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Abstract: When a group of subjects is repeatedly compared in pairs, the Bradley-

Terry model is often used. By assuming that each pair has the same fixed number

of comparison(s), Simons and Yao (1999) proved that the maximum likelihood

estimates of the parameters retain good asymptotic properties when the number of

subjects goes to infinity. In many applications, however, paired comparisons may

be sparse and only exist in some pairs. In this note, we show that under a simple

condition that controls sparsity, asymptotic results similar to Simons and Yao’s

continue to hold. Simulation studies and an application are further provided for

the illustration of the sparsity condition and the asymptotic results.
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1. Introduction

In a broad range of problems, e.g., the quantification of the influence of statis-

tical journals (Stigler (1994)) or the transmission/disequilibrium test in genetics

(Sham and Curtis (1995)), it occurs that a group of subjects are repeatedly com-

pared in pairs. To describe the probabilities of the possible outcomes in paired

comparisons, Bradley and Terry (1952) suggested that the probability subject i

beats subject j be specified by

pij =
ui

ui + uj
, (1.1)

where the “merit vector” (u0, u1, . . . , ut) represents the merit parameters of t+1

subjects.

As discussed in Colonius (1980) and David (1988), the Bradley-Terry model

is the only one among the many paired comparison models that satisfies certain

desirable properties and hence is often used in practice. It has been generalized

in several directions (e.g., Luce (1959); Rao and Kupper (1967); Huang, Weng,

and Lin (2006)). For a wide class of generalizations, Hunter (2004) proposed the
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iterative minorization-maximization (MM) algorithms for maximum likelihood

estimation and established their good convergence properties.

When the total number of subjects, t + 1, is assumed fixed and the num-

ber of comparisons in each pair goes to infinity, the consistency and asymptotic

normality of the maximum likelihood estimators are standard. However, in most

applications, t + 1 is quite large while the number of comparisons in each pair

is relatively small. Then asymptotics considering the number of merit parame-

ters t + 1 as going to infinity is more appealing. In contrast to the well-known

Neyman-Scott problem (Neyman and Scott (1948)) where the maximum likeli-

hood estimate fails to attain consistency, Simons and Yao (1999) proved that the

maximum likelihood estimates of the merit parameters retain good asymptotic

properties when each pair has the same fixed number of comparison(s) and the

number of subjects t + 1 goes to infinity. The assumption of the same number

of comparisons in each pair used in their paper is stringent but realistic. For ex-

ample, many basketball conferences under the purview of the NCAA have each

pair of teams play each other exactly twice. In some other applications, how-

ever, comparisons are applied among a small portion of all possible pairs. As

a motivating example, we consider 32 teams in two conferences of the National

Football League (NFL). There are eight divisions each consisting of four teams.

In the regular season, each team plays 16 matches, 6 within the division and 10

between the divisions. In total, there are 32× 31/2 = 496 pairs but comparisons

only exist in 32× 13/2 = 208 pairs. It is therefore interesting to extend Simons

and Yao’s results to the situation where paired comparisons are unequal and

sparse.

We study the sparsity condition under which the likelihood-based inferences

have favorable asymptotic properties when the total number of subjects t+1 goes

to infinity. The rest of the paper is organized as follows. The main results are

given in Section 2. Numerical results are presented in Section 3. Some discussion

is given in Section 4. All proofs are relegated to the appendix.

2. Main Results

Let aij be the number of times that subject i beats subject j as a result of

nij comparisons. For convenience, aii = 0 and nii = 0. Then aij + aji = nij =

nji, i, j = 0, . . . , t. In what follows, nij ≤ N for all i, j, where N is a fixed

positive integer. The likelihood function can be written as

L(u) =

t∏
i,j=0
i̸=j

p
aij
ij =

∏t
i=0 u

ai
i∏

0≤i<j≤t(ui + uj)nij
, (2.1)
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where ai =
∑t

j=0 aij is the total number of wins of subject i. For identifiability,

we set u0 = 1 as in Simons and Yao (1999). Denote the maximum likelihood

estimates (MLEs) of u1, . . . , ut by û1, . . . , ût and take û0 = 1. The likelihood

equation is

ai =
t∑

j=0

nij ûi
ûi + ûj

i = 1, . . . , t. (2.2)

By Zermelo (1929) and Ford (1957), the following condition guarantees the

existence and uniqueness of the MLEs in (2.1).

