′′
, 1 ≤ j ≤ K (3.8)

for some C ′′ > 0. This condition requires that the spacings between the leading

eigenvalues are not too small. This is automatically satisfied when the λj are

fixed and do not depend on n.

Theorem 3. Under (2.1), (2.2), (3.5), and (3.8), suppose that the Xi
ℓ have m

moments for some m > 4(2C ′ + 1), and that lim supn→∞ sup1≤ℓ≤d0 σ
2
ℓ < ∞,

where C ′ is the constant at (3.5). Let β̄j , 1 ≤ j ≤ K be the loading vectors for

the first K principal component of Σ̃0, the d0 × d0 top-left block of Σ̃. Then it

follows that

sup
1≤ℓ≤d0

|β̄jℓ − βjℓ| = Op

(
n−1/2+C′

(log n)1/2+C′′
)
, 1 ≤ j ≤ K,

where C ′′ is the constant at (3.8).

3.2.1. The case pτ = τ2p(·/τ).

In this case, µjℓ = τjp
′(|β̃jℓ|/τj). Suppose that p has a nonnegative and

nonincreasing derivative p′ on (0,∞), and that

lim
u→0+

p′(u) > 0, p′(u) = O(u−a) as u → ∞ for some a > 0. (3.9)

We verify that the conditions at (3.6) are satisfied if, for each 1 ≤ j ≤ K,

n1/2τ1+a
j → 0, n1/2−2C′

τj → ∞, (3.10)

where C ′ is the constant at (3.5). The first part of (3.6) follows easily from the

second condition of (3.9) and the first condition of (3.10). To see that the second

part of (3.6) holds, we note that from the monotonicity of p′,

inf
ℓ/∈J (j)

p′(|β̃jℓ|/τj) ≥ p′

(
n1/2−C′

(log n)−(1/2+C′′) sup1≤ℓ≤d0 |β̃jℓ − βjℓ|
τj n1/2−C′(log n)−(1/2+C′′)

)
. (3.11)

By Theorem 3, the first condition of (3.9), and the second condition of (3.10), the

right hand side of (3.11) converges in probability to a strictly positive constant.

This implies that

n1/2−2C′
inf

ℓ/∈J (j)
µjℓ = n1/2−2C′

τj inf
ℓ/∈J (j)

p′(|β̃jℓ|/τj)
p→ ∞.

Both the one-step SCAD and MC penalty functions satisfy (3.9) for all con-

stants a > 0 since p′(u) in those cases vanishes for all u greater than a fixed



HIGH-DIMENSIONAL PCA 943

positive constant. Thus, for these methods, the first condition of (3.10) only

needs to hold for an arbitrarily large constant a > 0. If τj = O(n−b) for some

b > 0, then the first condition of (3.10) always hold by taking a > 0 sufficiently

large. Thus, for the one-step SCAD and MC penalty functions, one only needs

the second condition of (3.10).

3.2.2. The case pτ = τp.

Here, µjℓ = τjp
′(|β̃jℓ|). Suppose that p has a nonnegative and nonincreasing

derivative p′ on (0,∞), and that

p′(u)−1 = O(uγ) as u → 0 for some γ > 0. (3.12)

The condition (3.12) implies that p′(u) tends to infinity as u decreases to zero,

and this makes sense with the weight scheme µjℓ = τjp
′(|β̃jℓ|) since one needs to

put a large penalty for βj close to zero. The conditions at (3.6) are satisfied if

n1/2τj → 0, nγ(1/2−C′)+(1/2−2C′)τj (log n)
−γ(1/2+C′′) p→ ∞, (3.13)

where C ′ and C ′′ are the constants at (3.5) and (3.8), respectively. The first

condition of (3.6) is immediate from the first condition of (3.13). To check the

second condition of (3.6), note that

inf
ℓ/∈J (j)

p′(|β̃jℓ|) ≥ p′

(
n1/2−C′

(log n)−(1/2+C′′) sup1≤ℓ≤d0 |β̃jℓ − βjℓ|
n1/2−C′(log n)−(1/2+C′′)

)
.

