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Abstract: The task of calculating marginal likelihoods arises in a wide array of

statistical inference problems, including the evaluation of Bayes factors for model

selection and hypothesis testing. Although Markov chain Monte Carlo methods

have simplified many posterior calculations needed for practical Bayesian analysis,

the evaluation of marginal likelihoods remains difficult. We consider the behavior

of the well-known harmonic mean estimator (Newton and Raftery (1994)) of the

marginal likelihood, which converges almost-surely but may have infinite variance

and so may not obey a central limit theorem.

We illustrate the convergence in distribution of the harmonic mean estimator

in typical applications to a one-sided stable law with characteristic exponent 1 <

α < 2. While the harmonic mean estimator does converge almost surely, we show

that it does so at rate n−ϵ where ϵ = (α − 1)/α is often as small as 0.10 or 0.01.

In such a case, the reduction of Monte Carlo sampling error by a factor of two

requires increasing the Monte Carlo sample size by a factor of 21/ϵ, or in excess

of 2.5 · 1030 when ϵ = 0.01, rendering the method entirely untenable. We explore

the possibility of estimating the parameters of the limiting stable distribution to

provide accelerated convergence.

Key words and phrases: Alpha stable, Bayes factors, bridge sampling, harmonic

mean, marginal likelihood, model averaging.

1. Introduction

The task of calculating marginal likelihoods arises in a wide array of sta-

tistical inference problems. Models with missing or censored data, or latent

variables, require computation of marginal likelihoods in the process of (often it-

erative, numerical) likelihood maximization. In the Bayesian paradigm, hypothe-

ses are tested and models selected by evaluating their posterior probabilities or

calculating Bayes factors (Kass and Raftery (1995)), and predictions made by

averaging over models weighted by their associated posterior probabilities (Clyde

and George (2004)). In each case the key quantity is the marginal probability

density function fm(x) at the observed data vector x for each model m under

consideration, and only in simple special cases can this be obtained analytically.

Although Markov chain Monte Carlo methods have broadened dramatically

the class of problems that can be solved numerically using Bayesian methods,
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the problem of evaluating fm(x) remains difficult and has received considerable
attention (Gelfand and Dey (1994); Newton and Raftery (1994); Chib (1995);
Meng and Wong (1996); Raftery (1996); Gelman and Meng (1998); Chib and
Jeliazkov (2001); Han and Carlin (2001); Meng and Schilling (2002); Sinharay
and Stern (2005)). Newton and Raftery (1994) note that the harmonic mean
identity f−1

m = E πfm(x | θ)−1 (where π(θ) = fm(x | θ)π0(θ)/fm(x) denotes the
posterior density for prior π0(θ)) implies that for (possibly dependent) posterior
samples {θj} ∼ π(θ) dθ, the sample means of the inverse likelihood function
fm(x | θj)−1 converge almost surely to fm(x)−1, yielding the harmonic mean
estimator (HME) for fm(x):

f̂m(x)
def
=

( 1

n

n∑
j=1

fm(x | θj)−1
)−1

. (1.1)

Newton and Raftery also note that fm(x | θj)−1 can have infinite variance, in
which case a central limit theorem does not apply to the partial sums Sn of the
fm(x | θj)−1 in (1.1). In fact, fm(x | θj)−1 has finite variance only when fm(x |
θ)−1 is square-integrable with respect to π(dθ), i.e., when

∫ {
π0(θ)/fm(x | θ)

}
dθ

< ∞; this can only happen when the prior π0(θ) is less diffuse than the likelihood
fm(x | θ). Although this situation almost never arises in practice, nevertheless
the HME remains popular due to its seductive simplicity, and it is used widely
in such applications areas as Bayesian phylogenetics (Huelsenbeck and Ronquist
(2001); Nylander et al. (2004); Drummond and Rambaut (2007)). Indeed, despite
awareness that the HME may fail to obey a central limit theorem (Lartillot and
Philippe (2006)), its use continues to be recommended in the literature. For
example, Nylander et al. (2004) say “Although some workers have questioned
the general stability of the harmonic mean estimator, it should be sufficiently
accurate for comparison of models with distinctly different model likelihoods
given that the sample from the posterior distribution is large”, and support this
by citing a popular introductory text on MCMC methods (Gamerman and Lopes
(2006, Sec. 7.2.1)) that in turn suggests “The simplicity of [the HME] makes it
a very appealing estimator and its use is recommended provided the sample is
large enough.” The HME also continues to be the subject of research (Raftery et
al. (2007)). It is our goal in this paper to show that it is nearly always a practical
impossibility to draw samples that are “large enough”.