Condition A. For every partition of the subjects into two nonempty sets, a

subject in the second set has beaten a subject in the first at least once.

The matrix (aij)(t+1)×(t+1) can be regarded as the adjacency matrix of a

directed graph and Condition A is equivalent to the strong connectivity of the

directed graph. Similarly, the matrix (nij)(t+1)×(t+1) can be regarded as the

adjacency matrix of an undirected graph and, under Condition A, we know that

the undirected graph is strongly connected, i.e., for any two subjects i ̸= j, there

exits a connected path: ni,l1 > 0, nl1,l2 > 0, · · · , nlm,j > 0.

To ensure that Condition A is satisfied asymptotically under sparse compar-

isons, we need some conditions for nij as well as the merit parameters uij that

motivate the sparsity condition. Let

ni =
∑t

j=0
nij , (2.3)

Cij =#{k : nik > 0, njk > 0}+ I(nij > 0), Dt = min
0≤i<j≤t

Cij , (2.4)

where I(·) is the indicator function, Cij is the total number of paths between i

and j with length 2 or 3, and Dt is the smallest Cij , 0 ≤ i < j ≤ t. Note that

Dt measures the sparsity level and Dt > 0 is a sufficient condition for the strong

connectivity of the undirected graph. In Simons and Yao (1999), Dt = t since

there exists direct comparisons for each pair. Let

Mt = max
i,j=0,...,t

ui
uj

, δt =
8Mt

(Dt/t)

√
N log(t+ 1)

t
, (2.5)

∆ui =
ûi − ui

ui
. (2.6)

The following proposition guarantees Condition A.

Proposition 1. If limt→∞Dt/t ≥ τ, τ ∈ (0, 1] and Mt = o(t/ log t), then

pr(Condition A holds) → 1 as t → ∞.
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Figure 1. The sparse designs.

Now we illustrate the calculation of the sparsity level Dt/t. Suppose the t+1
subjects are divided into G groups of equal size. There exists direct comparisons
for each intra-group pair. The scheme for inter-group pairs is depicted by a graph
with G groups as vertices. If two groups are directly connected by a solid line,
there exists direct comparisons for any inter-group pair within these two groups.
If two groups are connected by a dash line, there exists direct comparisons only
for a fixed proportion 0 < q < 1 of all inter-group pairs within these two groups.
If two groups are not directly connected, there exists no direct comparison for
any inter-group pair within these two groups. Let Ns and Nd be the numbers
of solid and dash lines respectively. In Figure 1, we give three examples. In the
left panel, G = 6, Ns = 9, Nd = 0, and limt→∞Dt/t = 1/6. In the middle panel,
G = 8, Ns = 8, Nd = 0, and limt→∞Dt/t = 1/4. In the right panel, G = 8,
Ns = 8, Nd = 8, and limt→∞Dt/t = q/4. The NFL example we mentioned
before is a special case of the right panel example with t+ 1 = 32 and q = 1/4.

First, we establish the consistency of the MLEs uniformly for the merit
parameters of all subjects.

Theorem 1 (uniform consistency). If

Mt = o(

√
t

log t
), and lim

t→∞

Dt

t
≥ τ, τ ∈ (0, 1], (2.7)
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then

max
i=0,...,t

|∆ui| ≤ max
i,j=0,...,t

|∆ui −∆uj | = Op(δt) = op(1). (2.8)

Remark 1. The condition on Mt is the same as that in Simons and Yao (1999).

However, the measure δt on the accuracy of MLES involves Dt/t and is larger

than that in Simons and Yao (1999) due to weaker conditions on Dt/t.

Let Vt = (vij)i,j=1,...,t denote the covariance matrix of a1, . . . , at, where

vii =
t∑

k=0

nikuiuk
(ui + uk)2

, vij = − nijuiuj
(ui + uj)2

, i, j = 0, . . . , t; j ̸= i. (2.9)

Note that Vt is also the Fisher information matrix for log u1, . . . , log ut. Simons

and Yao (1999) introduced a t× t matrix St = (sij) as an approximation to V−1
t ,

where

sij =
δij
vii

+
1

v00
, i, j = 1, . . . , t, (2.10)

and δij is the Kronecker delta.

