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Abstract: Consider estimating θ1, . . . , θN based on data zi ∼ fθi , where fθ is a

continuous natural exponential family. One successful approach is Empirical Bayes

(EB). EB methods assume that θ come from an unknown prior, and estimate the

Bayes procedure corresponding to that prior.

In this paper, we propose a general form of nonparametric EB estimator that

uses estimates of the marginal density of z and its derivative. This estimator was

first proposed by Zhang (1997) for the normal means problem, zi ∼ N (θi, 1). We

bound the regret of our method in terms of the error in estimating the marginal

density and its derivative. As a side point, our proof yields a lower bound on the

regret of general estimators.

We illustrate our method in the simultaneous chi-squared problem, where zi is

a chi-squared random variable with scale 1/θi. We specialize our theoretical results

to this case, and study the empirical performance of our method under different

estimators of the marginal and its derivative. Our method outperforms the UMVU

estimator and a conjugate prior parametric EB approach.

Key words and phrases: Chi-squared estimation, density estimation, empirical

Bayes, exponential family, regret bound, separable estimator.

1. Introduction

Suppose we have independent, real-valued, data z1, . . . , zN , and each zi has

distribution fθi , where

fθ(z) = exp (θz − ψ(θ)) f0(z)

is an absolutely continuous natural exponential family. We want to estimate

θ1, . . . , θN under squared error loss. It is well known that the MLE is a poor

estimator of θ when N is large.

Empirical Bayes (EB) methods have been successfully used to construct bet-

ter estimators. EB methods model θi as iid from a prior G, making the full

model

θi ∼ G
zi|θi ∼ fθi

http://dx.doi.org/10.5705/ss.2010.014
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independently for i = 1, . . . , N . In this model, we want an estimator θ̂ = t(z)

that minimizes the Bayes risk R(t, G) = EG

(
(t(z)− θ)2

)
. For a fixed prior G,

Robbins (1954) showed that the Bayes estimator is

tG (z) ≡ EG (θ|z) = −f
′
0 (z)

f0 (z)
+
f ′G (z)

fG (z)
, (1.1)

where fG is the marginal distribution of z and f0 is the carrier density of the

family. This result holds as long as f0 is absolutely continuous Berger (1980).

EB methods treat G as unknown and estimate tG. Parametric EB methods

assume G (or tG) has a certain parametric form, then fit it using the data.

Nonparametric EB (NPEB) methods attempt to estimate tG consistently for all

G. The EB approach has produced estimators with good theoretical and practical

properties (Singh (1979); Singh and Wei (1992); Brown and Greenshtein (2009);

Jiang and Zhang (2009); Zhang (1997, 2003)).

In this paper, we propose a general form of NPEB estimator. Based on

estimates f̂ and f̂ ′ of fG and f ′G, we suggest using the estimator

t̂ρ = −f
′
0

f0
+

f̂ ′

f̂ ∨ ρ
.

This estimator is simple: we just plug f̂ and f̂ ′ into Robbins’ formula, but to

avoid dividing by a near-zero quantity, we replace f̂ by f̂ ∨ ρ = max(f̂ , ρ). This

kind of estimate was suggested for the normal problem (z ∼ N (θ, 1)) by Zhang

(1997) and studied further by Jiang and Zhang (2009).

Their methods, however, are readily generalized to all exponential families

with absolutely continuous f0, that is, to all families where Robbins’ formula

holds. We bound the regret of t̂ρ (the difference in risk between t̂ρ and tG) in

terms of the error in f̂ and f̂ ′. The bounds can then be used to show that

t̂ρ asymptotically achieves the Bayes risk. Our proof technique also yields a

lower bound for the regret of a general estimator in terms of a related density

estimate. This lower bound further motivates NPEB methods and provides a

useful diagnostic for general methods.

We illustrate the general theory by applying it to the simultaneous chi-

squared estimation problem, where zi comes from a chi-squared distribution with

inverse scale θi. This problem arises in microarray data: the θi are needed to

construct t-statistics, which in turn are used in many simultaneous inference

procedures to find differentially expressed genes Efron (2008). We study the

finite-sample performance of t̂ρ for different choices of f̂ and f̂ ′ by simulation,

and specialize our theoretical results to the chi-squared case.
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2. Proposed Method and Regret Bounds

In this section, we outline our proposed NPEB method and prove bounds

on the regret. We also obtain lower bounds on the regret of a general estimator

for this problem; this side point motivates NPEB methods and provides a useful

diagnostic.