By Theorem 3 and (3.12), the inverse of the right hand side of this inequality

is bounded, in probability, by n−γ(1/2−C′)(log n)γ(1/2+C′′) multiplied by some

strictly positive constant. The second condition of (3.6) now follows from the

second condition of (3.13).

Recall that the adaptive lasso corresponds to the one-step penalized method

with pτ = τp and p′(u) = u−γ for some γ > 0. This means that the penalty

weights µjℓ = τj |β̃jℓ|−γ of the adaptive lasso satisfy (3.6) if (3.13) holds.

4. Numerical Properties

We investigated the finite sample performance of the proposed methods.

The penalization methods we took were the adaptive lasso method, SCAD, and

MC. Our aims were to see how effectively the proposed methods identify the

sparse loadings, and to compare the mean squared errors of β̂j for the three

penalization methods. For the constant γ of the three penalization methods, we

chose γ = 3.7 for the SCAD penalty, as suggested by Fan and Li (2001), and

for the MC penalty we used γ = 2/(1−maxj ̸=k |x⊤
j xk|/n), where xj denotes the
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jth column of the design matrix with x⊤
j xj = n, which is the minimal value that

affords the theoretical results in Zhang (2010). For the adaptive lasso penalty

we took γ = 0.5, 1, 2.

In the comparison we also considered the SPCA algorithm of Zou, Hastie,

and Tibshirani (2006). The latter does not have an initial dimension reduction

stage, and in the case where d ≫ n, its algorithm runs as does ours but with X̃i

and d̂0 replaced by Xi and d, respectively, and in [S2] it minimizes

K∑
j=1

[
−2β⊤

j

(
n−1

n∑
i=1

XiXi⊤

)
αj + β⊤

j βj + τj

d∑
ℓ=1

|βjℓ|

]
. (4.1)

The minimization problem has the explicit solution

β̂j =

(∣∣∣n−1
n∑

i=1

XiXi⊤αj

∣∣∣− τj
2

)
+

sign

(
n∑

i=1

XiXi⊤αj

)
.

We also added a hard-thresholding rule to the comparison. The method performs

the same initial dimension reduction step as the proposed methods. After the

initial dimension reduction, it carries out PCA on X̃i to get β̃j , and then takes

β̂jℓ = β̃jℓI(|β̃jℓ| > Mjn
−2/5) for 1 ≤ j ≤ K and ℓ ∈ Î, where Mj > 0 is a

tuning parameter to be chosen. A similar idea was proposed by Johnstone and

Lu (2009) in the case of the single factor model with M = 1.

The regularization parameters τj for our methods were selected by a BIC-

type criterion. The constant C in the initial dimension reduction stage was

selected by the same criterion. For a given τj and a cut-off constant C, let

α̂j,C,τj and β̂j,C,τj be the limit of the iterative algorithm described in Section 2.3.

We minimized

BIC(C; τ1, . . . , τK) =

K∑
j=1

(β̂j,C,τj − α̂j,C,τj )
⊤

(
n−1

n∑
i=1

X̃iX̃i⊤

)
(β̂j,C,τj − α̂j,C,τj )

+
K∑
j=1

dfC,τj

log n

n

to select C and τj , where dfC,τj is the number of nonzero loading coefficients

identified in β̂j,C,τj . The BIC-type criterion was also used in Leng and Wang

(2009). In the case of the Zou et al.’s SPCA, we used a different BIC-type

criterion to select τj . Observing that the objective function at (4.1) is equivalent

to
∑K

j=1 ∥βj − Σ̃αj∥2 + τj
∑d

ℓ=1 |βjℓ|, we minimized

BIC(τj) =
∥∥∥β̂j,τj − n−1

n∑
i=1

XiXi⊤α̂j,τj

∥∥∥2 + dfτj
log n

n
.
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As for the hard-thresholding method, we minimized a BIC-type criterion to select

the tuning parameters Mj and the constant C in the initial dimension reduction:

BIC(C;M1, . . . ,MK) =

K∑
j=1

∥∥β̂j,C,Mj
− β̃j,C

∥∥2 + K∑
j=1

dfC,Mj

log n

n
,

where the definitions of β̂j,C,Mj
, β̃j,C and dfC,Mj are obvious.

