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1 The proof of Theorem 1

The consistency of our algorithm is first proved for the sequence below,

Ỹ 2
t,T = σ2(t/T ) · Z2

t,T , t = 0, . . . , T − 1. (1.1)

Note that unlike in (3), the above model features the true piecewise constant

σ2(t/T ). Denote n = e− s+ 1 and define

Ỹb
s,e =

√
e− b

√
n
√
b− s+ 1

b∑
t=s

Ỹ 2
t,T −

√
b− s+ 1

√
n
√
e− b

e∑
t=b+1

Ỹ 2
t,T .

S̃bs,e and Sbs,e are defined similarly, replacing Ỹ 2
t,T with σ2(t/T ) and σ2t,T , respec-

tively. Note that the above are simply inner products of the respective sequences

and a vector whose support starts at s, is constant and positive until b, then

constant negative until e, and normalised such that it sums to zero and sums to

one when squared. Let s, e satisfy ηp0 ≤ s < ηp0+1 < . . . < ηp0+q < e ≤ ηp0+q+1

for 0 ≤ p0 ≤ B − q, which will always be the case at all stages of the algorithm.

In Lemmas 1–5 below, we impose at least one of following conditions:

s < ηp0+r − CδT < ηp0+r + CδT < e for some 1 ≤ r ≤ q, (1.2)

{(ηp0+1 − s) ∧ (s− ηp0)} ∨ {(ηp0+q+1 − e) ∧ (e− ηp0+q)} ≤ CϵT , (1.3)

where ∧ and ∨ are the minimum and maximum operators, respectively and

C denotes a generic positive constant. We remark that both conditions (1.2)

and (1.3) hold throughout the algorithm for all those segments starting at s
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and ending at e which contain previously undetected breakpoints. As Lemma 6

concerns the case when all breakpoint have already been detected, it does not

use either of these conditions.

The proof of the theorem is constructed as follows. Lemma 1 is used in

the proof of Lemma 2, which in turn is used alongside Lemma 3 in the proof of

Lemma 4. From the result of Lemma 4, we derive Lemma 5 and finally, Lemmas

5 and 6 are used to prove Theorem 1.

Lemma 1. Let s and e satisfy (1.2), then there exists 1 ≤ r∗ ≤ q such that∣∣∣S̃ηp0+r∗
s,e

∣∣∣ = max
s<t<e

|S̃ts,e| ≥ CδT /
√
T . (1.4)

Proof. The equality in (1.4) is proved by Lemmas 2.2 and 2.3 of Venkatraman

(1993). For the inequality part, we note that in the case of a single breakpoint

in σ2(z), r in (1.2) coincides with r∗ and we can use the constancy of σ2(z) to

the left and to the right of the breakpoint to show that

∣∣∣S̃ηp0+r
s,e

∣∣∣ = ∣∣∣∣∣
√
ηp0+r − s+ 1

√
e− ηp0+r√

n

(
σ2(ηp0+r/T )− σ2((ηp0+r + 1)/T )

)∣∣∣∣∣ ,
which is bounded from below by CδT /

√
T . In the case of multiple breakpoints,

we remark that for any r satisfying (1.2), the above order remains the same and

thus (1.4) follows. �

Lemma 2. Suppose (1.2) holds, and further assume that S̃ηp0+r
s,e > 0 for some

1 ≤ r ≤ q. Then for b satisfying |ηp0+r − b| = CϵT and S̃bs,e < S̃ηp0+r
s,e , we have

S̃ηp0+r
s,e ≥ S̃bs,e + 2 log T for a large T .