2.1. Setup, regret and the proposed estimator

For the rest of the paper, we work with the Bayesian model

θ ∼ G
z|θ ∼ fθ.

We assume that there are N previous draws (θi, zi) from this model, and we

observe z1, . . . , zN . We want to estimate θ based on z for a new draw (θ, z). We

use z1, . . . , zN to construct an estimator t (z) = t (z; z1, . . . , zN ). We condition

on z1, . . . , zN throughout; all expectations and probabilities are conditional on

z1, . . . , zN , though our notation supresses this. This lets us treat t (z) as a fixed

function of z.

Our goal is to construct an estimator that performs nearly as well as the

Bayes estimator tG. Let the Bayes risk of an estimator t (z) be

R (t, G) = EG

(
(θ − t (z))2

)
.

The regret of t is how much extra Bayes risk we get by using t instead of the

Bayes estimator tG:

∆ (t, G) = R (t, G)−R (tG, G) .

Because we use squared-error loss, tG is just EG (θ|z), and the definition of

conditional expectation implies that

∆(t, G) = EG

(
(t(z)− tG(z))2

)
. (2.1)

This actually holds even if θ is not square integrable, as long as R (tG, G) is

finite Singh (1979); Brown (1971). Acheiving low regret is thus equivalent to

estimating tG well under squared error loss.

We propose estimating tG using a tempered NPEB estimator. The most

obvious approach based on equation (1.1) would be to use z1, . . . , zN to estimate

fG and f ′G by, say, f̂ and f̂ ′, then plug in to estimate tG. But if f̂ is too

small, f̂ ′

f̂
may be too large, and we may overshrink. Zhang (1997) introduced a

simple solution in the normal case - replace the f̂ in our plug-in estimator by
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f̂ ∨ ρ = max
(
f̂ , ρ
)
for some small ρ, but keep f̂ ′ the same. Using this approach

for other exponential families gives us a tempered EB estimator

t̂ρ = −f
′
0

f0
+

f̂ ′

f̂ ∨ ρ
. (2.2)

Tempering protects us from overshrinking. In the tails, f̂ ′ → 0 and f̂∨ρ→ ρ,

so f̂ ′/(f̂ ∨ ρ)→ 0. So in the tails, t̂ρ approaches −f ′0/f0, the UMVU estimator of

θ Sharma (1973). This is sensible, since the tails are exactly where we have the

least information about fG. Tempered EB estimators are similar to the limited

translation estimators introduced by Efron and Morris (1971).

2.2. Bounding the regret

We now bound the regret of t̂ρ in terms of the error in f̂ and f̂ ′. Our bounds

generalize results of Zhang (1997) and Jiang and Zhang (2009). Recall that we

are conditioning on z1, . . . , zN , so that regret is a conditional expectation and f̂

and f̂ ′ are fixed functions of z.

Lemma 1. Suppose that f ′G/(fG ∨ ρ) ≤ A(ρ). Then

∆
(
t̂ρ, G

)1/2 ≤ 1

ρ

(∫ (
f̂ ′−f ′G

)2
fGdz

)1/2

+
1

ρ
A(ρ)

(∫ (
f̂−fG

)2
fGdz

)1/2

+T (ρ, fG),

where T (ρ, g) = (
∫
(1− g/ρ)2+(g′/g)2fGdz)1/2.

Lemma 1 has two unfamiliar features, a tempering term and a bound A(ρ).

The tempering term T (ρ, fG) depends on the heaviness of the tail of fG and

behaves roughly like ρ1/2. If fG has exponential or lighter tails, it behaves like

ρ1/2 with some log factors, and if fG falls as z−k, it behaves like ρ1/2−1/2k. The

bound A(ρ) measures how quickly f ′G drops off compared to fG. We always have

A(ρ) ≤ (1/ρ) sup ∥f ′θ∥∞, but sometimes we can do better. In the normal case,

Jiang and Zhang (2009) get A(ρ) = O (log ρ).

Lemma 1 bounds the regret by error in f̂ and f̂ ′. If f̂ and fG are smooth,

we can reduce this to a bound in terms of the error in f̂ , since if f̂ and fG are

smooth and f̂ is close to fG, f̂
′ should be close to f ′G. Theorem 1, below, makes

this precise.

The right kind of smoothness turns out to be the decay of the Fourier trans-

forms of the densities. Sometimes z is not supported on the whole real line, so it

is natural for fG and f̂ to have discontinuities at the boundary of the support,

giving their Fourier transforms heavy tails. In this case, the theorem can be
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applied to smooth extensions of fG and f̂ that agree with the originals on the
support of z. Theorem 1 is conditional on z1, . . . , zN , but only requires that our
particular realization of f̂ be smooth.