We took d = 1, 000 for the dimension of the variables Xi, and n = 100, 400

for the sample size. We generated Xi according to (2.1). We chose M = 2,

λ1 = 2, λ2 = 1, and

(1) β1 =
1√
5
(15, 0995)

⊤, β2 =
1√
5
(05, 15, 0990)

⊤,

(2) β1 =
1√
5
(15, 0995)

⊤, β2 =
1
2(1,−1, 1,−1, 0996)

⊤,

where ak denotes k-dimensional row vector with all elements being a. For each

model, we considered the noise levels σ = 0.5 and σ = 1. We generated εi from

the d-dimensional standard normal distribution N(0, Id).

The results, based on 100 Monte Carlo samples, are reported in Tables 1–4

as the average numbers of correctly and incorrectly identified zero loadings. The

correct zeros are when β̂jℓ = 0 = βjℓ, and the incorrect zeros are those with

β̂jℓ = 0 but βjℓ ̸= 0. Thus, for model (1) it is better to have the number of

correct zeros closer to 995 for both β̂1 and β̂2, and for model (2) to 995 for β̂1

and to 996 for β̂2. The tables also report the Monte Carlo mean of the squared

errors
∑d

ℓ=1(β̂jℓ − βjℓ)
2.

Compared with the Zou et al.’s SPCA (SPCA-ZHT), the tables suggest that

our methods with the adaptive lasso, the SCAD, and the MC penalty schemes

have better performance in general. In terms of identifying zero loadings, the

SPCA-ZHT largely fails except in the case where n = 400 and σ = 0.5. In

particular, the method identifies only 6% of the true zero loadings in the case of

smaller n and larger σ. Our methods performed well in all cases. Our methods

also defeated the SPCA-ZHT in terms of the squared error performance. The

superiority of the proposed methods are evident in the case of the smaller sample

size. When n is large, our methods were far better than the SPCA-ZHT for the

higher noise level, and were comparable to the latter for the lower noise. In terms

of incorrect zero performance, the SPCA-ZHT was better than our method in

the case of smaller n and larger σ. This is mainly due to the fact that the

SPCA-ZHT produces non-sparse solutions in general, and especially in the case

of smaller n and larger σ. In comparison of the three penalization methods with

the hard-thresholding rule (HARD-THRES), we found that the HARD-THRES

was slightly better for the lower noise level, but worse for the higher noise level.
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Table 1. Performance of the Methods for Model 1 (n = 100).

Avg. # Zero Loadings
Method Squared Error Correct Incorrect

σ = 0.5 β1 SPCA-ZHT 0.2518 690.76 0.00
HARD-THRES 0.0138 994.88 0.00
A.LASSO (γ = 0.5) 0.0249 995.00 0.02
A.LASSO (γ = 1) 0.0251 995.00 0.04
A.LASSO (γ = 2) 0.0306 995.00 0.07
SCAD 0.0248 995.00 0.04
MC 0.0278 995.00 0.01

β2 SPCA-ZHT 0.9578 682.46 0.32
HARD-THRES 0.0581 994.83 0.15
A.LASSO (γ = 0.5) 0.0946 995.00 0.22
A.LASSO (γ = 1) 0.1091 995.00 0.31
A.LASSO (γ = 2) 0.1525 995.00 0.52
SCAD 0.1264 995.00 0.36
MC 0.1162 995.00 0.25