The behavior of the HME is also relevant to other methods aimed at related
problems. For example, bridge sampling (Meng and Wong (1996)) estimates the
ratio of normalizing constants for two unnormalized densities p1(z) = c−1

1 q1(z)
and p2(z) = c−1

2 q2(z) by the identity

λ
def
=

c1
c2

=
E 2(q1(z)g(z))

E 1(q2(z)g(z))
≈

n1
∑n2

j=1 q1(z2j)g(z2j)

n2
∑n1

j=1 q2(z1j)g(z1j)

def
= λ̂, (1.2)
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where zij ∼ pi(z) dz, for any g(·) such that 0 <
∫
Ω p1(z)p2(z) |g(z)| dz < ∞. For

qj(z) sharing identical compact support, the generalized HME is the special case

in which g(z) = (q1(z)q2(z))
−1. This suggests that other choices of g(·) may also

lead to similar problems. The numerator or denominator in (1.2) has infinite

variance whenever∫
g(z)2p1(z)

2p2(z) dz = ∞ or

∫
g(z)2p1(z)p2(z)

2 dz = ∞, (1.3)

respectively (for example, if g(z)2p1(z)
2p2(z) ≍ k|z|−α as z → ∞ for some

α < 1). Thus bridge sampling with a poor choice of g(·) may suffer prob-

lems similar to those of the HME. (Note however that Meng and Wong (1996)

recommend iterative refinement of λ̂, leading to finite variance on the second

iteration.) Similarly, path sampling (Gelman and Meng (1998)) (or thermody-

namic integration), with finite step sizes uses a sequence of distributions p1 = p̃1,

p̃2, . . . , p̃k = p2, and may have var(λ̂) = ∞ if condition (1.3) occurs for any

pair (p̃j , p̃j+1), j ∈ {1, . . . , k}. Gelfand and Dey (1994) propose a generalization

of the HME given by E π {τ(θ)/[fm(x | θ)π0(θ)]} for an arbitrary proper density

function τ(·), which will be similarly problematic for any choice of τ(·) for which∫
τ(θ)2/π(θ)2 dθ = ∞ — i.e., if τ has much heavier tails than the posterior (quite

possible, with the t densities they recommend).

Other methods where similar effects are likely to arise include methods for

handling intractable normalizing constants in likelihood functions (Geyer (1991);

Geyer and Thompson (1992); Geyer (1994)), including the recent algorithm of

Møller et al. (2006) involving exact sampling and its generalizations (Andrieu et

al. (2007)). All of these methods have in common the use of importance ratios

which, if unbounded, can lead to infinite variance and inapplicability of a central

limit theorem.

In this paper conditions are given and examples are shown to illustrate that

fm(x | θj)−1 may lie in the domain of attraction of a one-sided α-stable law of

index (or characteristic exponent) α ∈ (1, 2]. Only in problems with precise prior

information and diffuse likelihoods is α = 2, where the Central Limit Theorem

applies and the Sn have a limiting Gaussian distribution with sample means

converging at rate n−1/2. In typical applications where the sample information

exceeds the prior information, the limit law is stable of index α close to one, and

convergence is very slow at rate n−ϵ for ϵ = 1− α−1 close to zero.

In Section 2 we review the properties of α-stable laws we need. In Section 3

we introduce a sequence of increasingly realistic illustrative examples where the

α-stable behavior of the HME can be studied analytically. In Section 4 we explore

the possibility of improving on the HME’s slow convergence rate by exploiting

the approximately α-stable nature of its partial sums, but find that this approach
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remains uncompetitive with other existing alternatives. In Section 5 we discuss

the implications of these results, including the emphatic recommendation that

the harmonic mean estimator should not be used.

2. Stable Laws

Last century Paul Lévy (1925, Chap. VI) proved that the only possible lim-

iting distributions for re-centered and rescaled partial sums Sn =
∑

j≤n Yj of

independent identically-distributed random variables {Yj} are the stable laws

(Sn − an)/bn ⇒ Z ∼ StA(α, β, γ, δ) with characteristic functions (in the (A)

parametrization of Zolotarev (1986, p. 9))

E [eiωZ ] =

{
exp

(
iδγω − γ|ω|α{1− iβ sgnω tan πα

2 }
)

α ̸= 1

exp
(
iδγω − γ|ω| {1 + iβ sgnω 2

π log |ω|}
)

α = 1
, (2.1)

for some index α ∈ (0, 2], skewness −1 ≤ β ≤ 1, rate γ > 0, and location

−∞ < δ < ∞. For non-zero β this family has a sharp discontinuity at α = 1

(Cheng and Liu (1997)) because of the tangent term. The (M) parametriza-

tion StM(α, β, γ, δ) = StA(α, β, γ, δ
∗) of Zolotarev (1986, p. 11) overcomes this by

shifting the location to δ∗ = δ−β tan(πα/2) leading to a continuous parametriza-

tion in all four parameters (we need this below). This location/scale family has a

smooth unimodal density function f(x), but only in a few special cases is it known

in closed form. Still both density and distribution functions can be evaluated by

numerical inversion of the Fourier transform; in Zolotarev’s (M) parametrization,

these are

f(z) =
1

π

∫ ∞

0
e−γωα

cos
[
ω(z − δγ) + βγ tan πα

2 (ω − ωα)
]
dω, (2.2a)

F (z) =
1

2
+

1

π

∫ ∞

0
e−γωα

sin
[
ω(z − δγ) + βγ tan πα

2 (ω − ωα)
]
ω−1 dω. (2.2b)

Only for α > 1 is E |Z| finite; in this case the mean is

E [Z] = δ∗γ = δγ − βγ tan πα
2 .

For β = 1 and α just slightly above one, the situation we encounter, the mean

µ ≡ E [Z] ≍ δγ + 2γ/[π(α− 1)] is large while the median M is close to zero, so

the distribution is skewed far to the right (see Figure 1a), and estimating δ or

E [Z] from sample averages is difficult.