Theorem 1. Let f∗ be the Fourier transform of a function f . Suppose |f∗G (u)|,
|f̂∗ (u) | ≤ H (u) for almost all |u| ≥ C, where

∫
u2H (u)2 < ∞. Let L (a) =

(1/a2)
∫
|u|≥a u

2H (u)2 du; L (a) ↓ 0 as a→∞. Then

∆(t̂ρ, G)
1/2 ≤ 1

ρ
∥fG∥1/2∞

(√ 5

2π
L−1

(
d(f̂ , fG)

2
)
+A (ρ)

)
d(f̂ , fG) + T (ρ, fG) ,

where d(f̂ , fG) = (
∫
(f̂ − fG)2dz)1/2.

Theorem 1 generalizes a result of Jiang and Zhang (2009) from the normal
case to exponential families and more general density estimators. It shows that if
our densities are smooth, the regret is bounded by the density estimation error,
up to smoothness and tempering terms. The tempering term is the same as in
Lemma 1. The smoothness term L−1(d2) depends on how fast the characteristic
functions of fG and f̂ decay: if exponentially, L−1(d2) behaves like log d; if they
decay as u−k, it behaves like d−2/(2k−1). Since we are conditioning on z1, . . . , zN ,
what matters is the smoothness of fG and the realized f̂ . Theorem 1 is not as
sharp as the result of Jiang and Zhang (2009) when applied to the normal case.

2.3. Aside: A lower bound on the regret

Our proofs lead to another motivation for NPEB methods and a useful diag-
nostic tool for the simultaneous estimation problem. Consider a general estimator

t (z) = −f
′
0

f0
+
f ′t
ft
,

where log ft =
∫ z
0 (t(x) + f ′0(x)/f0(x))dx. We can view t as coming from Rob-

bins’ formula with ft plugged in as an estimate of fG; roughly speaking, ft is
the marginal density of z that would make t Bayes, though ft may not be a
proper density. Working backward from an estimator to a marginal density us-
ing Robbins’ formula has previously been used to prove admissibility results in
the normal case (Brown and Greenshtein (2009); Berger and Srinivasan (1978)).

Theorem 2 shows that for t to have low regret ft must be close to fG. Since
ft is only determined up to scale, we fix ft (z0) = fG (z0) at some arbitrary point
z0.

Theorem 2. Let FG be the cdf of z under G and

P (z) =


FG(z)
fG(z) z ≤ z0,
1−FG(z)
fG(z) z ≥ z0.
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Then if ft is scaled so ft (z0) = fG (z0),∫ ∣∣∣∣log fGft
∣∣∣∣ fGdz ≤ (∫ P (z)2fG(z)dz

)1/2

∆(t, G)1/2.

Alternatively, if ft is integrable and scaled to be a density, a simple modifi-

cation of Theorem 2 shows that

DKL (ft∥fG) ≤ inf
z0

[(∫
P (z)2fG(z)dz

)1/2

∆(t, G)1/2 + log
ft (z0)

fG (z0)

]
,

where DKL (f∥g) =
∫
log g

f gdz is the Kullback-Liebler divergence. Versions of

Theorem 2 also hold for the tempered NPEB method that is the main focus of

this paper.

Theorem 2 suggests that if we restrict our attention to EB methods based

on estimates of fG, we do not overlook different techniques with low regret. It

also provides a diagnostic. Given an estimator t, we can work out ft, and see

if it matches the observed distribution of the data; a glaring mismatch indicates

that t has high regret. For example, consider soft-thresholding in the normal

case (fθ = N (θ, 1)). If t (z) = sign (z) (|z| − λ)+, ft is a Huber density that

transitions from normal to exponential at the threshold λ. If z1, . . . , zN look

unlikely to have come from a Huber density, t may well be outperformed by

methods that match fG more closely.

3. Application: Estimating Inverse Variance

3.1. Specializing theoretical results

We illustrate our method in the simultaneous chi-squared problem, where zi
is a chi-squared random variable with k degrees of freedom and scale 1/θi. The

distribution of z|θ is

fθ (z) = Ckθ
n/2zn/2−1 exp

(
−θz

2

)
.