σ = 1 β1 SPCA-ZHT 1.8061 62.08 0.11
HARD-THRES 0.7322 992.40 2.02
A.LASSO (γ = 0.5) 0.7007 991.24 2.00
A.LASSO (γ = 1) 0.6674 993.21 2.06
A.LASSO (γ = 2) 0.6354 994.12 2.16
SCAD 0.6679 992.90 2.14
MC 0.6430 993.26 2.13

β2 SPCA-ZHT 1.9144 66.56 0.25
HARD-THRES 1.7956 988.75 4.39
A.LASSO (γ = 0.5) 1.2986 991.22 4.32
A.LASSO (γ = 1) 1.1760 993.23 4.52
A.LASSO (γ = 2) 1.0665 994.30 4.69
SCAD 1.1649 993.20 4.53
MC 1.1459 993.47 4.57

The three penalization schemes showed similar performance in general, although

different choices of γ within the adaptive lasso scheme gave somewhat different

squared error performance for model (2) with the lower noise level.

5. Real Data Analysis

The Golub data has d = 7, 129 genes and n = 72 tumor samples. The

data have been analyzed by Golub et al. (1999) to classify two cancer classes:

acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). We

applied the proposed sparse PCA method to find the two leading sparse principal

component (PC) scores (K = 2). We used the adaptive lasso penalty with

γ = 1. The constant C in the initial dimension reduction and the regularization
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Table 2. Performance of the Methods for Model 1 (n = 400).

Avg. # Zero Loadings
Method Squared Error Correct Incorrect

σ = 0.5 β1 SPCA-ZHT 0.0028 987.01 0.00
HARD-THRES 0.0015 995.00 0.00
A.LASSO (γ = 0.5) 0.0028 995.00 0.00
A.LASSO (γ = 1) 0.0023 995.00 0.00
A.LASSO (γ = 2) 0.0031 995.00 0.00
SCAD 0.0036 995.00 0.00
MC 0.0034 995.00 0.00

β2 SPCA-ZHT 0.0052 993.27 0.00
HARD-THRES 0.0037 994.96 0.00
A.LASSO (γ = 0.5) 0.0080 994.99 0.00
A.LASSO (γ = 1) 0.0074 995.00 0.00
A.LASSO (γ = 2) 0.0079 995.00 0.00
SCAD 0.0124 995.00 0.00
MC 0.0099 995.00 0.00

σ = 1 β1 SPCA-ZHT 1.1635 167.09 0.06
HARD-THRES 0.0196 994.79 0.03
A.LASSO (γ = 0.5) 0.0209 994.92 0.03
A.LASSO (γ = 1) 0.0187 995.00 0.03
A.LASSO (γ = 2) 0.0171 995.00 0.03
SCAD 0.0212 994.92 0.03
MC 0.0220 994.93 0.03

β2 SPCA-ZHT 1.8342 156.18 0.52
HARD-THRES 0.6764 989.85 1.87
A.LASSO (γ = 0.5) 0.5308 993.01 1.81
A.LASSO (γ = 1) 0.5050 994.04 1.85
A.LASSO (γ = 2) 0.4923 994.44 1.89
SCAD 0.5050 993.63 1.85
MC 0.5147 993.46 1.84

parameters τj were selected by the BIC-type criterion introduced in Section 4.

As few as 2.3% of the 7,129 genes went into the first principal component, and

3.0% the second. Figure 1 depicts the two PC scores of 72 tumor samples marked

according to their cancer classes by black (AML) and white (ALL) circles. The

figure shows that the two leading sparse PC scores effectively classify the cancer

classes.
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Appendix

A.1. Proof of Theorem 1

Without loss of generality, assume σ2
1 ≥ · · · ≥ σ2

d. Note that with this re-

enumeration, σ2
d0+1 = · · · = σ2

d = σ2. We prove (3.1) and (3.2) for all c1, c2 >

0. Because of the condition on the estimator σ̂2, these two properties imply∑d
ℓ=d0+1 P (ℓ ∈ Î) → 0 and

∑d0
ℓ=1 P (ℓ /∈ Î) → 0, respectively, concluding the
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Table 4. Performance of the Methods for Model 2 (n = 400).

