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Abstract: Contemporary problems involving sparse, high-dimensional feature se-

lection are becoming rapidly more challenging through substantial increases in di-

mension. This places ever more stress on methods for analysis, since the effects

of even moderately heavy-tailed feature distributions become more significant as

the number of features diverges. Data transformations have a significant role to

play, reducing noise and enabling an increase in dimension, and for this reason

they are increasingly used. In this paper we examine the performance of a typical

transformation of this type, and study the extent to which it preserves the main

attributes that lead to reliable feature selection. We show both numerically and

theoretically that, in the presence of heavy-tailed data, the size of the dimension

for which effective variable selection is possible can be increased dramatically, from

a low-degree polynomial function of sample size to one that is exponentially large.

Key words and phrases: Correlation, feature selection, heavy tail, nonparametric

statistics, Studentising, variable selection.

1. Introduction

The future of genomic data analysis promises data vectors whose length,

p, is not in the thousands or tens of thousands, as is common today, but in

the millions or tens of millions. To appreciate the relevance of these numbers,

note that there are likely between p = 20,000 and 25,000 human protein-coding

genes, but, apparently, between p = 106 and 3 × 106 SNPs, or single-nucleotide

polymorphisms, in the human genome. Data on SNPs, rather than on genes, are

becoming common, and the availability of such high dimensional vectors means

that methods have to be effective when p is much larger than the sample size, n.

In this paper we consider feature ranking in such very high-dimensional prob-

lems. It has been proved in that context that if distributions are sufficiently

light-tailed, standard methods work for p exponentially large as a function of

n. However, genetic data are often very noisy, and can contain unusually large

observations. In other words, such data are often not sufficiently light-tailed,

which is a serious issue in very high-dimensional settings because, as the number
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of features diverges, the influence of even moderately heavy tailed feature dis-

tributions becomes more significant. Therefore, techniques more appropriate to

heavy-tailed distributions have to be employed.

In this setting it is increasingly common to borrow tools from the more

conventional low-dimensional robust literature. In particular, practitioners com-

monly employ simple data transformation methods. In the present paper we pro-

vide a theoretical account of the performance of such transformation methods,

pointing especially to the extent of their advantages in ultra high-dimensional

settings. We show that they can provide substantial improvements when some

or all of the components have heavy-tailed distributions. For example, we show

that standard feature ranking methods, whose performance degrades when p is

an exponentially large function of n, recover their capacity to deal with ultra

high-dimensional, noisy data when used in conjunction with an appropriate data

transformation. The theoretical results in Section 3 demonstrate these advan-

tages for ranking methods based on either differences of means or on correlation.

In the former setting, a standard approach consists of ranking components ac-

cording to Student’s t scores calculated for each component. Although Studen-

tising helps combat heavy-tailed noise, we show that transforming the variables

has even more to offer. Moreover, when the distributions are light-tailed and

do not contain outliers, transforming the data does not have a serious negative

impact on feature ranking. In Section 4 we illustrate some of the main issues

using two real datasets.

2. Transformation Methods

2.1. Feature ranking based on correlation

Suppose we observe independent and identically distributed data pairs (Xi,

Yi), for 1 ≤ i ≤ n, where Xi = (Xi1, . . . , Xip) is a p-vector, Yi is a scalar, and

we are interested in the relation between Yi and Xi. For example, Yi might be a

score variable for a disease, and Xi a vector whose indices represent p genes or

parts of a chromosome, and the interest could be in uncovering indices that are

relevant to the disease, and in constructing a model for the relationship between

these and Yi. Methods for model building include the lasso (Tibshirani (1996)),

non-convex penalisation (Fan and Li (2001)) and the Dantzig selector (Candes

and Tao (2007)).

Fan and Lv (2008) suggest preceding model building by a massive dimension

reduction step, using “correlation learning” where the p components of Xi are

ranked according to the values of |ρ̂j |, with, for j = 1, . . . , p, ρ̂j = ξ̂j/(σ̂Xj σ̂Y ) de-

noting an empirical estimator of the theoretical correlation ρj = corr(X1j , Y1) =
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ξj/{σ2
Xj σ

2
Y }1/2 . Here we have used the notation ξj = cov(X1j , Y1), σ2

Xj =

var (X1j), σ
2
Y = var (Y1),

ξ̂j =
1

n

n∑
i=1

(Xij Yi − X̄j Ȳ ) , σ̂2
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)
,

(2.1)

where X̄j = n−1
∑

i Xij and Ȳ = n−1
∑

i Yi. Correlation learning assigns

empirical rank ȷ̂k to the jth component, where ȷ̂1, . . . , ȷ̂p denotes the permu-

tation of 1, . . . , p such that |ρ̂ȷ̂1 | ≥ · · · ≥ |ρ̂ȷ̂p |. For each k, ȷ̂k is an estimator of

the theoretical rank jk, where j1, . . . , jp is a permutation of 1, . . . , p such that

|ρj1 | ≥ · · · ≥ |ρjp |. Dimension reduction is performed by removing components

with low absolute empirical correlations. See also Lv and Fan (2009) and Fan

and Lv (2010).

In some analyses of genomic data, practitioners report the results of robust

Wilcoxon rank tests as well as, or instead of, Student’s t statistics; see Li and Fine

(2010). This approach is relatively robust, and immune to heavy-tail problems,

although the results to which it leads are perhaps a little more difficult to interpret

since they address differences between the distributions of noisy approximations

to (for example) gene expression levels, rather than differences between means.

2.2. Data transformation for correlation ranking

A difficulty with the correlation learning methodology discussed in Section

2.1 is that empirical correlations are sensitive to aberrations caused by heavy-

tailed distributions of the explanatory vectors Xi or experimental errors ϵi. As

a result, ranking based on correlations can be quite poor in the presence of

heavy tails, since empirical correlations fluctuate so heavily that many of those

corresponding to a theoretical correlation of zero take higher values than those

for which the theoretical counterpart is nonzero. To reduce the fluctuations of

empirical correlations, a common approach is to transform the data, replacing

Xij and Yi by

Uij = Ψ(Xij) , Zi = Ψ(Yi) , (2.2)

respectively, when computing the correlation coefficient. Here we take Ψ to be

a uniformly bounded, monotone function, for example a distribution function.

Then we replace ρj by the new correlation coefficient computed from the trans-

formed data:

ωj =
cov(U1j , Z1)

{var (U1j) var (Z1)}1/2
, (2.3)
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of which an estimator is ω̂j = ζ̂j/(τ̂Uj τ̂Z) where

ζ̂j =
1

n

n∑
i=1

(Uij Zi − Ūj Z̄) , τ̂2Uj =
1

n

n∑
i=1

(
U2
ij − Ū2

j

)
, τ̂2Z =

1

n

n∑
i=1

(
Z2
i − Z̄2

)
.

(2.4)

The components are ranked in the order ȷ̂1, . . . , ȷ̂p determined by |ω̂ȷ̂1 | ≥ · · · ≥
|ω̂ȷ̂p |.

The estimator ω̂j is effectively the correlation estimator discussed in Section

8.3 of Huber (1981). Khan, Van Aelst, and Zamar (2007) discuss a similar ap-

proach for calculating correlation in the context of the LARS method of Efron et

al. (2004), a technique of the same type as the lasso, where one of the ingredients

needed is correlation. However, they treat only numerical aspects, and only in

cases where p < n.

Our goal here is quite different. We wish to prove, both theoretically and

numerically, that in ultra high-dimensional problems, where p is much larger than

n, standard correlations fail to rank components correctly, whereas transformed

correlations perform well. Note that it is really the conjunction of heavy-tails

and high dimension that causes poor performance of correlation ranking, since

in the case of heavy-tailed distributions, when p is large, with high probability

many of the p empirical correlations are very far from their true values. Section

3 will shed light on the impact of heavy tails on ranking a very high number

of components through empirical correlations, and prove that transforming data

can greatly improve ranking.