This is an exponential family with natural parameter θ and sufficient statistic

−z/2. We try to estimate θ well under squared error loss. There are other loss

functions that may be of more interest, for example, the loss functions considered

by Berger (1980). Extending our results to more general losses seems difficult,

as we discuss in the conclusion.

The previous theory is easily adapted to give estimates of θ based on z.

Robbins’ formula is

E (θ|z) = k − 2

z
− 2

f ′G (z)

fG (z)
,
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where the factor of −2 comes from the fact that the sufficient statistic is −z/2,
not z. We construct t̂ρ by constructing estimates f̂ and f̂ ′, then plugging in

to get t̂ρ = (k − 2)/z − 2f̂ ′/(f̂ ∨ ρ). Corollary 1 specializes Theorem 1 to the

chi-squared problem.

Corollary 1. Suppose G is integrable and k ≥ 5. Suppose that for some α ∈
(0, 1 − 4/k), PG(θ ≥ m) ≤ Em−[(1−α)/α][k/2] for all m ≥ M , and |f̂∗(u)| ≤
Bu−(1−α)(k/2) for u ≥ C. Then for some constant F that depends on EG (θ), B,

C and M ,

∆
(
t̂ρ, G

)1/2 ≤ F

ρ

(
d
(
f̂ , fG

)−2/(1+(1−α)k)
+A (ρ)

)(
d
(
f̂ , fG

))
+ T (ρ, fG) .

The condition PG (θ ≥ m) = O(m−[(1−α)/α](k/2)) is satisfied, for example,

if G has tails like a Gamma distribution. In this case, the smoothness of f̂

becomes the limiting factor; requiring that f̂∗ decays as u−γ roughly corresponds

to f̂ having continuous γth derivative. Interestingly, the constant in Corollary 1

only depends on G through its mean and tail behavior. The corollary thus holds

uniformly in classes of priors with bounded mean and constrained tail behavior.

If G is bounded and bounded away from 0, and f̂ is smooth enough, we

can give the rate at which the regret converges more explicitly. The constants

in Corollary 2 only depend on the support of G, so the result holds uniformly

across all priors with the same support.

Corollary 2. Suppose k ≥ 5, 0 < M1 ≤ θ ≤M2 <∞, |f̂∗ (u) | ≤ Bu−k/2 for all

u ≥ C. Then if we choose ρ = O(d(f̂ , fG)2/5), ∆(t̂ρ, G) = O(d(f̂ , fG)2/5), with
constants that depend on M1,M2, B and C.

3.2. An empirical comparison

We compared our tempered NPEB estimator to the UMVU estimator, a

conjugate-prior parametric EB estimator, and an estimator introduced by Berger

(1980). Our theory used a sequential setup wherein we observed z1, . . . , zN and

estimated θ for a new observation z. Our simulations use the more realistic

situation where we observe z1, . . . , zN and estimate θ1, . . . , θN . Since each zi can

be treated as the “new observation,” and each zi only affects the density estimate

slightly, our theory still applies.

3.2.1. The UMVU estimator and Berger’s estimator

The UMVU estimator for θ is (k − 2)/z; it is the multiple of 1/z with lowest

mean-squared-error, dominating the MLE k/z (the MLE is also the Jeffrey’s prior
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posterior mean). Berger (1980) found an estimator that dominates the UMVU

estimator:

θ̂i =
k − 2

zi
+

czi
b+

∑
z2i
,

where b ≥ 0 and c ∈ (0, 4 (N − 1)). Berger left the choice of b and c open, so we

tried many different values. All of them performed nearly the same, and none

substantially improved on the UMVU estimator. We used b = c = N .

3.2.2. A parametric EB estimator

Our parametric EB estimator used a conjugate prior whose parameters were

estimated by the method of moments. Efron and Morris (1973) take this approach

in the normal case to obtain an empirical Bayes construction of the James-Stein

estimator.

The conjugate prior for the chi-squared distribution is the Gamma distri-

bution, Gamma (α, β) (x) = (1/Γ) (α)βαxα−1 exp (−xβ). If θ ∼ Gamma (α, β)

and z = (1/θ)χ2
k, then it is easy to show for α > 2, that E (z) = k[β/(α− 1)],

E
(
z2
)
= k (k + 2) (β2/(α− 1) (α− 2)), and E (θ|z) = ((z/2)/(β + z/2)) (k/z) +

(β/(β + z/2)) (α/β).