Theorem 2 (asymptotic normality). If

Mt = o(
t1/10

(log t)1/5
), and lim

t→∞

Dt

t
≥ τ, τ ∈ (0, 1], (2.11)

then for each fixed r ≥ 1, as t → ∞, the vector (∆u1, . . . ,∆ur) is asymptotically

normally distributed with mean 0 and covariance matrix given by the upper left

r × r block of St as defined at (2.10).

Alternatively, we can define a coarser measure of the sparsity level. Let

Ai = #{j : nij = 0, j ̸= i}, Bt = max
i=0,...,t

Ai, (2.12)

where Ai is the number of subjects that do not have direct comparisons with

subject i, and Bt is the largest Ai, i = 0, . . . , t. Since

Cij

t
≥ 1−

#{k : nik = 0, njk > 0}
t

−
#{k : nik > 0, njk = 0}

t
≥ 1− 2Bt

t
,

we have limt→∞Dt/t ≥ 1− 2ρ > 0 if limt→∞Bt/t = ρ < 1/2.

Corollary 1 (uniform consistency). If

Mt = o(

√
t

log t
), and

Bt

t
≤ ρ <

1

2
, (2.13)

then

max
i=0,...,t

|∆ui| ≤ max
i,j=0,...,t

|∆ui −∆uj | = Op(δt) = op(1). (2.14)
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Corollary 2 (asymptotic normality). If

Mt = o(
t1/10

(log t)1/5
), and

Bt

t
≤ ρ <

1

2
, (2.15)

then for each fixed r ≥ 1, as t → ∞, the vector (∆u1, . . . ,∆ur) is asymptotically

normally distributed with mean 0 and covariance matrix given by the upper left

r × r block of St as defined at (2.10).

3. Numerical Studies

We conducted simulation studies to evaluate the performance of the max-

imum likelihood estimates with sparse paired comparisons. By Theorem 2,

the asymptotic variances of log(ûi/ui) and log(ûj/ûi) are 1/vjj + 1/v00 and

1/vii+1/vjj , which can be estimated by replacing ui with ûi in (2.9). Hence 95%

confidence interval of log ui and log(uj/ui) can be constructed accordingly. As

a practical matter, the estimates are only available when Condition A does not

fail. We report the probabilities that Condition A and coverage both occur, as

well as the probabilities that Condition A fails. The average coverage probabili-

ties (ACP) for log ui, i = 1, . . . , t is calculated to gauge the overall performance

of the maximum likelihood estimation. We also list the coverage probabilities

for certain pairs. The average length of confidence interval, conditional on that

Condition A does not fail, is also reported.

We consider the situation where all subjects are divided into G = 8 groups

of equal size and let N = 1 (i.e., there is at most one comparison in each pair).

There exists direct comparisons for each intra-group pair. For Group 1, the merit

parameters of subject k are (Mt−1)k/(G−1)+1, k = 1, . . . , G−1 and the merit

parameters of other groups are the same as those of Group 1.

In simulation study 1, the inter-group pair comparison scheme was specified

by the middle panel graph in Figure 1 and the sparsity level Dt/t = 1/4 and

A0/t = · · · = At/t = 1/2. Thus the sparsity condition was satisfied.

Let x = (x1, . . . , x7). In simulation study 2, for any inter-group pair (i, j)

with subject i in group k and subject j in group ℓ, 1 ≤ k < ℓ ≤ 8, the nij were

Bernoulli Ber(1, xk). Thus, EAi = [(8− k)(1− xk) +
∑k−1

ℓ=1 (1− xℓ)]t/8 for each

subject i in group k. We chose x = (2/3, 2/3, 2/3, 1/2, 1/2, 1/3, 1/3) and

(1/2, 1/2, 1/2, 1/3, 1/3, 1/6, 1/6), respectively. By calculation, Dt = 0 with

positive probability and groups vary in At/t. We have EDt/t = 0.111 and 0.017,

respectively.