If random variables {Yj} are iid with finite variance and tail probabilities

that fall off sufficiently fast that y2 P[|Yj | > y] → 0, the Central Limit Theorem

applies and the only possible limiting distribution of (Sn − an)/bn for Sn =
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(a) (b)

Figure 1. Stable pdf f(z) for (a) α = 1.05 and (b) α = 1.5, with β = γ =
1 and δ = 0, in Zolotarev’s (M) parametrization. Mean and median are
indicated by strokes labeled “µ” and “M” respectively.

∑
j≤n Yj is normal, the special case α = 2 of the stable. The limit is stable

of index α ∈ (0, 2) if, instead, P[|Yj | > y] = k(y) y−α as y → ∞ for a slowly-

varying function k(·) > 0 (Gnedenko (1939), Feller (1971, IX.8), or Gnedenko

and Kolmogorov (1968, Chap. 7, Sec. 35)); it is one-sided (or “fully skewed”)

stable if also yα P[Yj < −y] → 0, whereupon β = 1. That is the case of interest

to us below.

2.1. Stable laws for Markovian sequences

When the Yj ’s are not independent but arise from a stationary Markov chain

with invariant distribution π, one expects that similar results may hold (i.e., that

(Sn − an)/bn can only have normal or α-stable limits in distribution) so long as

any dependence for Yi, Yj decays sufficiently fast in |i−j|. Ibragimov and Linnik

(1971, Thm. 18.1.1) show that the partial sums of any strongly mixing sequence

can converge only to a stable distribution with 0 < α ≤ 2. When the Yj ’s

have finite variance, CLTs hold under standard mixing conditions (Kipnis and

Varadhan (1986); Chan and Geyer (1994); Roberts and Rosenthal (2004)). In

particular if E π(|Yj |2+ϵ) < ∞ for some ϵ > 0, or ϵ ≥ 0 when the Markov chain is

reversible, it suffices that the chain be geometrically ergodic, i.e., that for some

number ρ ∈ (0, 1) and functionM : X → [0,∞), and all n ∈ N, the total variation
satisfies ∥Kn(x, ·)− π(·)∥ ≤ M(x)ρn. When E π(|Yj |2) = ∞ one might similarly

expect convergence to an α-stable law if dependence is not too strong.

Nagaev (1957) proved that when the Yj form a stationary Markov chain satis-

fying Döblin’s condition (Döblin (1938)) with marginal distribution belonging to

a stable domain of attraction with 0 < α < 2, then Sn has a stable limit with in-

dex α. Davis (1983) shows this for any stationary sequence satisfying a condition

weaker than strong mixing along with an extreme value dependence condition.
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As Döblin’s condition is equivalent to uniform ergodicity (Meyn and Tweedie

(1993, Chap. 16)) with constant M(x) ≡ M , one suspects that weaker condi-

tions (similar to the geometric ergodicity required for CLTs when E π|Yj |2 < ∞)

may suffice. Recently Jara, Komorowski, and Olla (2009) proved convergence

to α-stable for Markov chains under either of two distinct sets of conditions.

The first requires geometric ergodicity plus an additional condition that the tails

of the marginal transition density do not differ too much from the tails of the

stationary distribution; the second does not require geometric ergodicity, but

imposes a condition on the tails of coupling times.

At present it is unclear whether these assumptions can be weakened further.

Since geometric ergodicity is a typical requirement for a central limit theorem in

the finite variance case; however, it seems reasonable to require similar conditions

for a stable limit in the infinite variance case.

3. Illustrative Examples

In this section we present a sequence of increasingly realistic illustrative ex-

amples where the α-stable behavior of the HME can be studied analytically.

Although the HME is not required in these examples, since the marginal like-

lihoods can be obtained in closed form, this allows us to analyze precisely the

convergence behavior of the HME. In 3.6, we argue that similar behavior can be

expected in essentially all nontrivial cases, where exact calculations are generally

unavailable.

3.1. Example 1: Gamma

Let Xj ∼ Ga(a, λ) be independent draws from a Gamma distribution with

shape parameter a and rate parameter λ, and set Yj ≡ exp(Xj). Then

E [Yj
p] = (1− p

λ
)−a < ∞ if p < λ;

P[Yj > y] = P[λXj > λ log y]

=
Γ(a, λ log y)

Γ(a)

= (λ log y)a−1 exp(−λ log y)
[1 +O(1/λ log y)]

Γ(a)

= k(y)y−λ as y → ∞,

where Γ(a, x) denotes the incomplete Gamma function (Abramowitz and Stegun

(1964, §6.5.32)) and k(·) is slowly-varying. If λ > 2 then Yj has finite variance

and lies in the normal domain of attraction, while for λ < 2 the limit is one-sided

stable of index α = λ.