To illustrate that it is ultra high dimension that, when associated with heavy

tails, causes the difficulties, we simulated data (Xi1, . . . , Xip, Yi), i = 1, . . . , n,

from the model Yi =
∑6

j=1Xij + ϵi, where distributions of the ϵi’s and of the

Xi’s were, respectively, 0.98F1+0.02F2 and 0.98F1+0.02F3, with F1, F2 and F3

denoting the distributions of, respectively, a U [−10, 10], a U [−150,−100], and

a U [15, 25]. Here, the Yi’s depend only on Xi1, . . . , Xi6, and a small propor-

tion of the data take unusually large values. For several values of n and p we

generated 200 samples of size n from this model, and then ranked the p compo-

nents Xi1, . . . , Xip according to their absolute empirical correlations with Yi, as

described in Section 2.1, and according to their transformed versions described

above, with Ψ described in Section 4. From the 200 samples we then calculated

the median (Q2) and first and third quartiles (Q1 and Q3) of ranks assigned to

Xi1 to Xi6 (their true ranks are 1). We show the results in Table 1 for several

values of n, when p = 20, 000.

As can be seen, it is when n is too small that occasional outliers cause

empirical correlation ranking to fail to identify Xi1, . . . , Xi6 as being some of

the most important components. When n is larger, the method does not rank
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Table 1. Median and quartile ranks of Xi1 to Xi6 obtained by empirical
correlation ranking (first block of four rows) and by transformed empirical
correlation ranking (second block of four rows), when ranking p = 20, 000
components.

X1 X2 X3 X4 X5 X6

n Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3
50 712 75–3291 809 168–3600 474 45–2707 906 172–4786 672 120–3531 750 86–3638
75 236 32–1880 192 36–1394 282 30–1750 236 24–2038 190 17–1632 331 37–1951
100 91 7–806 152 15–854 110 10–836 88 9–795 145 14–776 98 9–575
200 6 3–49 7 3–56 7 2–31 10 3–59 6 3–33 6 2–56
50 174 28– 996 317 45–1394 137 14– 920 344 57–1429 262 42–1116 242 29–1570
75 48 5–202 39 5–199 40 5–244 68 7–388 25 5–175 44 5–288
100 8 3–56 15 4–76 12 3–71 8 2–37 10 3– 93 7 2–68
200 4 2–6 4 2–5 4 2–5 3 2–6 3 2–5 3 2–5

them perfectly, but is able to rank them highly (a rank is high when close to 1).

Clearly, the transformed correlation approach is able to rank highly Xi1, . . . , Xi6

for smaller values of n. In this simple example the observations contain only

moderate outliers, but the differences between the two methods are even more

striking for higher values of p and when the distributions are more heavily tailed;

see Delaigle and Hall (2011) for a more extensive simulation study. Section 3 will

give a theoretical account of these empirical findings.

Note that for simplicity we focus on the simple correlation ranking method

but, of course, variable transformation can be used to reduce the effect of heavy-

tailed distributions in variants of the correlation approach, such as the generalised

correlation technique of Hall and Miller (2009). Conclusions similar to those

drawn in this paper can be derived in such settings too.

2.3. Feature ranking based on mean differences

Transforming data prior to ranking can also be used in other contexts, such

as the one based on mean differences. Suppose we observe a sample of size n

of independent p-vectors from populations ΠX and ΠY , say X1, . . . , Xn1 from

ΠX , and Y1, . . . , Yn2 from ΠY , where n1 + n2 = n, Xi = (Xi1, . . . , Xip) and

Yi = (Yi1, . . . , Yip). For example, Xij and Yij could represent expression levels

for the jth gene of the ith individual coming from population ΠX (a population

of individuals suffering from a particular medical condition) and ΠY (a popu-

lation from which the condition is absent), respectively. It is often of interest

in such problems to identify the components of the p-vectors for which the two

populations differ the most. This is often done by detecting the components that
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have the largest mean differences. Let

E(Xi1j) = µ1j and E(Yi2j) = µ2j , for 1 ≤ ik ≤ nk, k = 1, 2 and 1 ≤ j ≤ p,

(2.5)

and let j1, . . . , jp be a permutation of 1, . . . , p such that µ2j1 − µ1j1 ≥ · · · ≥
µ2jp − µ1jp . When ranking is based on mean differences, the ℓth component is

assigned rank jℓ.

In practice the means µkj are unknown and the ranks are estimated em-

pirically from the data, for example by replacing the theoretical means by their

empirical counterparts, and ranking the components according to the values of

the raw differences,

Dj = Ȳj − X̄j , (2.6)

where X̄j = n−1
1

∑
i Xij , Ȳj = n−1

2

∑
i Yij .

Like the correlation approach, this ranking method is very sensitive to ran-

dom fluctuations. To some extent this sensitivity can be corrected by ranking

values taken by Student’s t statistics Tj , corresponding to two-sample t-tests of

the null hypothesis H0j that µ2j = µ1j against the alternativeH1j that µ2j > µ1j ;

that is, by ranking

Tj =
Ȳj − X̄j

(n−1
1 S2

1j + n−1
2 S2

2j)
1/2

, (2.7)

for 1 ≤ j ≤ p, where S2
1j and S2

2j are conventional variance estimators com-

puted from the data X1j , . . . , Xnj and Y1j , . . . , Ynj , respectively. Based on these

t statistics, the components are ranked empirically by taking ȷ̂1, . . . , ȷ̂p to be the

permutation of j1, . . . , jp such that Tȷ̂1 ≥ · · · ≥ Tȷ̂p . Adopting this technique the

most influential feature, for example in a genomic context, the most influential

gene, is the one for which H0j is rejected most resoundingly in favour of H1j . See

also Lyons-Weiler, Patel, and Bhattacharya (2003), Xie et al. (2004), Papana and

Ishwaran (2006) and Yang et al. (2009) for other motivations of the Student’s t

approach.

Student’s t statistics Tj are less influenced by statistical fluctuations than

the raw differences Dj when the data Xij or Yij are relatively heavy tailed; see

for example Delaigle, Hall, and Jin (2011). However they can still be affected

significantly and, in consequence, ȷ̂1, . . . , ȷ̂p as above can be poor estimators of

the true ranks j1, . . . , jp. Moreover, this approach runs counter to the notion

that it should emphasise location differences. To see why, note that if j = jsmall

and j = jlarge denote indices for which σ2
j = n−1

2 var (Y1j) + n−1
1 var (X1j) is par-

ticularly small, or particularly large, respectively, then the feature with index

jsmall is likely to be ranked well ahead of that with index jlarge even if the mean

difference µ1j −µ2j takes much the same value in both cases. Thus, a ranking of
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the Tjs generally fails to adequately reflect the sizes of the differences µ1j − µ2j ;

in important cases those values are distorted by standardising for scale. This

focus on differences between population means reflects the fact that, in most ap-

plications of t statistics, one generally has in mind not just the difference between

two sample means, but rather the implications, conveyed by that difference, for

the difference between the means of the respective populations.

Variants of t statistics have been suggested in the literature. See for example

Efron et al. (2001), Smyth (2004), Wu (2005) and Opgen-Rhein and Strimmer

(2007). However, the main goal of these methods is to improve estimators of the

variances σ2
j by borrowing strengths across similar components. In particular,

they do not necessarily address the problems that concern us. For an illustration

on some simulated examples, see Delaigle and Hall (2011).