We chose Mt = 1, t1/4, t1/2, t3/4, or t. For 0 ≤ i < j ≤ t, the aij were the

binomial Bin(nij , pij) and aji = nij − aij . When nij = 0, aij was set to zero.

The results based on 10,000 replications are summarized in Table 1.
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Table 1. Coverage probabilities, probabilities that condition A fails (in
parentheses), and lengths of confidence intervals (in brackets).

t (i,j)/ACP Mt = 1 Mt = t1/4 Mt = t1/2 Mt = t3/4 Mt = t
Simulation study 1: Dt/t = 3/8

31 (0,7) 0.947(0.002)[3.09] 0.943(0.011)[3.23] 0.884(0.073)[3.62] 0.702(0.265)[4.14] 0.485(0.487)[4.69]

(30,31) 0.948(0.002)[3.09] 0.945(0.011)[3.18] 0.894(0.073)[3.39] 0.700(0.265)[3.61] 0.486(0.487)[3.74]

(15,16) 0.948(0.002)[3.08] 0.940(0.011)[3.23] 0.880(0.073)[3.61] 0.693(0.265)[4.13] 0.481(0.487)[4.73]

ACP 0.947(0.002)[3.09] 0.937(0.011)[3.21] 0.878(0.073)[3.62] 0.699(0.265)[4.19] 0.485(0.487)[4.82]

79 (0,7) 0.948(0)[1.82] 0.947(0)[1.92] 0.946(0.002)[2.23] 0.918(0.040)[2.78] 0.675(0.299)[3.62]

(30,31) 0.954(0)[1.82] 0.951(0)[1.89] 0.950(0.002)[2.01] 0.914(0.040)[2.08] 0.659(0.299)[2.12]

(15,16) 0.953(0)[1.82] 0.952(0)[1.92] 0.944(0.002)[2.23] 0.915(0.040)[2.78] 0.671(0.299)[3.58]

ACP 0.950(0)[1.82] 0.948(0)[1.91] 0.947(0.002)[2.22] 0.918(0.040)[2.82] 0.674(0.299)[3.70]

Simulation study 2: Dt/t = 0 with positive probability

(x1, · · · , x7) = (2/3, 2/3, 2/3, 1/2, 1/2, 1/3, 1/3)

31 (0,7) 0.918(0.032)[2.57] 0.909(0.044)[2.68] 0.854(0.101)[2.97] 0.731(0.222)[3.38] 0.589(0.362)[3.83]

(30,31) 0.925(0.032)[2.89] 0.916(0.044)[2.98] 0.864(0.101)[3.15] 0.750(0.222)[3.32] 0.612(0.362)[3.40]

(15,16) 0.914(0.032)[2.80] 0.902(0.044)[2.92] 0.857(0.101)[3.23] 0.735(0.222)[3.66] 0.591(0.362)[4.10]

ACP 0.915(0.032)[2.67] 0.906(0.044)[2.78] 0.853(0.101)[3.08] 0.736(0.222)[3.53] 0.596(0.362)[4.05]

(x1, · · · , x7) = (1/2, 1/2, 1/2, 1/3, 1/3, 1/6, 1/6)

(0,7) 0.737(0.229)[2.95] 0.708(0.258)[3.08] 0.593(0.376)[3.39] 0.421(0.555)[3.84] 0.271(0.704)[4.34]

(30,31) 0.742(0.229)[3.41] 0.712(0.258)[3.53] 0.601(0.376)[3.69] 0.427(0.555)[3.84] 0.283(0.704)[3.88]

(15,16) 0.722(0.229)[3.28] 0.692(0.258)[3.40] 0.589(0.376)[3.73] 0.422(0.555)[4.20] 0.277(0.704)[4.71]

ACP 0.7250.229)[3.11] 0.698(0.258)[3.23] 0.590(0.376)[3.54] 0.420(0.555)[4.03] 0.275(0.704)[4.60]

(x1, · · · , x7) = (2/3, 2/3, 2/3, 1/2, 1/2, 1/3, 1/3)

79 (0,7) 0.924(0.017)[1.55] 0.935(0.017)[1.64] 0.928(0.021)[1.87] 0.884(0.064)[2.31] 0.730(0.228)[2.98]