α-STABLE LIMIT LAWS FOR THE HME 1239

3.2. Example 2: normal

Now let Zj be independent normal with mean µ ∈ R and variance V > 0,

and set Yj ≡ exp(cZj
2). If µ = 0 then cZj

2 ∼ c V χ2
1 = Ga(a, λ) is Gamma

distributed with shape a = 1/2 and rate λ = 1/2cV , so for V > 1/4c the limiting

distribution is again one-sided stable of index α = 1/2cV , as in Example 1. Even

for µ ̸= 0 the same limit follows from the calculation

P[Yj > y] = P
[
|Zj | >

√
(log y)

c

] (
set η ≡

√
(log y)

c

)
= Φ

(−η − µ√
V

)
+Φ

(−η + µ√
V

)
≍

√
V

2π

[
exp

(
− (η + µ)2/2V

)
η + µ

+
exp

(
− (η − µ)2/2V

)
η − µ

]
= k(y) e−η2/2V = k(y) y−1/2cV as y → ∞, (3.1)

for a slowly-varying k(·), where Φ(z) is the cumulative distribution function for

the standard normal distribution (Abramowitz and Stegun (1964, §26.2.13)).
Again Yj lies in the domain of attraction of the one-sided stable distribution of

index α = 1/2cV .

Similarly if Zj
i.i.d.∼ Nop(µ,Σ) are p-variate normal with mean µ ∈ Rp and

positive-definite covariance matrix Σ, and c > 0, then Yj ≡ exp
{
c∥Zj∥2

}
satisfies

P[Yj > y] = k(y) y−1/2cV

for a slowly-varying k(·) with V = ρ(Σ), the spectral radius (largest eigenvalue)

of Σ. Again Yj lies in the domain of attraction of the one-sided stable distribution

of index α = 1/2cV (note that α does not depend on the mean µ or the dimension

p).

3.3. Example 3: testing a normal hypothesis

Let {Xk}
i.i.d.∼ No(θ, σ2) be r normally-distributed iid replicates with known

variance σ2 > 0 but uncertain mean θ. Two models are entertained: M0, under

which θ ∼ No(µ0, τ
2
0 ), and M1, under which θ ∼ No(µ1, τ

2
1 ) (the point null

hypothesis with τ0 = 0 is included). The joint and marginal densities for the

sufficient statistic x̄ from the r replicates {Xk} under model m ∈ {0, 1} are

πm(θ, x̄) = (
2πσ2

r
)−1/2(2πτ2m)−1/2e−r(x̄−θ)2/2σ2−(θ−µm)2/2τ2m ,

fm(x̄) = [2π(
σ2

r
+ τ2m)]−1/2e−(x̄−µm)2/2(σ2/r+τ2m),
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so under prior probabilities π[M0] = π0 and π[M1] = π1, the posterior probability

of model M0, and the posterior odds against M0, are

P[M0 | x⃗] =
π0f0(x̄)

π0f0(x̄) + π1f1(x̄)
and

P[M1 | x⃗ ]
P[M0 | x⃗ ]

=
π1
π0

f1(x̄)

f0(x̄)
.

Thus the key for making inference and for computing the Bayes factor B =

f1(x̄)/f0(x̄) is the computation of each marginal density function

f(x̄) =
[
2π(

σ2

r
+ τ2)

]−1/2
e−(x̄−µ)2/2(σ2/r+τ2) (3.2)

at the observed data point x̄. Set

Yj ≡
1

f(x̄ | θj)
=

(2πσ2

r

)1/2
er(x̄−θj)

2/2σ2 ∝ exp
( r

2σ2
(θj − x̄)2

)
. (3.3)

Then Newton and Raftery’s Harmonic Mean Estimator (1994)

n∑n
j=1 1/f(x̄ | θj)

=
1

Ȳn
→ f(x̄) (3.4)

converges almost surely for any µ and τ . It is our goal to show that the conver-

gence can be very slow.

For this conjugate model the Monte Carlo replicates {θj} have normal pos-

terior distributions, so for iid draws the Yj of (3.3) are the same as those of

Example 2 above, with c = r/2σ2 and V = (r/σ2 + 1/τ2)−1 (the conditional

variance of θj given x̄). The Central Limit Theorem applies and Ȳn is asymptot-

ically normal only if

α =
1

2cV
=

1

2(r/2σ2)(r/σ2 + 1/τ2)−1
=

(
1 +

σ2

rτ2

)
exceeds 2, i.e., only if the prior variance τ2 is less than the sampling variance

σ2/r. Otherwise, if σ2/r < τ2, the limiting distribution of Ȳn is one-sided α-stable

with index α ∈ (1, 2). As the sample size r increases, so that the data contain

substantially more information than the prior, then we are driven inexorably to

the α-stable limit, with index α = (1 + σ2/rτ2) just slightly above one.

Since E [Yj ] = 1/f(x̄), Lévy’s limit theorem asserts that

Ȳn − 1/f(x̄)

n(−1+α−1)
⇒ Z (3.5)

converges in distribution to a fully-skewed α-stable random variable Z ∼ StA(α, 1,
γ, 0) of index α = (1 + σ2/rτ2) for some rate γ > 0, whence

Ȳn ≈ 1

f(x̄)
+ Z n−1+α−1

.
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Although Ȳn → 1/f(x̄) almost surely as n → ∞, the convergence is only at rate

n−ϵ for ϵ = 1 − α−1 = (1 + rτ2/σ2)−1 < σ2/rτ2 (Kuske and Keller (2001)),

and moreover the errors Zn−1+α−1
have thick-tailed distributions with infinite

moments of all orders p ≥ α (Samorodnitsky and Taqqu (1994, Eqn. 1.2.8 and

Prop. 1.2.15, 1.2.16)).