The discussion motivates methodology that focuses more sharply on the

magnitudes of differences between means, yet also alleviates problems that arise

when the data Xij , and/or Yij , have heavy tails. Let Uij = Ψ(Xij) and Vij =

Ψ(Yij), where Ψ is a uniformly bounded, monotone increasing function. Here, the

components are ranked by ranking values of empirical mean differences calculated

from these transformed data. That is, with the transformation approach,

ȷ̂1, . . . , ȷ̂p is the permutation of 1, . . . , p for which V̄ȷ̂1 − Ūȷ̂1 ≥ · · · ≥ V̄ȷ̂p − Ūȷ̂p ,

(2.8)

where Ūj = n−1
1

∑
i Uij , V̄j = n−1

2

∑
i Vij . To appreciate that this approach is

well founded, let us elaborate on the model (2.5) by assuming that

Xij = µ1j + ϵ1ij , Yij = µ2j + ϵ2ij and, for any given i and j, the
errors ϵkij for k = 1, 2 are identically distributed. (2.9)

(Note that the quantities µkj here need not be means and, in particular, in

contrast to cases where t statistics are ranked, no finite moments need be as-

sumed.) Then E{Ψ(Yij)} ≥ E{Ψ(Xij)} or E{Ψ(Yij)} ≤ E{Ψ(Xij)}, according
as µ2j ≥ µ1j , or µ2j ≤ µ1j , respectively. These properties persist if the inequali-

ties are taken to be strict, provided that Ψ is strictly monotone increasing on the

real line. The assumption of identical distribution of errors, imposed in (2.9), is

not a necessary condition for preserving the order of expectation in each case,

for example when the means take only a finite number of distinct values, but it

is perhaps the simplest sufficient condition.

Therefore, in the circumstances described by (2.9),

the expected value of V̄j − Ūj is of the same sign as µ2j − µ1j , and
the expected value is a monotone increasing function of µ2j and a
monotone decreasing function of µ1j .

(2.10)

Moreover, since the variables Uij and Vij are uniformly bounded, their associated
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large deviation probabilities are particularly small, even when the errors ϵkij in

(2.9) are heavy-tailed. This property and (2.10) underpin the attractiveness of

feature ranking based on values of V̄j − Ūj . Note that, since the transformation

Ψ is uniformly bounded, the expected value referred to in (2.10) is always well

defined even if the data are very heavy-tailed.

Transforming data before calculating a mean is not new, but our goal is

to investigate the advantages of such a transformation approach when used to

rank a very high number of components in the presence of heavy tails. As in the

correlation context, the negative impact of heavy tails for ranking means, without

transforming the data, makes itself felt mostly when p is extremely large, since the

probability of incorrect ranking increases with p. See Section 3 for a theoretical

study.

To numerically illustrate the problems due to the conjunction of high di-

mension and heavy tails, we generated 200 samples from (Xi1, . . . , Xip) and

(Yi1, . . . , Yip), where Xij − µj ∼ F and Yij ∼ F , with F a symmetric stable

distribution with characteristic function ϕ(t) = exp(−|t|1.5). Here only the first

six components are relevant, as we took µj = 1{j ≤ 6}. We ranked all p compo-

nents using the method based on the raw differences at (2.6), the one based on

Student’s t differences at (2.7), and the transformation approach discussed above

with Ψ as in Section 4. From the 200 samples we then calculated the median,

first, and third quartiles of ranks assigned to Xi1 to Xi6 (their true ranks are 1).

We show the results in Table 2 for the three methods, when p = 20, 000 and for

several values of n.

As in the correlation context we see that it is when n is very small compared

to p that the method based on (2.6) fails to identify these six components as being

important, but the method does rank them increasingly highly as n increases.

Ranking from Student’s t differences at (2.7) already improved the results, but

the transformation method gave even better results. See Delaigle and Hall (2011)

for a more extensive simulation study with more complex settings, and see Section

3 for a theoretical study of the empirical properties discussed here.

Of course, transforming the variables does not necessarily imply that all the

components will be better ranked than by Student’s t. However, the transforma-

tion approach often manages to detect components that were neglected because

of heavy tailedness, and likewise can avoid false positive results caused by the

same issue. Our main goal is not to rank all the components perfectly, but to

identify the most important ones, i.e. those with highest ranks.

Remark 1. The expected value in (2.10) is not necessarily a monotone function

of µ2j − µ1j . This need not cause difficulties, because in many settings the

levels of monotonicity described in (2.10) are adequate. However, the problem
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Table 2. Median and quartile ranks of Xi1 to Xi6 obtained by empirical
mean ranking, when ranking p = 20, 000 components. First block of four
lines: using (2.6); second block: using (2.7); third block: using V̄j − Ūj at
(2.8).

X1 X2 X3 X4 X5 X6

n Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3
50 1696 941–4085 1664 819–3140 1896 951–4672 1856 1042–3596 1448 793–3139 1692 908–3343
75 1442 698–3052 1378 786–2275 1382 796–3307 1344 717–2753 1318 663–2483 1492 736–3251
100 1169 694–2126 1099 676–1963 934 602–1760 1042 599–1739 1064 722–2514 1128 689–2377
200 684 446–1180 730 468–1254 694 471–1341 702 472–1386 791 506–1230 718 439–1132
50 410 50–4017 310 20–2420 627 53–4492 562 62–2595 478 39–2326 594 102–3389
75 243 7–3089 151 21–1249 380 18–2827 254 16–1890 292 14–2428 340 20–2818
100 167 9–1305 87 6–1168 81 6–892 85 5–788 108 9–1670 126 10–1670
200 11 2–515 17 3–639 11 2–280 7 2–304 25 3–615 14 3–315
50 28 5–133 36 7–157 48 6–240 39 6–165 37 4–188 35 7–240
75 6 2–40 7 3–36 6 2–27 6 2–38 6 2–41 10 2–43
100 5 2–13 4 2–9 4 2–6 4 2–6 5 2–12 4 2–8
200 3 2–5 3 2–5 4 2–5 3 2–5 4 2–5 3 2–5

can be eradicated by adjusting the methodology slightly. Specifically, define

Wi0i1j = Ψ(Yi1j −Xi0j) for 1 ≤ i0 ≤ n1 and 1 ≤ i1 ≤ n2, and put

W̄j =
1

n1n2

n1∑
i0=1

n2∑
i1=1

Wi0i1j .

Then, if the errors ϵkij in (2.9) have distributions that do not depend on i, E(W̄j)

is a monotone increasing function of µ2j − µ1j and is strictly monotone if Ψ is

strictly increasing. This property motivates the following alternative method:

define ȷ̂1, . . . , ȷ̂p to be the permutation of 1, . . . , p for which W̄ȷ̂1 ≥ · · · ≥ W̄ȷ̂p .

(2.11)

We prefer the method based on (2.8), since it is considerably faster to implement

in practice.

Remark 2. The transformation we use is monotone, although nonlinear, and

this is a critical asset when using it for the purpose of ranking. Of course, the

scale and units of the data change in a nonlinear way when transformed, and

that should be borne in mind if we use the transformed data for a purpose

other than ranking. This issue is not as important in the case of ranking based

the correlation coefficient, which is scale and unit free and is itself a somewhat

arbitrary measure of association.

3. Theoretical Properties

In this section we study theoretical properties of the transformed feature

ranking approaches discussed in Section 2. We start with a general result in
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Sections 3.1 and 3.2, where we prove that overall, without any restriction on the

tails of the data, the empirical rankings based on variable transformation accord

with their theoretical counterpart even when p is much larger than n. Next, in

Section 3.3 we show that this nice property is not shared by standard methods

based on untransformed data. Together, these results illustrate the extent to

which transforming the data effectively addresses heavy-tailedness in ultra-high

dimensional feature selection. We first state, and prove, our theoretical results

in the case of correlation; this is more awkward than the context of means since

correlation involves a random denominator. Subsequently, we consider the case

of the mean.