(30,31) 0.924(0.017)[1.75] 0.930(0.017)[1.80] 0.934(0.021)[1.90] 0.888(0.064)[1.96] 0.734(0.228)[1.97]

(15,16) 0.932(0.017)[1.67] 0.930(0.017)[1.76] 0.930(0.021)[2.03] 0.901(0.064)[2.50] 0.740(0.228)[3.13]

ACP 0.934(0.017)[1.61] 0.933(0.017)[1.68] 0.932(0.021)[1.92] 0.891(0.064)[2.39] 0.738(0.228)[3.10]

(x1, · · · , x7) = (1/2, 1/2, 1/2, 1/3, 1/3, 1/6, 1/6)

(0,7) 0.785(0.175)[1.76] 0.784(0.178)[1.85] 0.764(0.195)[2.13] 0.649(0.314)[2.67] 0.418(0.559)[3.30]

(30,31) 0.781(0.175)[2.00] 0.784(0.178)[2.08] 0.769(0.195)[2.20] 0.658(0.314)[2.28] 0.416(0.559)[2.29]

(15,16) 0.773(0.175)[1.93] 0.770(0.178)[2.04] 0.760(0.195)[2.36] 0.660(0.314)[2.90] 0.422(0.559)[3.63]

ACP 0.783(0.175)[1.84] 0.777(0.178)[1.92] 0.765(0.195)[2.21] 0.653(0.314)[2.77] 0.421(0.559)[3.45]

From Table 1, we see that in simulation study 1, when Mt = 1 or t1/4,

the simulated coverage probabilities are close to the nominal level, but when

Mt = t1/2, t3/4 or t, most results look very bad, especially when t = 31. The

results become worse as Mt increases. The length of confidence interval also

increases as Mt becomes larger. These observations indicate that the accuracy

of the estimation deteriorates as Mt increases.

In simulation study 2, the sparsity condition fails with positive probability.

From Table 1, we observe that the simulated coverage probabilities are quite

different from the nominal level in all situations because with positive probability,

the undirected graph (nij)(t+1)×(t+1) is not strongly connected and condition A

fails. This is more pronounced when Mt is larger or when Dt = 0 with larger

probability. On the other hand, the length of confidence interval increases when

Dt = 0 with larger probability which shows that the accuracy of the estimation

deteriorates when comparisons are more sparse.
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Table 2. Merits of NFL 2009

division team merit division team merit
AFC East New England Patriots 1.980 AFC South Indianapolis Colts 6.395

New York Jets 1.481 Houston Texans 1.223
Miami Dolphins 1.000 Tennessee Titans 1.050
Buffalo Bills 0.622 Jacksonville Jaguars 0.637

AFC North Cincinnati Bengals 1.460 AFC West San Diego Chargers 4.122
Baltimore Ravens 1.251 Denver Broncos 1.335
Pittsburgh Steelers 1.085 Oakland Raiders 0.462
Cleveland Browns 0.351 Kansas City Chiefs 0.278

NFC East Dallas Cowboys 2.142 NFC North Minnesota Vikings 1.989
Philadelphia Eagles 2.097 Green Bay Packers 1.414
New York Giants 1.035 Chicago Bears 0.493
Washington Redskins 0.194 Detroit Lions 0.063

NFC South New Orleans Saints 3.909 NFC West Arizona Cardinals 1.056
Atlanta Falcons 1.315 San Francisco 49ers 0.619
Carolina Panthers 1.143 Seattle Seahawks 0.204
Tampa Bay Buccaneers 0.227 St. Louis Rams 0.028

Next, consider the NFL example which corresponds to the right panel in

Figure 1 where t + 1 = 32 and the sparsity condition is satisfied. The league

consists of thirty-two teams that are divided evenly into two conferences and

each conference has four divisions that have four teams each. In the regular

season, each team plays six games with three intra-division teams and ten games

with ten inter-division teams. So Bt = t − 13 = 31 − 13 = 18. Accordingly,

we have Dt/t = 2/32 ≥ 1/16 > 0 and Bt/t = 18/31 = 0.58. Thus the sparsity

condition is satisfied in the theorems but not in the corollaries and this further

illustrates that the sparsity condition Dt/t is more useful than Bt/t. We used

the 2009 NFL regular season data as an example, which can be downloaded from

http://en.wikipedia.org/wiki/2009_NFL_season. The fitted merits for the

remaining 31 teams are given in Table 2, where we used “Miami Dolphins” as

the baseline (with u0 = 1).