This has enormous consequences. For typical Monte Carlo applications in

which a Central Limit Theorem applies, errors may be reduced by a factor of

two (for example) by increasing the Monte Carlo sample size by a factor of

just 22 = 4. For the HME, this would instead require that the sample size be

increased by a factor of 21/ϵ— a factor of 2,048 if the prior variance τ2 is just

ten times that of the likelihood σ2/r, or of 2.53 · 1030 in the common case of a

prior distribution chosen to be be “vague” enough to have a variance exceeding

that of the likelihood by a factor of one hundred.

Figure 2 illustrates the situation. On the left, Figure 2a shows a sequence

of one million terms Yj = 1/f(x̄ | θj) as faint spots (the five largest are circled

for emphasis) along with a curve indicating their running average Ȳn, the inverse

of the HME. The dashed horizontal line is the asymptote 1/fm(x̄) = 3.3005.

Figure 2b shows ten overlaid plots of a million steps each for the Harmonic Mean

Estimators 1/Ȳn as solid curves, along with their asymptotic value fm(x̄) =

0.3030 as a thick dashed curve. Vertical scale is logarithmic; strikingly slow

convergence is evident.

3.4. Example 4: linear models

Consider Bayesian analysis of the linear regression model y = Xβ + ϵ for

design matrix Xr×p and iid measurement errors {ϵi}
i.i.d.∼ No(0, σ2). With σ2

known and a standard conjugate No(β0,Σ0) prior distribution for β, the posterior

density is normal π(β | y,X) = Nop(βy,Σy) with mean and covariance

βy = β0 +Σ0X
′[XΣ0X

′ + σ2]−1 [y −Xβ0],

Σy = Σ0 − Σ0X
′[XΣ0X

′ + σ2]−1XΣ0,

so Z = y −Xβ has conditional (given y) distribution

y −Xβ ∼ No
(
y −Xβy, σ2XΣ0X

′ [XΣ0X
′ + σ2]−1

)
.

The covariance matrix for Z ≡ y − Xβ has spectral radius V = σ2R/(R + σ2)

where R = ρ(XΣ0X
′) is the largest eigenvalue of XΣ0X

′. The inverse likelihood

function of β for the observed y is

f(y | β,X)−1 = (2πσ2)
n
2 exp

{
1

2σ2
∥y −Xβ∥2

}
∝ exp(c∥Z∥2)
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(a) (b)

Figure 2. HME illustrations for samples of size r from Normal {Xi}
i.i.d.∼

No(θ, σ2) distribution with conjugate θ ∼ No(0, τ2) prior, with τ2 =
10(σ2/r). Dots in (a) indicate individual values Yj (five largest are cir-
cled), solid curve shows cumulative average. Curves in (b) show ten inde-
pendent replicates of HME 1/Ȳn. Dashed horizontal lines are asymptotes
1/fm(x̄) ≈ 3.3005 and fm(x̄) ≈ 0.3030, respectively. Vertical axis is dis-
played in log scale.

for c = 1/2σ2, so for iid draws βj ∼ No(βy,Σy) from the posterior distribution

the quantity Yj = f(y | βj , X)−1 is in the domain of attraction of the one-sided

α-stable distribution with index α = 1/2cV = 1+σ2/ρ(XΣ0X
′) whenever α < 2.

The Central Limit Theorem applies and Ȳn converges at rate n−1/2 only when

σ2 ≥ ρ(XΣ0X
′), i.e., when the measurement error variance exceeds the prior

predictive variance. In the more typical case where σ2 ≪ R = ρ(XΣ0X
′), each

reduction of Monte Carlo sampling error by a factor or two would require that

the number of MC samples be increased by a factor of 21+R/σ2
.

3.5. Example 5: natural exponential families

The distribution of iid random variables {Xj} taking values in some mea-

surable space X is a natural exponential family if it has density functions of the

form

f(x | θ) = eθ·T (x)−A(θ) h(x)

for some p-dimensional statistic T : X → Rp, real-valued A : Θ → R, and

nonnegative h : X → R+ (Brown (1986, Chap. 1)). It is well-known that T+ ≡∑
T (xi) is a sufficient statistic for an iid random sample x⃗ = (x1, · · · , xr), that
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(under regularity conditions) ∇A(θ̂) = T̄ ≡ T+/r at the maximum likelihood

estimator (MLE) θ̂(x⃗), and that the single-observation Fisher information matrix

coincides with the observed information, Iθ = ∇2A(θ). If A is smooth it follows

that

A(θ̂ + ε) = A(θ̂) + ε · T̄ + 1
2ε

′Iθ̂ ε+ o(|ε|2) (3.6)

for θ̂, θ̂ + ε ∈ Θ. Such a family admits a conjugate family of prior distributions

with density function

π0(θ) = eθ·τ−βA(θ)−c(τ,β)

indexed by those shape parameters τ ∈ Rp and prior sample sizes β ∈ R for which

c(τ, β) ≡ log
∫
Θ eθ·τ−βA(θ) dθ is well-defined and finite. The posterior density for

θ in this conjugate family is

πr(θ) = eθ·(τ+T+)−(β+r)A(θ)−c(τ+T+, β+r),

which attains its maximum at the maximum a posteriori (MAP) estimator θ̃

where (β+r)∇A(θ̃) = (τ+rT̄ ). By Taylor’s theorem it follows that the posterior

distribution of ζ ≡
√
r(θ − θ̃) has density

ζ | x⃗ ∼ r−p/2 e(θ̃+ζ/
√
r)·(τ+rT̄ )−(β+r)A(θ̃+ζ/

√
r)−c(τ+rT̄ , β+r)

∝ e−
1
2 (1+β/r)ζ′Iθ̃ζ+o(1/r) as r → ∞,

so θ has approximately a normal posterior distribution with mean θ̃ and covari-

ance {(r + β)Iθ̃}
−1, while the inverse likelihood at θj ∼ πr(θ) is

f(x⃗ | θj)−1 ∝ er[A(θj)−θj ·T̄ ] ∝ e
r
2
(θj−θ̃)′Iθ̃(θj−θ̃)+o(1) as r → ∞.