Avg. # Zero Loadings
Method Squared Error Correct Incorrect

σ = 0.5 β1 SPCA-ZHT 0.0125 987.68 0.00
HARD-THRES 0.0083 995.00 0.00
A.LASSO (γ = 0.5) 0.0087 995.00 0.00
A.LASSO (γ = 1) 0.0090 995.00 0.00
A.LASSO (γ = 2) 0.0220 995.00 0.05
SCAD 0.0088 995.00 0.00
MC 0.0087 995.00 0.00

β2 SPCA-ZHT 0.0154 994.18 0.00
HARD-THRES 0.0075 995.99 0.00
A.LASSO (γ = 0.5) 0.0109 996.00 0.00
A.LASSO (γ = 1) 0.0107 996.00 0.00
A.LASSO (γ = 2) 0.0220 996.00 0.04
SCAD 0.0116 996.00 0.00
MC 0.0105 996.00 0.00

σ = 1 β1 SPCA-ZHT 1.1594 171.65 0.04
HARD-THRES 0.0269 994.84 0.01
A.LASSO (γ = 0.5) 0.0336 994.94 0.01
A.LASSO (γ = 1) 0.0343 994.99 0.03
A.LASSO (γ = 2) 0.0446 995.00 0.09
SCAD 0.0357 994.98 0.03
MC 0.0388 994.99 0.03

β2 SPCA-ZHT 1.8506 160.27 0.22
HARD-THRES 0.1027 993.62 0.00
A.LASSO (γ = 0.5) 0.0633 995.13 0.01
A.LASSO (γ = 1) 0.0629 995.54 0.04
A.LASSO (γ = 2) 0.0714 995.76 0.10
SCAD 0.0652 995.42 0.03
MC 0.0670 995.28 0.03

proof.

We use Bernstein’s inequality for a sum of independent random variables

Wi:

P

(∣∣∣ n∑
i=1

W i
∣∣∣ > x

)
≤ 2 exp

(
−1

2

x2

V + Lx/3

)
, (A.1)

where V is the upper bound for the variance of
∑n

i=1W
i and L is the bound for

the absolute values of W i, i.e., |W i| ≤ L. To apply the inequality we use the
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Figure 1. Two leading sparse PC scores for the Golub gene expression data.

truncation technique. Let Y i
ℓ = Xi2

ℓ /σ2
ℓ − 1 and take ξ such that 2(c + 1)/m <

ξ < 1/2. Then,

P
(
|Y i

ℓ | > nξ for some 1 ≤ i ≤ n
)

≤ C3n
1−mξ/2 ≤ n−c−η,

E|Y i
ℓ |I(|Y i

ℓ | > nξ) ≤ C4n
−(m/2−1)ξ ≤ n−(1+c)/2,

the former holding for some η > 0. Define Y i∗
ℓ = Y i

ℓ I(|Y i
ℓ | ≤ nξ)− EY i

ℓ I(|Y i
ℓ | ≤

nξ). Applying (A.1) we get, for ℓ ≥ d0 + 1,

P
(
σ̂2
ℓ ≥

[
1 + c1n

−1/2(log n)C
]
σ2
)

= P
(
n−1/2

n∑
i=1

Y i
ℓ > c1(log n)

C
)

≤ P
(
n−1/2

n∑
i=1

Y i∗
ℓ > c1(log n)

C − n−c/2
)
+ n−c−η

≤ exp
[
− C5

(
c1(log n)

C − n−c/2
)2

1 + nξ−1/2
(
c1(log n)C − n−c/2

)]+ n−c−η

≤ n−C6(logn)2C−1
+ n−c−η.