It is interesting to compare the ordering of six playoff seeds of the two confer-

ences by the NFL rule with the ordering by their merits obtained from fitting the

Bradley-Terry model. The NFL rule can be briefly summarized as follows: the

teams in each division with the best regular season won-lost percentage record

(PCT) are seeded one through four based on their PCT; another two teams from

each conference are seeded five and six based on their PCT. From Table 3, we

can see that the ordering of merits of one conference is consistent with that of

NFL except that the order of the fourth and fifth seeds is switched. For the other

conference, Table 4, we can see that only the top team is seeded according to its

merit.

http://en.wikipedia.org/wiki/2009_NFL_season
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Table 3. The six playoff seeds of the AFC.

Seed team won-lost percentage merit
1 Indianapolis Colts 0.875 6.395
2 San Diego Chargers 0.812 4.122
3 New England Patriots 0.625 1.980
4 Cincinnati Bengals 0.625 1.460
5 New York Jets 0.563 1.481
6 Baltimore Ravens 0.375 1.251

Table 4. The six playoff seeds of the NFC.

Seed team won-lost percentage merit
1 New Orleans Saints 0.812 3.909
2 Minnesota Vikings 0.750 1.989
3 Dallas Cowboys 0.688 2.142
4 Arizona Cardinals 0.625 1.056
5 Green Bay Packers 0.688 1.414
6 Philadelphia Eagles 0.688 2.097

4. Discussion

We study asymptotics of the maximum likelihood estimates in the Bradley-

Terry model when the number of subjects goes into infinity and paired compar-

isons are sparse. With a condition on Mt similar to that in Simons and Yao

(1999), we show that the MLEs of merits still have enjoyable properties when

the sparse level is controlled by imposing limt→∞Dt/t ≥ τ, τ ∈ (0, 1]. Theo-

retical results show that asymptotics break down when Mt is too large or Dt

is too small. This is also verified in our simulation studies that suggest that a

proper control of the magnitude of Mt and Dt is crucial in ensuring good es-

timation accuracy. As noted by a referee, the condition Dt/t ≥ τ, τ ∈ (0, 1]

is a sufficient but not necessary condition to guarantee Condition A. The spar-

sity condition Dt only considers the paths between two subjects with length

2 or 3. More generally, it is interesting to control the sparsity by defining

Cm
ij = #{(l1, · · · , lm) : ni,l1 > 0, nl1,l2 > 0, · · · , nlm,j > 0}, i.e., the total number

of paths between i and j with length m+ 2, and we will investigate it in future

work.

Theorem 1 requires that Mt = o((t/ log t)1/2), and the condition on Mt in

Theorem 2 is even more stringent. However, simulation studies suggest that the

estimation accuracy is still quite good when Mt = t1/2. It will be interesting to

see if the conditions on Mt in Theorems 1 and 2 can be relaxed.
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Appendix

A.1. Proof of Propositions and Theorems

Proof of Proposition 1. Denote the probability that Condition A fails by Pt.

Note that Mt ≥ 1 and

max
i,j=0,...,t

pij = max
i,j=0,...,t

1

1 + uj/ui
≤ 1

1 + 1/Mt
≤ (

1

2
)1/Mt .

Let Ω = {0, 1, . . . , t} be the set consisting of all t + 1 subjects and consider a

particular partition of Ω into two nonempty subset Ωr and Ωc
r, where the subscript

r denotes the number of subjects in Ωr and 1 ≤ r ≤ t. The probability that all

the intergroup comparisons between Ωr and Ωc
r are won by a subject in Ωr is

bounded above by (1/2)NΩr/Mt , where NΩr =
∑

i∈Ωr,j∈Ωc
r
nij . It follows that

Pt ≤
t∑

r=1

∑
Ωr⊂{0,1,...,t}

(
1

2
)NΩr/Mt ≤ 2

[t/2]+1∑
r=1

∑
Ωr⊂{0,1,...,t}

(
1

2
)NΩr/Mt .