3.1. Performance of the transformation method based on correlation

Suppose we observe independent and identically distributed vectors (Xi, Yi),

for 1 ≤ i ≤ n, where Xi = (Xi1, . . . , Xip) is a p-vector and Yi is a scalar.

Note that we do not make any assumptions on the dependence structure of

the components of the feature vectors Xi = (Xi1, . . . , Xip). Our first result,

Theorem 1 below, shows that the variable transformation method is able to rank

features in accordance with the values of the estimable but unknown correlation

coefficients ωj , defined at (2.3), even if the distributions of the Xij ’s and/or the

Yi’s are heavy-tailed.

We choose the function Ψ to define our transformed variables Uij and Zi in

terms of Xij and Yi at (2.2), so that following properties are satisfied:

Ψ is uniformly bounded and monotone increasing; (3.1)

var (U1j) and var (Z1) are bounded away from zero uniformly in 1 ≤ j ≤ p,
as n → ∞. (3.2)

For example, we can take Ψ to be the distribution function of a symmetric,

unimodal, continuous distribution with unit variance and zero mean. Consider

taking Ψ = Φ, the standard normal distribution. For x not too large we have

Φ(x) ≈ 1
2 + (2π)−1/2 x , (3.3)

and for x larger than about 2 or smaller than −2 the value of Φ(x) is virtually 0

or 1, respectively. Since transformed feature ranking methods produce identical

results if Ψ is replaced by
√
2π (Ψ−1/2) throughout, we see that Ψ is virtually the

identity for x not too large, although with “barriers” in both tails that prevent x

from taking values that are too large positive or too large negative. This explains

intuitively why this approach is more resistant to problems caused by heavy tails

than a method based directly on the data or, equivalently, one that takes Ψ to be

linear. (Note that the approximation at (3.3) is used only as an aid to intuition,

and is not employed anywhere in our analysis.)
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Apart from (3.2), the only condition we assume on the distributions is the

following.

The data pairs (X1, Y1), . . . , (Xn, Yn) are independent and identi-
cally distributed; the common distribution is allowed to depend on n. (3.4)

This condition clearly does not impose any restrictive tail behaviour on the dis-

tributions. Assumption (3.2) ensures that computing the correlation at (2.3)

does not involve dividing by quantities that can become arbitrarily close to zero

as n → ∞. Finally, we allow p to be exponentially large compared to n. Let λn

denote a sequence diverging to infinity as n → ∞, and satisfying λn = o(n1/2).

We assume that:

p = O{exp(C λ2
n)} for a constant C > 0, where C depends on sup |Ψ|

and on the lower bounds in (3.2).
(3.5)

Remark 3. It is straightforward to treat cases where location and scale cor-

rections are made empirically using, for example, the median and standardised

interquartile range, respectively. Under mild additional assumptions those quan-

tities have the properties that, for each ϵ > 0, they are within ϵ of the respective

true values uniformly in 1 ≤ i ≤ p, if p satisfies (3.5). Similar remarks apply to

the results in Section 3.2.

Remark 4. The normal N(0, σ2) distribution function is attractive to use in

practice, since it is symmetric and involves only one user-chooseable parameter.

However, there may in some cases be advantages to using a distribution function

where shape, as well as scale, can be adjusted. Examples include Student’s t

distribution functions where both scale and shape, through the number of degrees

of freedom, ν say, can be adjusted. The value of ν should be interpreted in the

continuum.

For the statement of Theorem 1 below, recall that ȷ̂1, . . . , ȷ̂p are defined by

|ω̂ȷ̂p | ≥ · · · ≥ |ω̂ȷ̂p |. Given constants c1 and c2 satisfying 0 < c1 < c2 < ∞, let J1

and J2 be the respective subsets of {1, . . . , p} for which |ωj | ≤ c1 n
−1/2 λn and

|ωj | ≥ c2 n
−1/2 λn. Note particularly that (3.4) does not require the components

Xij of Xi to be independent or uncorrelated.

Theorem 1. If (3.1)–(3.5) hold then, with probability converging to 1 as n → ∞,

all the indices from J2 are listed in the sequence ȷ̂1, . . . , ȷ̂p before any of the indices

from J1.

The implications of the theorem are perhaps most readily seen by consider-

ing a case where the indices 1, . . . , p can be divided into m + 2 distinct classes

I0, I1, . . . , Im+1, corresponding to increasingly large values of |ωj |. Here m is
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fixed. In this setting the theorem implies, among other things, that for each pair

(k1, k2) satisfying 0 ≤ k1 < k2 ≤ m + 1, with probability converging to 1 as

n → ∞ all the indices from Ik2 are listed in the sequence ȷ̂1, . . . , ȷ̂p ahead of all

those from Ik1 ; moreover, if the corresponding values of |ωj | are at least as large

as n−b for some b < 1/2, the sizes of these classes can be exponentially large

before the claimed result breaks down. The latter issue is important, since, with-

out imposing severe conditions on the tails of the distributions of the data, only

polynomially large p is permitted if feature ranking using conventional correla-

tion is employed. This point will be discussed in more detail in Theorems 3 and 4

of Section 3.3, where we shall show, respectively, that only polynomially large

p is permissible if feature ranking is based on conventional correlation, but that

exponentially large p is possible if variable transformation methods are employed.

To be more specific about the classes I0, I1, . . . , Im+1 of indices, define these

sets by asking that j ∈ Im+1 if and only if |ωj | > c, where c > 0 is fixed;

that j ∈ Ik (for 1 ≤ k ≤ m) if and only if |ωj | ∈ [ck1 n
−bk , ck2 n

−bk ], where

0 < ck1 < ck2 < ∞ and 1/2 > b1 > . . . > bm > 0; that j ∈ I0 if and only if

ωj = 0. Theorem 1 implies that if p = O{exp(C n1−2b1)} then, with probability

converging to 1, all the indices from Jk+1 are listed in the sequence ȷ̂1, . . . , ȷ̂p
before any of the indices from Jk, and that this result holds for 0 ≤ k ≤ m.

More general properties, in the case where m = m(n) is permitted to diverge

with n, can be derived using (5.1) in Section 5.

3.2. Performance of the transformation method based on mean differ-

ences

Analogous results hold for the feature ranking methods defined at (2.8) and

(2.11). To give details of those properties we recall that in the cases represented

by (2.8) and (2.11),

the data are in the form of independent p-vectors Xi1 =
(Xi11, . . . , Xi1p) and Yi2 = (Yi21, . . . , Yi2p) coming from two
populations, where 1 ≤ ik ≤ nk and nk denotes the size of the
sample from population k.

(3.6)

Condition (3.1) on Ψ is unchanged; (3.2) is replaced by the assumption that:

var {Ψ(X1j)} and var {Ψ(Y1j)} are uniformly bounded away from
zero, if ranking features as at (2.8); var {Ψ(Y1j − X1j)} is bounded
away from zero, if ranking is according to (2.11);

(3.7)

and (3.5) is unchanged. The following theorem describes properties of the ranking

method. Its proof is almost identical to that of Theorem 1, hence we omit it.
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Theorem 2. Under (3.1) and (3.5)–(3.7), with probability converging to 1 as
n → ∞, all the indices from J2 are listed in the sequence ȷ̂1, . . . , ȷ̂p defined by
(2.11), before any of the indices from J1, where J1 and J2 are defined in Section
3.1.