This shows the left hand side of (3.1) is bounded by

O(nc)
{
n−C6(logn)2C−1

+ n−c−η
}

→ 0.
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We can get a similar bound for the left hand side of (3.2). For this term, we

have, if 1 ≤ ℓ ≤ d0, then

P
(
σ̂2
ℓ <

[
1 + c2n

−1/2(log n)C
]
σ2
)
≤ P

(
n−1/2

n∑
i=1

Y i
ℓ < −(log n)κ

4

)
≤ n−C7(logn)2κ−1

+ n−c−η.

A.2. Proof of Theorem 2

We first prove the second part. By Theorem 1, we may assume Î={1, . . . , d0}
so that we can take X̃i=(Xi

1, . . . , X
i
d0
)⊤ and β̂j = (β̂j1, . . . , β̂jd0)

⊤ in this proof.

Let βj denote (βj1, . . . , βjd0)
⊤, and Σ̃0 the d0 × d0 top-left block of Σ̃. Let

ûj = n1/2(β̂j − βj) for 1 ≤ j ≤ K. Then {ûj : 1 ≤ j ≤ K} is the solution to the

following problem: maximize

K∑
j=1

u⊤
j Σ̃0uj + 2n1/2

K∑
j=1

β⊤
j Σ̃0uj − n

K∑
j=1

d0∑
ℓ=1

µjℓ

(
|βjℓ + n−1/2ujℓ| − |βjℓ|

)
subject to u⊤

j (2βj+n−1/2uj) = 0 for 1 ≤ j ≤ K and u⊤
j βj′ +u⊤

j′βj+n−1/2u⊤
j uj′

= 0 for 1 ≤ j ̸= j′ ≤ K. Let Wj = n1/2(Σ̃0 −Σ0)βj , where Σ0 is the d0 × d0
top-left block of Σ. Using the arguments in the proof of Theorem 1, one can

verify that

u⊤
j (Σ̃0 −Σ0)uj = Op

(
n−1/2+2C′

(log n)1/2
)
,

uniformly for uj ∈ U ≡ {v : sup1≤ℓ≤d0 |vℓ| ≤ A}, where A > 0 is arbitrary large

and C ′ is the constant in (3.5). Thus, from the constraint u⊤
j (2βj+n−1/2uj) = 0,

we get

u⊤
j Σ̃0uj + 2n1/2β⊤

j Σ̃0uj = u⊤
j (Σ0 − λ0

jId0)uj + 2W⊤
j uj + op(1)

uniformly for uj in U .
Next, since infℓ∈J (j) |βjℓ| ≥ δ > 0 for 1 ≤ j ≤ K, we have

sup
ℓ∈J (j)

∣∣∣n1/2
(
|βjℓ + n−1/2ujℓ| − |βjℓ|

)
− ujℓ sgn(βjℓ)

∣∣∣ → 0

uniformly for uj in U . This implies, with the first part of the condition (3.6),

that

n
K∑
j=1

∑
ℓ∈J (j)

µjℓ

(
|βjℓ + n−1/2ujℓ| − |βjℓ|

)
p→ 0
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uniformly for uj ∈ U , 1 ≤ j ≤ K. From this we deduce that

n

K∑
j=1

d0∑
ℓ=1

µjℓ

(
|βjℓ + n−1/2ûjℓ| − |βjℓ|

)

= n1/2
K∑
j=1

∑
ℓ/∈J (j)

µjℓ|ûjℓ|+ op(1) (A.2)

≥ n1/2
K∑
j=1

(
inf

ℓ/∈J (j)
µjℓ

)(
sup

ℓ/∈J (j)
|ûjℓ|

)
+ op(1).

Let Nj(ϵ) =
{
supℓ/∈J (j) |ûjℓ| ≥ ϵ

}
. On the event

∪K
j=1Nj(ϵ),

n1/2
K∑
j=1

(
inf

ℓ/∈J (j)
µjℓ

)(
sup

ℓ/∈J (j)
|ûjℓ|

)
≥ ϵ n1/2 inf

ℓ/∈J (j)
µjℓ

which, by the second part of the condition (3.6), goes to infinity faster than n2C′
.