Proof. Without loss of generality, assume ηp0+r < b. As in Lemma 1, we first

derive the result in the case of a single breakpoint in σ2(z). The following holds;

S̃bs,e =
√
ηp0+r − s+ 1

√
e− b

√
e− ηp0+r

√
b− s+ 1

S̃ηp0+r
s,e , and (1.5)
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S̃ηp0+r
s,e − S̃bs,e =

(
1−

√
ηp0+r − s+ 1

√
e− b

√
e− ηp0+r

√
b− s+ 1

)
S̃ηp0+r
s,e

=

√
1 +

b−ηp0+r

ηp0+r−s+1 −
√

1− b−ηp0+r

e−ηp0+r√
1 +

b−ηp0+r

ηp0+r−s+1

· S̃ηp0+r
s,e (1.6)

≥
(1 + c1ϵT

2δT
)− (1 + c2ϵT

2δT
) + o( ϵTδT )√

2
· S̃ηp0+r

s,e ≥ C
ϵT
δT

· δT√
T

≥ 2 log T

for a large T , where c1 and c2 are positive constants. The Taylor expansion is

applied in the last but one step, and Lemma 1 in the last step. Similar arguments

are applicable when b < ηp0+r. Since the order of (1.5) remains the same in the

case of multiple breakpoints, the lemma is proved. �

Lemma 3.
∣∣∣Ỹb

s,e − S̃bs,e
∣∣∣ ≤ log T with probability converging to 1 with T uni-

formly over (s, b, e) ∈ D, where, for c ∈ [1/2, 1),

D :=

{
1 ≤ s < b < e ≤ T ; e− s+ 1 ≥ CδT , max

{√
b− s+ 1

e− b
,

√
e− b

s− b+ 1

}
≤ c

}
.

Proof. We need to show that

P

(
max

(s,b,e)∈D

1√
n

∣∣∣∣∣
e∑

t=s

σ2(t/T )(Z2
t,T − 1) · ct

∣∣∣∣∣ > log T

)
−→ 0, (1.7)

where ct =
√
e− b/

√
b− s+ 1 for t ∈ [s, b] and ct =

√
b− s+ 1/

√
e− b other-

wise. Let {Ut}et=s be i.i.d. standard normal variables, V = (vi,j)
n
i,j=1 with vi,j =

cor (Zi,T , Zj,T ), and W = (wi,j)
n
i,j=1 be a diagonal matrix with wi,i = σ2(t/T ) · ct

where i = t − s + 1. By standard results (see e.g. Johnson and Kotz (1970),

page 151), showing (1.7) is equivalent to showing that
∣∣∑e

t=s λt−s+1(U
2
t − 1)

∣∣ is
bounded by

√
n log T with probability converging to 1, where λi are eigenvalues

of the matrix VW. Due to the Gaussianity of Ut, λt−s+1(U
2
t − 1) satisfy the

Cramér’s condition, i.e., there exists a constant C > 0 such that

E
∣∣λt−s+1(U

2
t − 1)

∣∣p ≤ Cp−2p!E
∣∣λt−s+1(U

2
t − 1)

∣∣2 , p = 3, 4, . . . .
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Therefore we can apply Bernstein’s inequality (Bosq (1998)) and obtain

P(

∣∣∣∣∣
e∑

t=s

σ2(t/T )(Z2
t,T − 1) · ct

∣∣∣∣∣ > √
n log T ) ≤ 2 exp

(
− n log2 T

4
∑n

i=1 λ
2
i + 2maxi |λi|C

√
n log T

)
.

Note that
∑n

i=1 λ
2
i = tr (VW)2 ≤ c2maxz σ

4(z)nρ2∞.Also it follows that maxi |λi| ≤
cmaxz σ

2(z)∥V∥ where ∥·∥ denotes the spectral norm of a matrix, and ∥V∥ ≤ ρ1∞

since V is non-negative definite. Then (1.7) is bounded by∑
(s,b,e)∈D

exp(−n log2 T/(4c2max
z
σ4(z)nρ2∞ + 2cmax

z
σ2(z)

√
n log Tρ1∞))

≤ CT 3 exp
(
− log2 T

)
→ 0,

as ρp∞ ≤ C2I
∗
, which can be made to be of order log T , since the only requirement

on I∗ is that it converges to infinity but no particular speed is required. Thus

the lemma follows. �

Lemma 4. Assume (1.2) and (1.3). For b = argmaxs<t<e |Ỹt
s,e|, there exists

1 ≤ r ≤ q such that |b− ηp0+r| ≤ CϵT for a large T .