3.3. Failure of feature ranking based on untransformed data

Next we show that feature ranking based on untransformed data is not effec-
tive when feature distributions can produce random variables taking relatively
large values. For brevity, and because it is technically more difficult owing to
the random denominator, we treat only the case of correlation, though simi-
lar results hold for the case of mean differences. Since our result is negative,
and establishing it in generality would not confer significantly greater authority,
we make simplifying assumptions that lead to a short, transparent proof. The
problems that we describe here are present even more forcefully if we replace
the independence and identical distribution assumption of (3.10) below by one
where non-stationarity and correlation are present between components, since
this reduces effective sample size.

In particular, we suppose independent and identically distributed data vec-
tors (Xi, Yi), for 1 ≤ i ≤ n, generated by a linear model,

Yi = α+

p∑
j=1

βj Xij + ϵi , (3.8)

where α, β1, . . . , βp are scalar parameters, the experimental errors ϵi are iden-
tically distributed, and the ϵi’s are independent of the Xij ’s. For simplicity we
take the error ϵi in (3.8) to be identically zero. If feature selection methods based
on conventional correlation are ineffective in this case then they will not perform
well when error is present. Also for simplicity we assume that the intercept term
in the model is zero, and there are just two nonzero coefficients βj , these be-
ing β1 = 1 and β2 = n−b, where 0 < b < 1/2. Therefore, the model at (3.8)
reduces to

Yi = Xi1 + n−bXi2 . (3.9)

We take sample size, n, to be the index of our asymptotic theory, and interpret
dimension, p, as a function of n.

We assume that the design variables Xij involve occasional outliers of size
na, distributed as follows.

Simulate independent and identically distributed random variables
Qij , where the common, nondegenerate distribution is compactly
supported, has zero mean and does not depend on i, j or n; then,
for each j, choose a value of i randomly (independently of the Qij ’s)
and uniformly between 1 and n, and replace Qij by na.

(3.10)
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If we were to assume that the distribution of the Xij ’s was regularly varying at

infinity with exponent a−1, for example Student’s t distribution with a−1 degrees

of freedom, then for each fixed k the k largest values of X1j , . . . , Xnj would

be of size na as n → ∞. Since k here can be arbitrarily large, the problems

experienced by feature ranking methods would be more serious than those that

we shall describe in Theorem 3 below. On the other hand if, rather than assume

that an outlier is present in each design sequence Xj , we were to suppose that it

is present with probability πn where πn → 0 at rate n−c, say, as n → ∞, then

the problems caused by outliers would be less conspicuous, but variable selection

by feature ranking would still fail if p was of larger order than n1+c.

Under the model described by (3.10) the variance of each Xij is (1 − n−1)

{var (Q) + n2a−1}, and to prevent this quantity diverging to infinity we assume,

in Theorem 3 below, that a < 1/2. On the other hand, taking a too small means

that the outliers na have relatively little input, and so, since Theorem 3 seeks to

identify cases where the outliers cause problems, we also place a lower bound on

a in the theorem.

Recall that feature ranking by correlation orders the indices 1, . . . , p as

ȷ̂1, . . . , ȷ̂p, where |ρ̂ȷ̂p | ≥ · · · ≥ |ρ̂ȷ̂p |. Now, under the linear model at (3.8), if the

vector components Xi1, . . . , Xip are independent, then we have ρj = βj (σ
2
Xj)

1/2/

(σ2
Y )

1/2. Moreover, if Xi1, . . . , Xip are also independent of the errors ϵi and

βj = 0 for j > q, βj ̸= 0 for 1 ≤ j ≤ q (3.11)

then

ωj = 0 if j > q, and is nonzero for 1 ≤ j ≤ q. (3.12)

A proof is given in Section 5.4. Hence, the actual correlations are ρ1 = (1 +

n−2b)−1/2, ρ2 = n−b (1 + n−2b)−1/2, and ρj = 0, for j ≥ 3, and an ideal ranking

of features in terms of the estimated correlations ρ̂j should at least preserve the

order of the first two components among the ρj ’s. That is, it should have ȷ̂1 = 1

and ȷ̂2 = 2 with probability converging to 1 as n → ∞. Theorem 3, below, shows

that if p is of sufficiently larger order than n then this property fails in respect

of the second component, although it holds for the first.

Theorem 3. Assume model (3.9) for the response variables Yi, and model (3.10)

for the design sequence Xi, where 1/4 < a < 1/2 and 1 − 2a < b < 2 (1 − 2a)

in (3.9) and (3.10); that, as n → ∞, p/n → ∞ and p = O{exp(C n4a−1)}, for a

constant C > 0 depending on the distribution of Q in (3.10). Then P (ȷ̂1 = 1) → 1

and P (ȷ̂2 = 2) → 0 as n → ∞.

This proves that standard correlation learning is rather ineffective in the case

of heavy-tailed distributions. In contrast, we have already proved in Theorem 1
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that correlation learning based on variable transformation performs particularly

well. To simplify comparison with the negative result of Theorem 3, in the

next theorem we give a more detailed, positive, result for transformation-based

correlation learning under the simple model treated in Theorem 3. In particular,

we show that P (ȷ̂1 = 1) and P (ȷ̂2 = 2) both converge to 1 as n → ∞, when we

define ȷ̂1, . . . , ȷ̂p by |ω̂ȷ̂p | ≥ · · · ≥ |ω̂ȷ̂p |, where ω̂j = ζ̂j/(τ̂Xj τ̂Y ) and the quantities

on the right-hand side of this equation are given by (2.4).

Theorem 4. Assume the conditions of Theorem 3, except that the upper bound

on p there is replaced by p = O{exp(C n1−2b)}, where again C > 0 depends on

the distribution of Q. Suppose that the function Ψ used to transform the data

is bounded and strictly monotone increasing, and has two bounded derivatives.

Then both P (ȷ̂1 = 1) and P (ȷ̂2 = 2) converge to 1 as n → ∞.

It is readily seen that Theorems 3 and 4 have a non-null intersection. That is,

in the context of the models described by (3.9) and (3.10), the transformation

approach leads to correct rankings in cases where relatively conventional methods

produce incorrect results.

4. Data Illustrations

The simulation results reported in Section 2 illustrate the theoretical prop-

erties of Section 3 on simple examples, but simulations in more complex settings

can be found in Delaigle and Hall (2011). In this section we show for some

data examples that our theoretical results in Section 3 translate into significant

improved ranking by using the transformation approach. To apply the trans-

formation procedure we need to choose the function Ψ. In Section 3.1 we gave

intuitive arguments suggesting that Ψ could be taken to be the standard nor-

mal distribution. Of course, for these intuitive arguments to be valid we need

to rescale the data in some way before applying the transformation Ψ, as we

need the non-aberrant data values to be located roughly between −2 and 2. Our

theory is also valid when we do this; see Remark 3 in Section 3.1. We do not

rescale the data in the same way for the methods based on correlation and mean

differences, so below we give details for these approaches separately.

For the correlation-based method we take Uij = Ψ{(Xij − mj)/sj} and

Zi = Ψ{(Yi − m)/s}, where mj and sj are, respectively, the sample median

and standardised interquartile range of Xij , and m and s are defined in the same

way for Yi. Note that, since correlation is invariant under changes of scale and

location, and heavy-tailedness properties are also unaffected by such changes, the

theoretical results in Section 3.1 are unchanged if we replace Xij and Yi there

by, respectively, (Xij − aj)/bj and (Yi − a)/b, where a, b, aj and bj are bounded
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Figure 1. Ro131 study: scatterplots of the first 16 genes selected by the
variable transformation approach, that were not ranked among the top 50
by the untransformed correlation method. Left group of 16: scatterplots
of the (Xij , Yi)’s for those 16 genes; right group of 16: scatterplots of the
(Uij , Zi)’s, where Uij = Ψ(Xij) and Zi = Ψ(Yi). The oblique lines are the
least squares lines.