We estimated α, β by method of moments, then plugged in to estimate

E (θ|z). With m1 = z̄/k and m2 = z̄2/k (k + 2), the method of moment es-

timates are α̂ = max(1 +m2/m2 −m2
1, 3) (we fixedα̂ ≥ 3 to ensure that z has

finite variance) and β̂ = m1m2/(m2 −m2
1). Plugging these in gives an estimate

of E (θ|z). If the prior is very concentrated, m2−m2
1 can be negative. In this case

we fit a very concentrated Gamma by taking α̂ to be essentially infinite (108)

and β̂ = α̂z̄.

3.2.3. Tempered NPEB estimators

Specifying the tempered NPEB estimator requires fixing f̂ , f̂ ′ and ρ. We

used two choices for f̂ and f̂ ′. The first estimator was an off-the-shelf log-spline

estimator. The density estimate takes the form

f̂ (z) ∝ exp
(∑

βici (z)
)
,

where the ci (z) are a natural spline basis. We used the default natural spline

basis supplied by R, with 15 degrees of freedom and boundary knots at the 1st

and 99th percentiles of z. We fit f̂ by binning z and fitting a Poisson GLM. Efron

(2009) used this approach in the normal case; the reference contains details on

the fitting method. Since cubic spines are smooth, the characteristic function of

f̂ should decay quickly. The cubic splines’ discontinuous third derivative means

that Corollary 2 does not apply, but the log-spline estimator seemed to perform

well anyway.
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We chose the degrees of freedom to give f̂ enough flexibility to model all the

test scenarios. We made the choice by plotting histograms of z and assessing the

fit by eye, mimicking the process we would use with data.

Our second density estimator was a Gamma mixture model. We modeled

the prior G as a mixture, G =
∑
πiGamma (ai, bi). We fixed a and b to a grid

of values, then fit π by the EM algorithm. Details on the choice of a, b, and

the EM algorithm are in the appendix. We used 10 mixture groups. As for the

log-spline, we assessed the fit of f̂ by eye, and chose the number of groups to

to give f̂ enough flexibility to model the test scenarios. Given the fitted Ĝ, we

used the density estimator f̂ = fĜ. Since f̂ corresponds to a prior Ĝ with a

Gamma-like tail, it is quite smooth, and both corollaries apply.

Both methods were insensitive to choice of ρ, as long as it was small. We

took ρ = 10−6, but ρ = 0 performed just as well.

3.2.4. Testing scenarios

We tested the methods under distributions of θ ranging from smooth to

sparse. We used the following priors, shown in Figure 1.

1. Gamma (10, 1), a smooth prior.

2. Unif (2, 4), another smooth prior.

3. 50% Gamma (10, 7), 50% Gamma (10, 20), a smooth but bimodal prior.

4. 25% at θ = 1, 50% at θ = 2, and 25% at θ = 10, a three point prior with one

extreme point.

5. 75% Gamma (1, 000, 1, 000), 25% Gamma (1, 000, 333), an approximate two-

point prior

6. A point mass at θ = 1.

We tested the methods with k = 10; increasing k improved all methods’

performance, but did not substantially change their relative performance. We

took N = 10, 000, a size typical of microarray studies.

These priors are fair, in the sense that none of the methods are fitting the

true model (except the parametric EB method on prior 1). The UMVU, Berger,

parametric EB and log-spline estimators are clearly not tailored to these priors.

The Gamma mixture method used a fixed grid of 10 gamma groups for a non-

parametric fit; it does not have an unfair advantage in fitting the Gamma priors

used here.

3.2.5. Results

Our simulation results are in Tables 1 and 2. Berger’s estimator dominates

the UMVU estimator, but its advantage is small. The parametric EB method

does well on the smooth priors, including the smooth bimodal prior, but does
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Figure 1. Simulation priors as described in the text.

Table 1. Mean squared errors (1/N)
∑

(θ̂−θ)2 from the simulations under the
priors in the text. The quantities shown are averages over 100 simulations,
with standard deviations given in parentheses.