On the other hand, using the arguments in the proof of Theorem 1, one can show

K∑
j=1

sup
uj∈U

|W⊤
j uj | = Op

(
nC′

(log n)1/2
)
.

This implies that P
[∪K

j=1Nj(ϵ)
]
→ 0 for any ϵ > 0.

Let {ũjℓ : ℓ ∈ J (j), 1 ≤ j ≤ K} be the maximizer of

K∑
j=1

∑
ℓ∈J (j)

∑
ℓ′∈J (j)

(Σℓℓ′ − λ0
jdℓℓ′)ujℓujℓ′ + 2

K∑
j=1

∑
ℓ∈J (j)

Wjℓujℓ

subject to
∑

ℓ∈J (j) ujℓβjℓ = 0 for 1 ≤ j ≤ K and
∑

ℓ∈J (j)∩J (j′)(ujℓβj′ℓ +

uj′ℓβjℓ) = 0, where dℓℓ′ = 1 if ℓ = ℓ′ and zero otherwise. Then, the forego-

ing arguments establish that, for all 1 ≤ j ≤ K,

sup
ℓ∈J (j)

|ûjℓ − ũjℓ| = op(1), sup
ℓ/∈J (j)

|ûjℓ| = op(1). (A.3)

Note also that since supℓ∈J (j) |Wjℓ| = Op(1),

sup
ℓ∈J (j)

|ũjℓ| = Op(1) = sup
ℓ∈J (j)

|ûjℓ| = n1/2 sup
ℓ∈J (j)

|β̂jℓ − βjℓ| (A.4)

for 1 ≤ j ≤ K. The first result of (A.3) concludes part (ii) of the theorem.
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To prove the first part of the theorem, we verify

P [J (j) ⊂ Ĵ (j)] → 1 for all 1 ≤ j ≤ K, (A.5)

P [J (j) ⊃ Ĵ (j)] → 1 for all 1 ≤ j ≤ K. (A.6)

The property (A.5) is immediate from (A.4), since for δj ≡ infℓ∈J (j) |βjℓ| > 0

the latter entails infℓ∈J (j) |β̂jℓ| > δj/2 with probability tending to one. To show

(A.6), we consider the Lagrangian problems that maximize, successively for j =

1, . . . ,K,

β⊤
j Σ̃0βj −

d0∑
ℓ=1

µjℓ|βjℓ| − ζj(β
⊤
j βj − 1)−

j−1∑
j′=1

ζjj′β
⊤
j βj′ ,

where ζj and ζjj′ are the Lagrange multipliers. If there exists ℓ0 /∈ J (j0) but

ℓ0 ∈ Ĵ (j0) for some 1 ≤ j0 ≤ K, then for such j0 and ℓ0, by the Kuhn-Tucker

Theorem,

(Σ̃0β̂j0)ℓ0 − ζj0 β̂j0ℓ0 −
j0−1∑
j′=1

ζj0j′ β̂j′ℓ0 =
1

2
µj0ℓ0sgn(β̂j0ℓ0). (A.7)

Since sup1≤ℓ≤d0 |β̂jℓ − βjℓ| = Op(n
−1/2) for all 1 ≤ j ≤ K by (A.4), βj0ℓ0 = 0,

(Σ0βj0)ℓ0 = λ0
j0
βj0ℓ0 = 0, and

Σ̃0β̂j = (Σ̃0 −Σ0)(β̂j − βj) + n−1/2Wj +Σ0(β̂j − βj) +Σ0βj ,

we can deduce that∣∣∣(Σ̃0β̂j0)ℓ0 − ζj0 β̂j0ℓ0 −
j0−1∑
j′=1

ζj0j′ β̂j′ℓ0

∣∣∣ = Op

(
n−1/2+C′

(log n)1/2
)
. (A.8)

On the other hand, by the second part of the condition (3.6),

|µj0ℓ0 |−1 = op

(
n1/2−C′

(log n)−1/2
)
.