Figure 2. Scatterplot of gene 1,597 at for the Affymetrix data.

nonzero constants. See Remark 3 in Section 3.1 for the case of empirical location

and scale.

For the mean-based method founded on (2.8) in Section 2.3 we take Uij =

Ψ{(Xij −mj)/sj} and Vij = Ψ{(Yij −mj)/sj}, where mj is the minimum of the

sample medians of Xij and Yij , and sj is the standardised interquartile range of

the pooled sample of Xij and Yij (with j fixed). Note that we cannot center the

components Xij and Yij to their respective medians, since our goal is precisely
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to detect differences in location. In this case, too, rescaling the data can be

accommodated by our theory; see Remark 3 in Section 3.1.

4.1. Cardiomyopathy microarray data

Our first application concerns the ranking of genes according to their influ-

ence on overexpression of a G-protein-coupled receptor (Ro1) in mice. See Segal,

Dahlquist, and Conklin (2003) and Hall and Miller (2009) for a more detailed

description of the data. Here, Yi is the measurement of Ro1 on the ith mouse,

and (Xi1, . . . , Xip) are the expression levels of p genes for the ith mouse. The

sample size was n = 30, and p = 6, 319 genes were observed. We ranked the genes

using both the untransformed correlations ρ̂j and the transformed correlations

ω̂j . Out of the 50 genes ranked highest by the transformed correlation method,

40 were not ranked in the top 50 by the untransformed correlation approach. In

Figure 1 we show scatterplots of the (Xij , Yi)’s and of the (Uij , Zi)’s for the first

16 of these 40 genes. Above each scatterplot we indicate the rank assigned by the

untransformed correlation method for each gene in the left panel, and the rank

assigned when we used the transformation based approach in the right panel. In

each scatterplot we also show the least squares regression line.

For a number of the 16 genes the least squares lines, and thus the empiri-

cal correlations, for the untransformed data appear to be too highly influenced

by outliers. As a result, some of the genes were ranked by the untransformed

correlation approach much lower than they arguably should have been. This is

particularly striking for the genes ranked 346, 192, 407, 620, and 1,143 by un-

transformed correlation, and ranked 12, 15, 17, 18, and 23 after transforming the

data. For other genes, such as the genes originally ranked 55 and 126, transform-

ing the variables did not seem particularly useful. As we noted in Section 2.3,

transforming the data does not necessarily improve the rank of each gene, but it

manages to identify influential genes that were wrongly disqualified because of

outliers.

4.2. Affymetrix spike-in data

We applied the transformed mean ranking approach to the Affymetrix spike-

in data described by Cope et al. (2004). This dataset contains two groups with

n = 12 observations in each group, and p = 12, 626 genes. It is available from

http://strimmerlab.org/data.html. In Cope et al. (2004), a comparison with

benchmark data permitted the identification of 16 genes believed to be differen-

tially expressed (that is, for which the mean differences between the two groups

were significantly different from zero). We applied the method in Section 2.3 to

http://strimmerlab. org/data.html
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these data, and found that we needed to keep the 47 highest values of |V̄j − Ūj |
in order to select these 16 known genes. By comparison, the method based on

Student’s t scores needed to keep 155 components, and the method based on the

untransformed means |Ȳj − X̄j | had to keep 100. We also tried the shrinkage

method of Opgen-Rhein and Strimmer (2007), and had to keep 54 components

in order to include all 16 identified genes. The method of Efron et al. (2001)

needed 61 components, and the other methods needed even more. The better

performance of the transformation based procedure comes from the fact that

many components have one or more outliers. For example, the scatterplot of the

observations of gene 1,597 at in Figure 2 shows that the data on gene 1,597 at

(which, of the 16 genes, was the most difficult to pick up for most methods)

contain an outlier, and this is precisely the setting in which our method can

bring considerable improvements. Note that our method did not rank all the 16

known genes higher than the other methods, but managed to pick them all more

efficiently, by keeping fewer components.

5. Technical Arguments

5.1. Proof of Theorem 1

It follows from Bernstein’s Inequality that, if W,W1, . . . ,Wn are independent

random variables for which P (|W | ≤ C1) = 1, E(W ) = 0 and E(W 2) = 1, and if

we define S = n−1/2
∑

i Wi, then for each C2 > 0 there exists C3 > 0, depending

only on C1 and C2, such that P (|S| > x) ≤ 2 exp(−C3 x
2) for all x ∈ (0, C2 n

1/2].

Applying this result to W = {W ′ − E(W ′)}/(varW ′)1/2, where W ′ is Uij , U
2
ij ,

Zi, Z
2
i or Uij Zi, it can be deduced that

P
(
n1/2 |ω̂j − ωj | > x

)
≤ 2 exp

(
− C4 x

2
)
,

for all x ∈ (0, C2 n
1/2], where C4 > 0 depends only on sup |Ψ| and C2. Therefore,

if p = O{exp(C5 λ
2
n)} for C5 > 0 sufficiently small, then, for all C6 > 0,

P
(

max
1≤j≤p

|ω̂j − ωj | > n−1/2C6 λn

)
→ 0 . (5.1)

Result (5.1) implies Theorem 1.

5.2. Proof of Theorem 3

Under the model at (3.9) the correlation estimator ρ̂j , defined below (2.1),

is given by

ρ̂j =
(
âj1 + n−b âj2

) (
b̂j b̂Y

)−1
(5.2)
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for 1 ≤ j ≤ p, where b̂Y = {n−1
∑

i (Yi − Ȳ )2}1/2,

âjk =
1

n

n∑
i=1

Xij ŵik , b̂j =

{
1

n

n∑
i=1

(Xij − X̄j)
2

}1/2

, ŵik = Xik − X̄k .

Let Ejk denote the event that the values of na are in the same position in the

sequences Xj and Xk, and write Ẽjk for the complement of Ejk. For each C1 > 1

there exists C2 > 0 such that for all j ̸= k and all d ∈ (0, 1/2),

P
(∣∣n1/2 âjk

∣∣ > C1 n
d
∣∣ Ẽjk) = O

{
exp

(
− C2 n

2d
)}

, (5.3)

while if 1/4 < a < 1/2 then for each C1 > 0 there exists C2 > 0 such that, for

j ̸= k and all d ∈ (0, 2a− 1/2],

P
(∣∣n1/2 âjk − n2a−1/2

∣∣ > C1 n
d
∣∣ Ejk) = O

{
exp

(
− C2 n

2d
)}

. (5.4)

(If j ̸= k then the left-hand sides of (5.3) and (5.4) do not depend on j and k.

Each of (5.3)–(5.5) is proved using Bernstein’s Inequality.)

Note too that âjj = b̂2j , and that we may assume without loss of generality

that the common distribution of the variables Xij that do not equal na has unit

variance. Then, if C1 > 1, there exists C2 > 0 such that, for all j and d = 2a−1/2,

P
(
n1/2

∣∣b̂j − 1
∣∣ > C1 n

d
)
= O

{
exp

(
− C2 n

2d
)}

. (5.5)

(The left-hand side of (5.5) does not depend on j.) Furthermore,

P (Ejk) = n−1 . (5.6)

Note too that, by (5.2),

b̂Y ρ̂1 = b̂1 + n−b â12 b̂
−1
1 , b̂Y ρ̂2 = â12 b̂

−1
2 + n−b b̂2 , b̂Y ρ̂j =

(
âj1 + n−b âj2

)
b̂−1
j ,

(5.7)

where the last equation will be used for j ≥ 3.