Method Prior 1 Prior 2 Prior 3
UMVU 12.698 (0.4745) 1.167 (0.0351) 0.1577 (0.0070)
Berger 13.252 (0.4778) 1.114 (0.0352) 0.1556 (0.0070)

Parametric EB 5.239 (0.1002) 0.2417 (0.0031) 0.1002 (0.0020)
Log-spline NPEB 6.378 (0.2321) 0.3296 (0.0187) 0.1146 (0.0050)
Mixture NPEB 5.248 (0.1021) 0.0031 (0.0032) 0.0831 (0.0018)

Bayes 5.235 (0.1004) 0.0031 (0.0031) 0.0798 (0.0017)

Method Prior 4 Prior 5 Prior 6
UMVU 3.3966 (0.1677) 0.3756 (0.0157) 0.125 (0.0034)
Berger 3.3786 (0.1678) 0.3668 (0.0157) 0.118 (0.0035)

Parametric EB 6.4130 (0.0479) 0.3970 (0.0045) 2.10× 10−5 (2.9× 10−5)
Log-spline NPEB 2.9670 (0.1396) 0.1830 (0.0099) 9.24× 10−3 (2.8× 10−3)
Mixture NPEB 0.9825 (0.0392) 0.1688 (0.0057) 3.21× 10−5 (5.3× 10−5)

Bayes 0.3218 (0.0354) 0.1241 (0.0051) 0 (0)

very badly on the point priors, doing even worse than the UMVU estimator. It

does well, however, on the point mass, because the moment-based fitting can

detect that the prior is extremely concentrated.

The NPEB methods did well on all the priors, and the mixture model did

best. Both the mixture model and the parametric EB method essentially acheived

the Bayes error on priors 1, 2 and 6 (the smooth unimodal priors and the point

mass), and the mixture model was much better on the rest. The log-spline esti-

mator was not as good, but it did remarkably well for an off-the-shelf estimator.

It was a bit worse than the parametric EB method and mixture model on priors
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Table 2. Relative regret from the simulations under the priors in the text.
The relative regret is MSE(θ̂)/MSE(θ̂bayes)− 1. The quantities shown are
averages and standard deviations (in parentheses) over 100 simulations. The
relative regret is infinite for all methods on prior 6, as the Bayes risk is 0.

Method Prior 1 Prior 2 Prior 3
UMVU 1.6165 (0.083) 3.8593 (0.149) 0.9765 (0.085)
Berger 1.5313 (0.083) 3.6354 (0.149) 0.9490 (0.085)

Parametric EB 0.0007 (0.0001) 0.0059 (0.002) 0.2554 (0.021)
Log-spline NPEB 0.2181 (0.038) 0.3295 (0.075) 0.4362 (0.058)

Mixture Gamma NPEB 0.0023 (0.0018) 0.0114 (0.004) 0.0419 (0.009)

Method Prior 4 Prior 5
UMVU 9.673 (1.234) 2.0290 (0.170)
Berger 9.627 (1.228) 1.9590 (0.169)

Parametric EB 19.167 (2.262) 2.2030 (0.125)
Log-spline NPEB 8.321 (1.061) 0.4753 (0.073)

Mixture Gamma NPEB 2.080 (0.273) 0.3584 (0.037)

1, 2, 6. On the rest, it trailed the mixture model but outperformed the others.

These results suggest that our tempered NPEB method can match a con-

jugate-prior parametric EB approach on smooth unimodal priors, and substan-

tially outperform it when the prior is bimodal or sparse. Using the off-the-shelf

log-spline yields good performance, but we can improve by using an appropriate

density estimator for the problem, in this case the mixture model.

4. Conclusion

In this paper we proposed a tempered NPEB method based on estimates f̂ ,

f̂ ′ of the marginal density fG and its derivative f ′G. We proved that our method

performs well if f̂ and f̂ ′ are good estimates. We illustrated our method on the

simultaneous chi-squared estimation problem and our method performed well

empirically.

Many questions remain. First, we considered only continuous exponential

families. Robbins (1954) was largely concerned with discrete families, such as

the Poisson, but his formula fails for discrete families. In the cases he consid-

ered, however, the Bayes estimator was still expressible in terms of the marginal

distribution of the data. Our approach may extend to these cases, even if the

present techniques do not.

Second, our method only applies to squared-error loss. In the chi-squared

problem, for example, Berger (1980) suggested scaled loss functions of the form

θm(1− θ̂θ)2. Our results depend heavily on Robbins’ formula to express the pos-

terior mean in terms of fG and f ′G, but Bayes estimators for other loss functions

are not so easily expressed. On the other hand, higher order versions of Robbins’
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formula give the posterior cumulants of θ in terms of fG and its derivatives. Our

results may extend to losses for which the Bayes estimator is approximately a

function of the first few posterior cumulants.
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Appendix: Proofs

A.1. Proof of Lemma 1.