By Section 3.2 the inverse HME Ȳn converges in distribution to the α-stable

StA(α, 1, γ
1−α−1

, f(x⃗)−1) distribution with mean f(x⃗)−1 and index α = 1 + β/r

whenever r > β, so (Ȳn − f(x⃗)−1) has approximately the same distribution as

n−ϵZ for some Z ∼ StA(α, 1, γ, 0). Again Ȳn (resp., the HME 1/Ȳn) converges to

f(x⃗)−1 (resp., f(x⃗)) at rate n−ϵ.

For example, if {Xj}
i.i.d.∼ Bi(k, p) have binomial distributions and p the

conjugate prior p ∼ Be(a, b), then Ȳn has an approximate α-stable distribution

with index α = 1+ (a+ b)/(kr), while if {Xj}
i.i.d.∼ Po(λ) are Poisson distributed

with λ ∼ Ga(a, b), then α = 1 + b/r and convergence is at rate n−ϵ for ϵ =

(1 + r/b)−1 < b/r.
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3.5.1. Non-conjugate priors
Of course the HME is unnecessary for conjugate distributions in exponential

families, where the marginal likelihood f(x⃗) = ec(τ+T+, β+r)−c(τ, β) is available
explicitly, but the prior distributions commonly recommended for such problems
(e.g., Ramsay and Novick (1980)) have heavier tails than conjugate priors, and
so may be expected to lead to even slower convergence.

Consider replacing the conjugate prior θ ∼ No(µ, σ2) in the normal mean ex-

ample {Xi}
i.i.d.∼ No(θ, σ2) of Section 3.3, for example, with a noncentral Student

t prior distribution θ ∼ tν(µ, τ
2) with ν > 0 degrees of freedom. We can write

this prior in hierarchical form as θ | ζ ∼ No(µ, τ2/ζ) with ζ ∼ Ga(ν/2, ν/2) and
use (3.1) with c = r/2σ2 and V = (r/σ2 + ζ/τ2)−1 to write the posterior tail
probabilities for Y ≡ 1/f(x̄ | θ) as

P[Y > y | x⃗, ζ] = k(y) y−1/2cV = k(y) y−1−ζσ2/rτ2 ,

P[Y > y | x⃗] = k(y) y−1

∫ ∞

0

(ν/2)ν/2

Γ(ν/2)
ζ(ν/2)−1e−ζν/2−ζ(σ2/rτ2) log y dζ

= k(y) y−1
[
1 + (2

σ2

r
ντ2) log y

]−ν/2

= k̃(y) y−1

as y → ∞ for slowly-varying k(·) and k̃(·). By Lévy’s limit theorem (Gnedenko
(1939); Döblin (1940)) the sample means Ȳn converge in distribution to the fully-
skewed StA(1, 1, γ, 0) distribution with α = β = 1 for some γ > 0 at a rate slower
than any power of n.

3.6. Example 6: Bernstein-von Mises

Under suitable regularity conditions every posterior distribution is asymp-
totically normally distributed (Le Cam (1956, Sec. 6), van der Vaart (1998,
Thm. 10.1)), and every likelihood function is asymptotically normal, so sta-
ble limiting behavior can be expected to arise in nearly all efforts to apply the
Harmonic Mean Estimator to compute Bayes factors for large sample sizes and
relatively vague prior information with, for any ϵ > 0, convergence slower than
rate n−ϵ if r is sufficiently large.

4. Exploiting α-Stability

In this section we explore whether knowledge of this α-stable limiting behav-
ior can be exploited to improve convergence of the HME by estimating parameters
of the limiting α-stable distribution. Instead of estimating 1/f(x̄) ≈ Ȳn directly
from ergodic averages, we may try to estimate the uncertain parameters α, γ, δ
for the fully-skewed stable Ȳn ∼ StM(α, 1, γn

1−α, δ), whereupon we could base an
estimate of 1/f(x̄) = E [Ȳn] = δγ − γn1−α tanπα/2 on estimates α̂, γ̂, and δ̂.
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4.1. Estimation of stable parameters

A wide variety of methods have been proposed for estimating the parameters

α, β, γ, and δ of the α-stable distribution from random samples {Zi}. Reviewed
by Borak, Härdle and Weron (2005), these include the quantile approach of

McCulloch (1986), the maximum likelihood approach of Nolan (2001) (based

on numerical evaluation of the pdf using the inverse Fourier transform of the

ch.f.), regression methods based on the empirical ch.f. estimate (or “ECE”)

(Kogon and Williams (1998)), wavelet approaches (Antoniadis, Feuerverger and

Gonçalves (2006)), and tail-behavior methods based on extremes (Hill (1975)).