Using (5.3), (5.4) and (5.5), each with d = 2a− 1/2, it can be deduced that

âjk = Op(n
−1/2+2a−1/2) = Op(n

−(1−2a)) and b̂j = 1 + Op(n
−(1−2a)), uniformly

in 1 ≤ j ≤ p and in k = 1, 2. (The choice d = 2a − 1/2 is responsible for the

exponent 2d = 4a − 1 in the formula p = O{exp(C n4a−1)} in the statement of

Theorem 4.1.) Hence, using (5.7), we obtain b̂Y ρ̂1 = 1 + Op(n
−(1−2a)), b̂Y ρ̂2 =

Op(n
−(1−2a)+n−b) and b̂Y ρ̂j = Op(n

−(1−2a)) uniformly in 3 ≤ j ≤ p. Therefore

P
[
|ρ̂1| > max{|ρ̂2|, . . . , |ρ̂p|}

]
→ 1 . (5.8)

The same arguments show that

b̂Y ρ̂j = âj1 + op
(
n−b

)
uniformly in 3 ≤ j ≤ p , (5.9)
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and that

b̂Y ρ̂2 = â12 b̂
−1
2 + n−b b̂2

= n−(1−2a) I(E12) +Op

(
n−2(1−2a)

)
+ n−b +Op

(
n−b−(1−2a)

)
= n−(1−2a) I(E12) + n−b {1 + op(1)} = n−b {1 + op(1)} ,

where the second last identity follows from the fact that, by assumption, b <

2(1− 2a), and the last identity since P (E12) = n−1 → 0. Therefore

b̂Y ρ̂2 = n−b {1 + op(1)} . (5.10)

Results (5.3) and (5.4) imply that, for a constant C3 > 0,

P
(∣∣n1/2 âjk − n2a−1/2 I(Ejk)

∣∣ > C1

)
= O

{
exp

(
− C3 n

2d
)}

.

This result, and the fact that n−1/2 = o(n2a−1) (by assumption, a > 1/4), imply

that if d = 2a− 1/2 and

p = o
{
exp

(
C n2d

)}
, (5.11)

where the constant C here and in the statement of the theorem satisfies C < C3,

then

âj1 = n2a−1 I(Ej1) + op
(
n2a−1

)
uniformly in 3 ≤ j ≤ p . (5.12)

Conditional on the dataset X1 = {X11, . . . , Xn1}, the events Ej1, for 3 ≤ j ≤ p,

are independent and satisfy P (Ej1 | X1) = n−1. Therefore if p/n → ∞ then

P (E31 ∪ . . . ∪ Ep1) → 1. Combining this property with (5.12) we deduce that if

(5.11) holds then for each ϵ > 0,

P
{
âj1 > (1− ϵ)n2a−1 for at least one j in the range 3 ≤ j ≤ p

}
→ 1 . (5.13)

Property (5.8) implies that P (ȷ̂1 = 1) → 1. Properties (5.9) and (5.13), and

the inequality 1− 2a < b assumed in Theorem 3, imply that for each ϵ > 0,

P
{
b̂Y ρ̂j > (1− ϵ)n2a−1 for at least one j in the range 3 ≤ j ≤ p

}
→ 1 ,

which, together with (5.10) and the property 1 − 2a < b, implies that P (ȷ̂2 =

2) → 0.

5.3. Proof of Theorem 4

Put Uij = Ψ(Xij) and Zi = Ψ(Yi), where Yi is as at (3.9), and define

ãj =
1

n

n∑
i=1

Zi w̃ij , b̃j =

{
1

n

n∑
i=1

(Uij − Ūj)
2

}1/2

, w̃ij = Uij − Ūj , (5.14)
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b̃Z = {n−1
∑

i (Zi − Z̄)2}1/2 and ω̂j = ãj/(b̃j b̃Z). Without loss of generality, the

common distribution of the variables Ψ(Xij) when Xij does not equal na has

unit variance. (This property is achievable by simple rescaling of Ψ, since Ψ is

strictly monotone and, by (3.10), Xij given that Xij ̸= na has nonzero variance.)

Result (5.15) below replaces both (5.3) and (5.4) in the present setting, and (5.16)

replaces (5.5). Both are derived using Bernstein’s Inequality, treating separately

the instance where Xij = na (for each j, this is true for exactly one i) and the

contrary case. For each C1 > 1 there exists C2 > 0 such that, for all d ∈ (0, 1/2),

sup
1≤j≤p

P
{∣∣n1/2 (1− E) ãj

∣∣ > C1 n
d
}
= O

{
exp

(
− C2 n

2d
)}

, (5.15)

sup
1≤j≤p

P
(
n1/2

∣∣b̃j − 1
∣∣ > C1 n

d
)
= O

{
exp

(
− C2 n

2d
)}

. (5.16)

For a given value of i let Ej denote the event that j is an index for which

Xij ̸= na. Then if E1 ∩ E2 holds,∣∣∣Ψ(Yi)−
{
Ψ(Xi1) + n−bXi2Ψ

′(Xi1)
}∣∣∣ ≤ C n−2b , (5.17)

where C denotes a constant. (Here we have used the assumption that Ψ is twice

differentiable.) Therefore,

cov{Ψ(Yi),Ψ(Xij) | E1 ∩ E2 ∩ Ej}

= n−b cov
{
Xi2,Ψ(Xij)

∣∣∣ E1 ∩ E2 ∩ Ej
}
E
{
Ψ′(Xi1)

∣∣∣ E1 ∩ E2 ∩ Ej
}
+O

(
n−2b

)
,

(5.18)

uniformly in i and j ≥ 2.

If j = 2 then, since Ψ is strictly monotone increasing, cov{Xi2,Ψ(Xij) | E1 ∩
E2} > 0 and E{Ψ′(Xi1) | E1 ∩ Ej} > 0, and so

γ ≡ cov{Xi2,Ψ(Xi2) | E1 ∩ E2}E{Ψ′(Xi1) | E1} > 0 .

It follows from (5.17) that

cov{Ψ(Yi), Ui1 | E1 ∩ E2} = var (Ui1 | E1) +O
(
n−b

)
. (5.19)

In view of (5.18),

cov{Ψ(Yi), Ui2 | E1 ∩ E2} = n−b γ +O
(
n−2b

)
, (5.20)

and, more simply,

cov{Ψ(Yi), Uij} = 0 for 3 ≤ j ≤ p . (5.21)
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Results (5.15) and (5.19), and the fact that (by assumption) var {Ψ(Xij)} = 1

when Xij ̸= na (i.e. Xij = Qij , as in (3.10)), imply that for each C1 > 0, there

exists C2 > 0 such that

P
{
|ã1 − 1| > C1

(
nd−1/2 + n−b

)}
= O

{
exp

(
− C2 n

2d
)}

(5.22)

whenever d ∈ (0, 1/2).

By (5.15), (5.20), and (5.21), for each d ∈ (0, 1/2) and each C1 > 0, we can

choose C2 > 0 such that

P
{∣∣ã2 − n−b γ

∣∣ > C1

(
nd−1/2 + n−b

)}
= O

{
exp

(
− C2 n

2d
)}

, (5.23)

sup
3≤j≤p

P
{
|ãj | > C1

(
nd−1/2 + n−b

)}
= O

{
exp

(
− C2 n

2d
)}

. (5.24)

In progressing from (5.19)–(5.21) to (5.22)–(5.24) we used the fact that, for

each j, there is just one i in the sequence i = 1, . . . , n for which Xij = na, and

that, by the definition of ãj at (5.14), and since P (|Zi w̃ij | ≤ 2 supΨ2) = 1,

this i (which is randomly chosen without regard for the values of Xij that do

not equal na) contributes no more than 2n−1 supΨ2 to the value of ãj . That

contribution is of strictly smaller order than n−b in (5.22) and (5.24).