Let ∥g∥h =
(∫
g2hdz

)1/2
. We have

∆(t̂ρ, G)
1/2 =

∥∥∥ f̂ ′

f̂ ∨ ρ
−
f ′G
fG

∥∥∥
fG

≤
∥∥∥ f̂ ′

f̂ ∨ ρ
−

f ′G
fG ∨ ρ

∥∥∥
fG

+
∥∥∥f ′G
fG
−

f ′G
fG ∨ ρ

∥∥∥
fG
.

The second term is the tempering term: ∥f ′G/fG − f ′G/(fG ∨ ρ)∥2f =
∫
(1 −

fG/ρ)
2
+ (f ′G/fG)

2 fGdz. The first term is

∥ f̂ ′

f̂ ∨ ρ
−

f ′G
fG ∨ ρ

∥fG =

∥∥∥∥∥∥
(
f̂ ′ − f ′G

)
f̂ ∨ ρ

−
f ′G

(
f̂ ∨ ρ− fG ∨ ρ

)
(fG ∨ ρ)

(
f̂ ∨ ρ

)
∥∥∥∥∥∥
fG

≤

∥∥∥∥∥∥
(
f̂ ′ − f ′G

)
f̂ ∨ ρ

∥∥∥∥∥∥
fG

+

∥∥∥∥∥∥
f ′G

(
f̂ ∨ ρ− fG ∨ ρ

)
(fG ∨ ρ)

(
f̂ ∨ ρ

)
∥∥∥∥∥∥
fG

≤ 1

ρ

∥∥∥f̂ ′ − f ′G∥∥∥
fG

+
1

ρ
A(ρ)

∥∥∥f̂ ∨ ρ− fG ∨ ρ∥∥∥
fG
.

Using
∣∣∣f̂ ∨ ρ− fG ∨ ρ∣∣∣ ≤ ∣∣∣f̂ − fG∣∣∣ completes the proof.

A.2. Proof of Theorem 1

Proof. We first bound
∫
(f̂ ′ − f ′G)2dz = ∥f̂ ′ − f ′G∥21 (this is the L2 norm with
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weight 1, not the L1 norm).∥∥∥f̂ ′ − f ′G∥∥∥2
1
=

1

2π

∫
u2
(
f̂∗ − f∗G

)2
du

≤ 1

2π

(∫
a2
(
f̂∗ − f∗G

)2
du+

∫
|u|≥a

u2
(
f̂∗ − f∗G

)2
du

)

=
a2

2π

(∥∥∥f̂ − fG∥∥∥2
1
+

1

a2

∫
|u|≥a

u2
(
f̂∗ − f∗G

)2
du

)

≤ a2

2π

(∥∥∥f̂ − fG∥∥∥2
1
+ 4

1

a2

∫
|u|≥a

u2H (u)2 du

)

=
a2

2π

(∥∥∥f̂ − fG∥∥∥2
1
+ 4L (a)

)
for all a ≥ C. We know L (a) → 0 as a → ∞ and L is monotone. Let a =

L−1(∥f̂ − fG∥21), or if L < ∥f̂ − fG∥21, take a = C. Then

∥∥∥f̂ ′ − f ′G∥∥∥2
1
≤ 5

2π
L−1

(∥∥∥f̂ − fG∥∥∥2
1

)2 ∥∥∥f̂ − fG∥∥∥2
1
.

Now plug this bound into Lemma 1. For any function g, we have ∥g∥fG ≤
∥fG∥1/2∞ ∥g∥1. Thus

∆
(
t̂ρ, G

)1/2 ≤ 1

ρ

∥∥∥f̂ ′ − f ′G∥∥∥
fG

+
1

ρ
A (ρ)

∥∥∥f̂ − fG∥∥∥
fG

+ T (ρ, fG)

≤ 1

ρ
∥fG∥1/2∞

(√
5

2π
L−1

(∥∥∥f̂ − fG∥∥∥2
1

)
+A (ρ)

)∥∥∥f̂ − fG∥∥∥
1
+ T (ρ, fG) .

A.3. Proof of Theorem 2

Note that (log ft)
′ = t+ f ′0/f0, so (log fG − log ft)

′ = tG− t, and log fG/ft =∫ z
z0
(tG − t) (s)ds.
The rest of the proof is a simple application of Fubini’s theorem. We have∫ ∣∣∣∣log fGft

∣∣∣∣ fGdz ≤ ∫ ∣∣∣∣log fGft
∣∣∣∣ fGdz

≤
∫ ∞

−∞

∫ z

z0

|tG − t| (s)fG(z)dsdz.
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The integrand is positive, so:∫ ∞

−∞

∫ z

z0

|tG(s)− t(s)| fG(z)dsdz

=

∫ ∞

z0

|tG(s)− t(s)| (1− FG(s)) ds+

∫ z0

−∞
|tG(s)− t(s)|FG(s)ds

=

∫ ∞

−∞
|tG(s)− t(s)|P (s)fG(s)ds.