Many of these consider only the symmetric (β = 0, δ = 0) case and most break

down when α is close to one.

A promising approach pioneered by Press (1972), improved by Kogon and

Williams (1998), described by Borak, Härdle and Weron (2005, Sec. 1.5.3), and

further developed by Besbeas and Morgan (2008), begins with the observation

that the modulus |χ(ω)| = exp(−γ|ω|α) of the α-stable ch.f. χ(ω) def
= E exp(iωZ)

depends on only two of the parameters, suggesting that one might base estimates

α̂ and γ̂ on the modulus of the empirical characteristic function

χ̂(ω)
def
=

1

n

∑
j≤n

eiωYj

at specified points ω = ωi by linear regression of

log
(
− log |χ(ωi)|

)
= log γ + α log |ωi| (4.1a)

on log |ωi|. Similarly, argχ(ω) for the fully-skewed α-stable (in the (M) parame-

trization) is

arctan

(
ℑ(χ(ω))
ℜ(χ(ω))

)
= δγω − γ tan πα

2

(
ω − |ω|α sgnω

)
= δγω − γ

2

π
ω log |ω| − (α− 1)

w

π
(log |ω|)2 + o(α− 1)

≈ δγω − γ
2

π
ω log |ω| for α ≈ 1, (4.1b)

suggesting that a subsequent estimate δ̂ might be achieved by regressing{
arg χ̂(ωi)/γ̂ + (2/π)ωi log |ωi|

}
on ωi. Note that “arg χ̂(ωi)” must be evaluated

using the principal value of the arctangent, with a branch cut along the negative

real axis, due to the periodicity of the tangent function.

To illustrate the method we return to Example 3 from Section 3.3, evaluating

the marginal likelihood f(x̄) for the model Xi
i.i.d.∼ No(θ, σ2 = 1) with prior
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distribution θ ∼ No(µ = 0, τ2 = 1), for a sample {Xi} of size r = 10 with sample
mean x̄. Since x̄ is sufficient with likelihood

f(x̄ | θ) = (
2π

r
)−1/2 exp

{
− (x̄− θ)2

2/r

}
,

and x̄ has marginal distribution x̄ ∼ No(0, 1+r−1), the exact marginal likelihood
for r = 10 is available analytically, f(x̄) = (2.2π)−1/2e−x̄2/2.2. The HME will
estimate this by 1/Ȳn, where Ȳn = (1/n)

∑
j≤n Yj with Yj = 1/f(x̄ | θj) =√

π/5 e5(θj−x̄)2 for iid draws θj from the posterior distribution; here θ | x̄ ∼
No

(
10 x̄/11, 1/11

)
. In Section 3.3 we found that Yj is in the domain of attraction

of the α-stable StA(α, 1, γ, f(x̄)
−1) distribution with α = 1 + σ2/rτ2 = 1.10, so

we should expect the HME to behave badly. The marginal likelihood f(x̄) may
be expressed in the form

f(x̄) =
1

E [Yj ]
=

1

γ(δ − tanπα/2)
≈ 1

γ(δ + 20/π)
. (4.2)

For illustration we took a typical value of x̄, the marginal median value
x̄ = 0.7074 for |x̄|, and drew n = 106 Monte Carlo replicates θi from the posterior
distribution of θ given x̄; we evaluated the HME 1/Ȳn and the ECE estimate
{γ̂[δ̂ − tan(πα̂/2)]}−1 from (4.2). Summary statistics from 100 replications of
this experiment are given in Table 1. Histograms for MCMC samples of size 105,
106, 107, 108 are shown in Figure 3, and empirical convergence rates for their
inter-quartile ranges (IQRs) are illustrated in Figure 4. The ECE converges at
the CLT rate of 1/

√
n (as expected, since the CLT applies to the estimators α̂,

γ̂, and δ̂), substantially faster than the HME.
Although the ECE converges at rate 1/

√
n, it does not seem competitive

with other methods. Figure 3 also shows the IQR for a simple version of bridge
sampling (with q1 the unnormalized posterior, q2 the prior, and bridge function
g = 1/q2 in (1.2)) equivalent to importance sampling using the prior. This con-
verges at the same 1/

√
n rate as ECE, since the CLT applies, but it requires a

sample-size more than 2000 times smaller for the same precision. The relative ef-
ficiency would be larger still for optimal bridge sampling (Meng and Wong (1996,
Thm. 1, Sec. 3)). Thus it appears that using the knowledge of the HME’s α-stable
behavior to try and improve on it still does not yield an approach competitive
with other methods. For that reason we do not pursue the ECE further.

5. Discussion

It is well-known that the Harmonic Mean Estimator may converge slowly,
because its inverse Ȳn is the sample mean of terms which may fail to be square-
integrable and hence the Central Limit Theorem may not apply.
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Figure 3. Histogram comparison of 100 replicated estimates of marginal like-
lihood f(x̄) for Harmonic Mean Estimator (diagonal shaded) and Empirical
Characteristic function Estimator (solid shaded), each based on a Monte
Carlo sample of indicated size. True value is shown as vertical line.