The last inequality holds since the summands
∑

Ωr⊂{0,1,...,t}(1/2)
NΩr/Mt are sym-

metric about (t + 1)/2. Note that Cij ≥ τt for all i ̸= j and each pair (i, j)

with nij > 0 for i ∈ Ωr, j ∈ Ωc
r, r ≤ t/2, is repeatedly counted at most t − r

times among all Cij , i ∈ Ωr, j ∈ Ωc
r since the total number of subjects is t + 1.

Consequently,

NΩr ≥
∑

i∈Ωr,j∈Ωc
r

Cij

(t− r)
≥ τrt.

We have

Pt/2 ≤
[t/2]+1∑
r=1

(
t+ 1

r

)
(
1

2
)τrt/Mt

≤ (1 + (
1

2
)

τt
Mt )t+1 − 1.

When Mt = o(t/ log t) and τ ∈ (0, 1], this term goes to zero as t → ∞.
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Proof of Theorem 1. Note that ai =
∑t

j=0 aij is a sum of ni (≤ Nt) inde-

pendent Bernoulli random variables, and by Hoeffding’s Inequality (Hoeffding

(1963)),

P (|ai − E(ai)| ≥
√
Nt log t) ≤ 2 exp(

−2Nt log t

ni
) ≤ 2 exp(

−2Nt log t

Nt
) =

2

t2
.

It follows that

P

(
max

i=0,...,t
|ai −E(ai)| ≥

√
Nt log t

)
≤ (t+ 1)

2

t2
→ 0, as t → ∞

and, with probability tending to 1,

max
i=0,...,t

|ai − E(ai)| = max
i=0,...,t

∣∣∣∣∣
t∑

j=0

nij

{ ûi
ûi + ûj

− ui
ui + uj

}∣∣∣∣∣ ≤ √
Nt log t. (A.1)

Let d, b ∈ {0, . . . , t} be such that

α̂t = max
j=0,...,t

ûj
uj

=
ûd
ud

≥ û0
u0

= 1,

and

β̂t = min
j=0,...,t

ûj
uj

=
ûb
ub

≤ û0
u0

= 1.

Observe that, for j = 0, . . . , t

ûd
ûd + ûj

− ud
ud + uj

=
ûd/ud − ûj/uj

(ûd/ud + (uj/ud)(ûj/uj))((ud/uj) + 1)

≥ (α̂t − ûj/uj)

α̂t(1 + uj/ud)(ud/uj + 1)
≥ (α̂t − ûj/uj)Mt

α̂t(1 +Mt)2
.

We have

t∑
j=0

ndj(
ûd

ûd + ûj
− ud

ud + uj
) ≥ Mt

(1 +Mt)2

t∑
j=0

ndj
(α̂t − ûj/uj)

α̂t
. (A.2)

Likewise,

t∑
j=0

nbj(
ûb

ûb + ûj
− ub

ub + uj
) ≥ Mt

(1 +Mt)2

t∑
j=0

nbj
(ûj/uj − β̂t)

α̂t
. (A.3)

Note that,

Cdb = #{j : ndj > 0, nbj > 0} ≥ Dt ≥ τt. (A.4)
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By (A.1), (A.2), (A.3), and (A.4),

2
√

Nt log t ≥ 2 max
i=0,...,t

|
t∑

j=0

nij(
ûi

ûi + ûj
− ui

ui + uj
)|

≥ Mt

(1 +Mt)2

t∑
j=0

[ndj
(α̂t − ûj/uj)

α̂t
+ nbj

(ûj/uj − β̂t)

α̂t
]

≥ Mt

(1 +Mt)2

∑
j: ndj>0,nbj>0

[
(α̂t − ûj/uj)

α̂t
+

(ûj/uj − β̂t)

α̂t
]

=
Mt

(1 +Mt)2

∑
j: ndj>0,nbj>0

α̂t − β̂t
α̂t

≥ (Dt/t)tMt

(1 +Mt)2
× α̂t − β̂t

α̂t
.

We have

α̂t − β̂t
α̂t

≤ 2(1 +Mt)
2

(Dt/t)tMt

√
Nt log(t+ 1) ≤ 8Mt

Dt/t

√
N log(t+ 1)

t
= δt.