Applying Cauchy-Schwartz finishes the proof.

A.4. Proof of Corollary 1

We have

|f∗G (u)| ≤
∫
|f∗θ (u)| dG

=

∫ (
1 +

4u2

θ2

)−k/4

dG

≤
(
1 +

4u2

m2

)−k/4

+ P (θ ≥ m) .

Take m = uα. Then P (θ ≥ m) = O
(
u−(1−α)k/2

)
, and

|f∗G (u)| ≤
(
1 + 4u2−2α

)−k/4
+ P (θ ≥ m)

= O
(
u(1−α)k/2

)
.

So for some constants E,M , |f∗G (u)| , |f̂∗ (u) | ≤ Mu−(1−α)k/2 for all |u| ≥ E.

Thus we can take H (u) =Mu−(1−α)k/2. Also, note that ∥fG∥∞ ≤
∫
∥fθ∥∞ dG =

EG (θ) ∥f1∥∞. Plugging into Theorem 1 completes the proof.

A.5. Proof of Corollary 2

In this proof, C denotes a generic constant, not necessarily the same from

line to line. If θ is bounded, we can take A (ρ) = (1/ρ) supθ ∥f ′θ∥∞ ≤ C/ρ. Since
P (θ ≥ m) = 0 for m large, we can take any α < 1− 4/k. Then by Corollary 1,

∆
(
t̂ρ, G

)1/2 ≤ C [1
ρ
d
(
f̂ , fG

)1−2/(1+(1−α)k)
+

1

ρ2
d
(
f̂ , fG

)
+ T (ρ, fG)

]
.
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Now we find the order of the tempering term. We have

T (ρ, fG)
2 =

∫ (
1− fG

ρ

)2

+

(
f ′G
fG

)2

fGdz

≤ PG (fG (z) < ρ)1/2EG

((
f ′G
fG

)4
)1/2

so we need to bound PG (fG (z) < ρ). If ρ is small, fG (z) < ρ if x is large or
small. Consider the case of large z. For z sufficiently large, fG (z) ≥ fM1 (z) =

Ckz
k/2−1M

k/2
1 exp (−M1z/2). Let z0 be the largest z such that ρ = fM1 (z0).

Then

PG (fG (z) < ρ, z large) ≤ PG (fM1 (z) ≤ ρ, z large)

= PM2 (fM1 (z) ≤ ρ, z large)

= PM2 (z ≥ z0)

≈ Czk/2−1
0 exp

(
−M2

z0
2

)
= Cρ exp ((M1 −M2) z0)

≤ Cρ
using the asymptotic expasion limx→∞

∫∞
x ts−1 exp(−t)dt/(xs−1 exp(−x)) = 1.

Similarly PG(fG(z) < ρ, z small) ≤ Cρ. So T (ρ, fG) = O(ρ1/2). Now choose

ρ = O(∥f̂ − fG∥2/51 ). Then ∆(t̂ρ, G) = O(∥f̂ − fG∥2/51 ).

A.6. Gamma mixture model details

We choose a, b as follows. We first specify a number of groups ℓ. Next, we
fit a Gamma prior G̃ by method of moments as for the parametric EB method,
and find µ = EG̃ (log θ) and σ = V arG̃ (log θ). We then take a sequence of means
from µ−3σ to µ+3σ, µ̃ = seq (µ− 3σ, µ+ 3σ, length = ℓ) in R notation. Finally,
we initialize a, b so each group has approximate log-mean µ̃ and approximate log-
variance σ̃ = (µ̃2 − µ̃1)2. To do this, we take a = 1/σ̃ and b = exp (ψ′ (a)− µ̃)
where ψ is the digamma function.

For the EM algorithm, we initialize π to be approximately lognormal, π ∝
dnorm (µ̃, µ, σ) in R notation. For the E-step, we estimate

gij = P (zi from group j) =
πjfj (zi)∑
πjfj (zi)

,

where

fj (x) =
1

x

(
Γ (a+ k/2)

Γ (k/2) Γ (a)

)(
1− x/2

b+ x/2

)a( x/2

b+ x/2

)k/2

is the marginal distribution corresponding to a Gamma (a, b) prior. For the
M-step, we estimate πj ← (1/N)

∑
i gij .
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