Combining (5.16) and (5.22)–(5.24) we deduce that, taking d = 1/2 − b

and assuming that p = O{exp(C n1−2b)} for C > 0 sufficiently small, we have,

as n → ∞, b̃Z ω̂1 = 1 + op(1), b̃Z ω̂2 = n−b γ + op(n
−b) where γ > 0, and

b̃Z ω̂j = op(n
−b) uniformly in 3 ≤ j ≤ p. These three properties imply that

P (ȷ̂1 = 1) and P (ȷ̂2 = 2) converge to 1 as n → ∞, as claimed in the theorem.

5.4. Proof that (3.8) and (3.11) imply (3.12)

Note that under (3.8) and (3.11) and the independence assumption above

(3.11), we have, trivially, ρj = 0 if j > q, and is nonzero for 1 ≤ j ≤ q. This

result is useful in the proofs. To prove (3.12), it suffices to show that if Ψ

is uniformly bounded, then the covariance between Ψ(Yi) and Ψ(Xij) vanishes

when βj = 0, and if in addition Ψ is strictly monotone then the covariance is

nonzero when βj ̸= 0. The first of these results is trivial since, under (3.8)

and the independence assumption, ρl = 0, Ψ(Yi) and Ψ(Xij) are independent if

βj = 0. To derive the second result it suffices to show that if random variables

V1 and V2 are independent, if V1 is essentially bounded and nondegenerate, and

if functions Ψ1 and Ψ2 are strictly monotone increasing and bounded, then γ ≡
cov[Ψ1{Ψ2(V1)+V2}, V1] > 0. The function Ψ3 = Ψ2( ·+EV1) is monotone if Ψ2

is, and in this notation γ = cov[Ψ1{Ψ3(V1 − EV1) + V2}, V1 − EV1], so without

loss of generality E(V1) = 0, in which case, since V1 and V2 are independent, γ =
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E[Ψ1{Ψ2(V1) + V2}V1] = E(E[Ψ1{Ψ2(V1) + V2}V1 |V2]) = E(cov[Ψ1{Ψ2(V1) +

V2}, V1 |V2]) = E{Ψ4(V2)}, where Ψ4(v) = E(cov[Ψ1{Ψ2(V1) + V2}, V1 |V2 = v]).

That is, γ = E{Ψ4(V2)}. Therefore it suffices to consider the case where V2 is

identically constant. In this case we can absorb V2 into the definition of Ψ1, and

so it is sufficient to take V2 = 0. Therefore we must show that when Ψ1 and Ψ2

are strictly monotone increasing and Ψ1 is bounded, cov[Ψ1{Ψ2(V1)}, V1] > 0,

or equivalently, if Ψ3 is strictly monotone increasing and bounded (and V1 is

essentially bounded and not degenerate) then γ1 ≡ cov{Ψ3(V1), V1} > 0. To

appreciate that this inequality holds, let V be a random variable distributed

as V1 and independent of it. Note that {Ψ3(V1) − Ψ3(V )} (V1 − V ) ≥ 0, and is

strictly positive whenever V1 ̸= V . Therefore, E[{Ψ3(V1)−Ψ3(V )} (V1−V )] > 0.

Since E(V1) = E(V ) = 0, the left-hand side here is 2 cov{Ψ3(V1), V1}.

Acknowledgements

Research supported by grants and fellowships from the Australian Research

Council.

References

Candes, E. and Tao, T. (2007). The Dantzig selector: statistical estimation when p is much

larger than n. Ann. Statist. 35, 2313-2351.

Cope, L. M., Irizarry, R. A., Jaffee, H. A., Wu, Z. and Speed, T. P. (2004) A benchmark for

Affymetrix GeneChip expression measures. Bioinformatics 20, 323-331.

Delaigle, A. and Hall, P. (2011). Effect of heavy-tails on ultra high dimensional variable ranking

methods: supplementary material availabe online from the Statistica Sinica website.

Delaigle, A., Hall, P. and Jin, J. (2011). Robustness and accuracy of methods for high di-

mensional data analysis based on Student’s t-statistic. J. Roy. Statist. Soc. Ser. B 73,

283-301.

Efron, B., Tibshirani, R., Storey, J. D. and Tusher, V. (2001). Empirical Bayes analysis of a

microarray experiment. J. Amer. Statist. Assoc. 96, 1151-1160.

Efron, B. E., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least Angle Regression. Ann.

Statist. 32, 407-451.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. J. Amer. Statist. Assoc. 96, 1348-1360.

Fan, J. and Lv, J. (2008). Sure independence screening for ultra-high dimensional feature space

(With discussion). J. Roy. Statist. Soc. Ser. B 70, 849-911.

Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature

space. Statist. Sinica 20, 101-148.

Hall, P. and Miller, H. (2009). Using generalized correlation to effect variable selection in very

high dimensional problems. J. Comput. Graph. Statist. 18, 533-550.

Huber, P. J. (1981). Robust statistics. Wiley, New-York.

Khan, J. A., Van Aelst, S. and Zamar, R. H. (2007). Robust linear model selection based on

least angle regression. J. Amer. Statist. Assoc. 102, 1289-1299.



932 AURORE DELAIGLE AND PETER HALL

Li, J. and Fine, J. P. (2010). Weighted area under the receiver operating characteristic curve

and its application to gene selection. J. Roy. Statist. Soc. C 59, 673-692.

Lv, J. and Fan, Y. (2009). A unified approach to model selection and sparse recovery using

regularized least squares. Ann. Statist., 37, 3498-3528.

Lyons-Weiler, J., Patel, S. and Bhattacharya, S. (2003). A classification-based machine learning

approach for the analysis of genome-wide expression data. Genome Res. 13, 503-512.

Opgen-Rhein, R. and Strimmer, K. (2007). Accurate ranking of differentially expressed genes

by a distribution-free shrinkage Approach. Statist. Appl. Genet. Mol. Biol. 6, 9.

Papana, A. and Ishwaran, H. (2006). CART variance stabilization and regularization for high-

throughput genomic data. Bioinformatics 22, 2254-2261.

Segal, M. R., Dahlquist, K. D. and Conklin, B. R. (2003). Regression approach for microarray

data analysis. J. Computational Biol. 10, 961-980.

Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential

expression in microarray experiments. Statist. Appl. Genet. Mol. Biol. 3, 3.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser.

B 58, 267-288.

Wu, B. (2005). Differential gene expression detection using penalized linear regression models:

the improved SAM statistic. Bioinformatics 21, 1565-1571.

Xie, Y., Jeong, K.S., Pan, W., Khodursky, A. and Carlini, B.P. (2004). A case study on choosing

normalization methods and test statistics for two-channel microarray data. Comp. Funct.

Genomics 5, 432-444.

Yang, X., Zhou, Y., Jin, R. and Chan, C. (2009). Reconstruct modular phenotype-specific gene

networks by knowledge-driven matrix factorization. Bioinformatics 25, 2236-2243.

Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia.

E-mail: A.Delaigle@ms.unimelb.edu.au

Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia.

E-mail: halpstat@ms.unimelb.edu.au

(Received February 2010; accepted July 2011)

A.Delaigle@ms.unimelb.edu.au
halpstat@ms.unimelb.edu.au

	1. Introduction
	2. Transformation Methods
	2.1. Feature ranking based on correlation
	2.2. Data transformation for correlation ranking
	2.3. Feature ranking based on mean differences

	3. Theoretical Properties
	3.1. Performance of the transformation method based on correlation
	3.3. Failure of feature ranking based on untransformed data

	4. Data Illustrations
	4.1. Cardiomyopathy microarray data
	4.2. Affymetrix spike-in data

	5. Technical Arguments
	5.1. Proof of Theorem 1
	5.2. Proof of Theorem 3
	5.3. Proof of Theorem 4
	5.4. Proof