Thus, when (2.13) holds, maxi=0,...,t |∆ui| ≤ maxi,j=0,...,t |∆ui−∆uj | = α̂t− β̂t ≤
(α̂t − β̂t)/β̂t ≤ δt/(1− δt) = op(1).

Similar to Lemmas 4 and 6 in Simons and Yao (1999), we have the following.

Lemma A.1. An upper bound of Wt = V−1
t − St is given by

∥Wt∥ ≤ 8N2M3
t

t2(Dt/t)3
,

where ∥A∥ = maxi,j |aij | for the matrix A = (aij).

Lemma A.2. If Rt is the covariance matrix of Wta, we have

∥Rt∥ ≤ 8N2M3
t (1 +Dt/t)

t2(Dt/t)2
.

Write a = (a1, . . . , at)
T . Since ai is a sum of independent bounded random

variables, if vii diverges, ai − E(ai) is asymptotically normal with variance vii
(Loève (1977, p.289)) and the following proposition easily follows.

Proposition 2. If Mt = o(t) as t → ∞ and Dt/t ≥ τ > 0, then, as t → ∞,

the components of a1−E(a1), . . . , ar−E(ar) are asymptotically independent and

normally distributed with variances v11, . . . , vrr, respectively, for each fixed integer
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r ≥ 1. Moreover, the first r rows of St(a−E(a)) are asymptotically normal with

covariance matrix given by the upper left r × r block of St defined at (2.10), for

fixed r ≥ 1.

Proof of Theorem 2. Let Et be the event that Condition A holds and Ft be

the event that

max
i=0,...,t

|∆ui| ≤ δt/(1− δt).

By Proposition 1 and Theorem 1, P (Et
∩

Ft) → 1 as t → ∞ if (2.13) holds. We

proceed conditional on the event Et
∩

Ft. Let

ξij =
nijuiuj(∆ui −∆uj)

(ui + uj)2
, ξi =

t∑
j=0,j ̸=i

ξij i = 1, . . . , t,

ξ = (ξ1, . . . , ξt)
T , η = (η1, . . . , ηt)

T = a− E(a)− ξ, η0 =
t∑

j=1

ηj .

Following the proof of Lemma 7 in Simons and Yao (1999), we have

|ηi| ≤
viiδ

2
t

(1− δt)(1− 2δt)
, i = 0, . . . , t, (A.5)

|(Stη)i| ≤
1

vii
|ηi|+

1

v00
|η0| ≤

2δ2t
(1− δt)(1− 2δt)

= O(
M2

t log t

t(Dt/t)2
). (A.6)

Since
DtMt

(Mt + 1)2
≤ vii ≤

Nt

4
, i = 0, . . . , t, (A.7)

by (A.5), (A.7), and Lemma A.1,

|(Wtη)i| ≤
8N2M3

t

t2(Dt/t)3
×

t∑
i=1

|ηi|

≤ 2N2t2M3
t δ

2
t

(1− δt)(1− 2δt)t2(Dt/t)2
= O(

M5
t log t

t(Dt/t)3
).

By (A.6),

|(V−1
t η)i| ≤ |(Stη)i|+ |(Wtη)i| = O(

M2
t log t

t(Dt/t)2
) +O(

M5
t log t

t(Dt/t)3
).

By direct calculation, ξ = Vt∆u, where ∆u = (∆u1, . . . ,∆ut)
T . Thus,

∆u = V−1
t ξ = V−1

t (a−Ea)−V−1
t η = St(a−Ea)+Wt(a−Ea)−V−1

t η. (A.8)
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When Mt = o(t1/10/(log t)1/5) and Dt/t ≥ τ > 0, |(V−1
t η)i| = o(t−1/2) and, by

Lemma A.2, |(Wt(a− Ea))i| = op(t
−1/2). We have

(∆u)i = (V−1
t ξ)i = (St(a− Ea))i + op(t

−1/2).

By (A.7), viiv00/(vii+v00) ≤ (v00 + vii)/2 ≤ Nt/4 for all i and Theorem 2 follows

directly from Proposition 2.
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