Figure 4. Empirical rates at which posterior Inter-quartile Range widths
for the marginal likelihood f(x̄) shrinks with Monte Carlo sampling size n,
for Harmonic Mean Estimator (HME, dotted OLS regression line suggest-
ing interval length decay rate is about ∝ n−0.14), Empirical Characteristic
function Estimator (ECE, solid line) and simple form of a Bridge Sampling
Estimator (BSE, dash-dot line). Both ECE and BSE slopes are within MC
sampling error of −1/2, showing convergence at rate 1/

√
n.
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Table 1. Median and inter-quartile range for 100 replicates of estimating
Marginal Likelihood f0(x̄) from n = 106 Monte Carlo replicates for Harmonic
Mean Estimator and Empirical Characteristic function Estimator.

q50 q25 q75
Truth: 0.3030
HME: 0.3742 [0.3465, 0.3877]
ECE: 0.3055 [0.2933, 0.3174]

We have shown a much stronger cause for alarm about the method— that

in a wide variety of applications the inverse Ȳn of the Harmonic Mean Estimator

based on n Monte Carlo replicates (either iid or following a geometrically ergodic

Markov chain) converges in distribution to a fully-skewed α-stable probability

distribution for some α just slightly above one. Although Ȳn does converge

almost-surely to the marginal likelihood 1/f(x⃗), it does so at rate n−ϵ for ϵ =

1−α−1 close to zero. For conjugate priors and exponential families, for example,

we can evaluate ϵ = (1 + r/β)−1 < β/r explicitly, where r is the number of iid

observations {Xj} contributing to the likelihood and where β is the “prior sample

size” for the conjugate prior distribution (the shape parameters are immaterial).

Figures 3, 4 suggest that the slow convergence rate might be overcome by

exploiting the α-stable nature of the HME partial sums and basing estimates of

the marginal likelihood on parameter estimates for the nearly α-stable distribu-

tion of summands. While this approach does appear to converge at rate 1/
√
n

in the Monte Carlo sample size n, it does not appear to be competitive with

other existing approaches such as bridge sampling (Meng and Wong (1996)), for

example, since even our toy examples require Monte Carlo sample sizes of tens

or hundreds of millions for adequate performance.

Our argument breaks down, and indeed the HME works well, only for prob-

lems in which the prior information exceeds that of the data— for example, in

conjugate exponential family problems with prior sample size β exceeding the

data sample size r, or normal distribution problems in which the prior preci-

sion exceeds that of the combined data. In typical applications where the data

are tens or hundreds of times more informative than the prior distribution, the

convergence of the HME is at rate n−ϵ for ϵ as small as 0.10 or 0.01. Under

these conditions, reducing the Monte Carlo sampling error by a factor of two

would require increasing the Monte Carlo sample size by a factor of 21/ϵ that

may easily exceed 1030. We feel this makes the method entirely indefensible.

Optimistic suggestions that the HME may work for “sufficiently large Monte

Carlo samples” are correct, of course— but securing “sufficiently large” samples

may require geological time.
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Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P. and Nieves-Aldrey, J. (2004). Bayesian
phylogenetic analysis of combined data. Systematic Biology 53, 47-67.

Press, S. J. (1972). Estimation in univariate and multivariate stable distributions. J. Amer.
Statist. Assoc. 67, 842-846.

Raftery, A. E. (1996). Hypothesis testing and model selection. In Markov Chain Monte Carlo
in Practice, (edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter), 163-188.
Chapman and Hall, New York, NY.

Raftery, A. E., Newton, M. A., Satagopan, J. M. and Krivitsky, P. N. (2007). Estimating
the integrated likelihood via posterior simulation using the harmonic mean identity. In
Bayesian Statistics 8 (Edited by J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid,
D. Heckerman, A. F. M. Smith, and M. West), 371-416. Oxford Univ. Press, Oxford, UK.

Ramsay, J. O. and Novick, M. R. (1980). PLU robust Bayesian decision theory: Point estima-
tion. J. Amer. Statist. Assoc. 75, 901-907.

Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC
algorithms. Probab. Surveys 1, 20-71.

Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochas-
tic Models with Infinite Variance. Chapman and Hall, New York, NY.

Sinharay, S. and Stern, H. S. (2005). An empirical comparison of methods for computing Bayes
factors in generalized linear mixed models. J. Comput. Graph. Statist. 14, 415-435.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Univ. Press, Cambridge, UK.

Zolotarev, V. M. (1986). One-dimensional Stable Distributions. American Mathematical Society,
Providence, RI.

Department of Statistical Science, Duke University, Durham NC 27708-0251, USA.

E-mail: wolpert@stat.duke.edu

Department of Statistical Science, Duke University, Durham NC 27708-0251, USA.

E-mail: schmidler@stat.duke.edu

(Received October 2010; accepted July 2011)

wolpert@stat.duke.edu
schmidler@stat.duke.edu

	1. Introduction
	2. Stable Laws
	2.1. Stable laws for Markovian sequences

	3. Illustrative Examples
	3.1. Example 1: Gamma
	3.2. Example 2: normal
	3.3. Example 3: testing a normal hypothesis
	3.4. Example 4: linear models
	3.5. Example 5: natural exponential families
	3.6. Example 6: Bernstein-von Mises

	4. Exploiting alpha-Stability
	4.1. Estimation of stable parameters

	5. Discussion