This with (A.7) and (A.8) establishes (A.6).

A.3. Proof of Theorem 3

Let βj = (βjℓ : 1 ≤ ℓ ≤ d0)
⊤. Since eigenvectors are determined uniquely up

to sign, we take β̄
⊤
j βj ≥ 0. By using the arguments in the proof of Theorem 1,

it can be proved that

sup
1≤j,ℓ≤d0

∣∣∣n−1
n∑

i=1

Xi
jX

i
ℓ −EXjXℓ

∣∣∣ = Op

(
n−1/2(log n)1/2

)
.
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For a matrix A, let ∥A∥op = supx:∥x∥=1 ∥Ax∥ denote the operator norm of A.

Then

∥Σ̃0 −Σ0∥op = Op

(
n−1/2+C′

(log n)1/2
)
, (A.9)

where Σ0 is the d0 × d0 top-left block of Σ.

Now, by Corollary 8.1.6 of Golub and Van Loan (1996) we have

|λ̃0
j − λ0

j | ≤ ∥Σ̃0 −Σ0∥op, (A.10)

where λ̃0
1 ≥ · · · ≥ λ̃0

d0
≥ 0 is an enumeration of the eigenvalues of Σ̃0. Due to

(3.8), this means that

P
(
|λ̃0

j − λ0
ℓ | > 0 for all ℓ ̸= j and 1 ≤ j ≤ K

)
→ 1.

Note that βℓ, 1 ≤ ℓ ≤ d0, form an orthonormal basis for Rd0 . Thus, on a set with

probability tending to one, we obtain

β̄j − βj =
∑
ℓ:ℓ ̸=j

(λ̃0
j − λ0

ℓ)
−1β̄

⊤
j (Σ̃0 −Σ0)βℓβℓ + (β̄j − βj)

⊤βjβj , 1 ≤ j ≤ K

because β̄
⊤
j (Σ̃0 − Σ0)βℓ = (λ̃0

j − λ0
ℓ)(β̄j − βj)

⊤βℓ for all j ̸= ℓ. This basis

expansion of β̄j −βj with respect to {βℓ}
d0
ℓ=1 gives ∥β̄j −βj∥2 = P 2

j +Q2
j , where

P 2
j =

∑
ℓ:ℓ ̸=j(λ̃

0
j − λ0

ℓ )
−2
[
β̄
⊤
j (Σ̃0 − Σ0)βℓ

]2
and Q2

j =
[
(β̄j − βj)

⊤βj

]2
. Note

that Pj is the norm of the projection of β̄j − βj onto the linear subspace of Rd0

generated by {βℓ : ℓ ̸= j}, so that it also is the norm of the projection of β̄j onto

that subspace. Thus, P 2
j + (β̄

⊤
j βj)

2 = 1. This gives

Q2
j =

[
1− (1− P 2

j )
1/2
]2

= 2
[
1− (1− P 2

j )
1/2
]
− P 2

j ,

so that ∥β̄j − βj∥2 ≤ 2P 2
j .

It suffices to prove

P 2
j = Op

(
n−1+2C′

(log n)1+2C′′
)
.

By (A.9), (A.10) and (3.8),

P
[
(λ̃0

j − λ0
ℓ)

−2 ≤ C0(log n)
2C′′

for all ℓ ̸= j and 1 ≤ j ≤ K
]
→ 1

for some C0 > 0. Since
∑d0

ℓ=1

[
β̄
⊤
j (Σ̃0 − Σ0)βℓ

]2
= ∥(Σ̃0 − Σ0)β̄j∥2, it follows

that P 2
j ≤ C0(log n)

2C′′∥Σ̃0 −Σ0∥2op on a set with probability tending to one.
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