Proof. Let S̃s,e = maxs<t<e |S̃ts,e|. From Lemma 3, Ỹb
s,e ≥ S̃s,e − log T and

S̃bs,e ≥ Ỹb
s,e − log T , hence S̃bs,e ≥ S̃s,e − 2 log T . Assume that |b − ηp0+r| > CϵT

for any r. From Lemma 2.2 in Venkatraman (1993), S̃ts,e is either monotonic or

decreasing and then increasing on [ηp0+r, ηp0+r+1] and S̃ηp0+r
s,e ∨ S̃ηp0+r+1

s,e > S̃bs,e.
Suppose that S̃ts,e is decreasing and then increasing on the interval. Then from

Lemma 2, we have b′ = ηp0+r + CϵT satisfying S̃ηp0+r
s,e − 2 log T ≥ S̃b′s,e. Since S̃ts,e

is locally increasing at t = b (for S̃bs,e > S̃b′s,e), we have S̃ηp0+r+1
s,e > S̃bs,e and there

will again be a b′′ = ηp0+r+1 − CϵT satisfying S̃ηp0+r
s,e − 2 log T ≥ S̃b′′s,e. As b′′ > b,

it contradicts that S̃bs,e ≥ S̃s,e − 2 log T . Similar arguments are applicable when

S̃ts,e is monotonic and therefore the lemma follows. �

Lemma 5. Under (1.2) and (1.3), P
(∣∣∣Ỹb

s,e

∣∣∣ < τT θ
√
log T · n−1

∑e
t=s Ỹ

2
t,T

)
−→ 0

for b = argmaxs<t<e |Ỹt
s,e|.

Proof. From Lemma 4, there exists some r such that |b− ηp0+r| < CϵT . Denote



Nonstationary time series segmentation 5

d̃ = Ỹb
s,e = d̃1 − d̃2 and m̃ = n−1/2

∑e
t=s Ỹ

2
t,T = c1d̃1 + c2d̃2, where

d̃1 =

√
e− b

√
n
√
b− s+ 1

b∑
t=s

Ỹ 2
t,T , d̃2 =

√
b− s+ 1

√
n
√
e− b

e∑
t=b+1

Ỹ 2
t,T , and c1 = c−1

2 =

√
b− s+ 1

e− b
.

For simplicity, let c2 > c1. Further, let µi = Ed̃i and wi = var(d̃i) for i = 1, 2, and

define µ = Ed̃ and w = var(d̃). Finally, tn denotes the threshold τT θ
√

log T/n.

We need to show P(|d̃| ≤ m̃ · tn) → 0. Note that wi ≤ c2 supz σ
4(z)ρ2∞. Using

Markov’s and the Cauchy-Schwarz inequalities, we bound P(d̃ ≤ m̃ · tn) by

P
{
(d̃1 − µ1)(c1tn − 1) + (d̃2 − µ2)(c2tn + 1) + 2c1tnµ1 + (c2 − c1)tnµ2 ≥ (1 + c1tn)µ

}
≤ 4µ−2(1 + c1tn)

−2
{
(c1tn − 1)2w1 + (c2tn + 1)2w2 + 4c21t

2
nµ

2
1 + (c2 − c1)

2t2nµ
2
2

}
≤ O

{
µ−2 sup

z
σ4(z)

(
ρ2∞ + τ2T 2θ log T

)}
,

and since µ = S̃bs,e = O
(
δT /

√
T
)
> T θ

√
log T , the conclusion follows. �

Lemma 6. For some positive constants C, C ′, let s, e satisfy either

(i) ∃ 1 ≤ p ≤ B such that s ≤ ηp ≤ e and [ηp − s+ 1] ∧ [e− ηp] ≤ CϵT or

(ii) ∃ 1 ≤ p ≤ B such that s ≤ ηp < ηp+1 ≤ e and [ηp−s+1]∨ [e−ηp+1] ≤ C ′ϵT .

Then for a large T ,

P

(∣∣∣Ỹb
s,e

∣∣∣ > τT θ
√

log T · n−1
e∑

t=s

Ỹ 2
t,T

)
−→ 0,

where b = argmaxs<t<e |Ỹt
s,e|.

Proof. First we assume (i). Let A =
{∣∣∣Ỹb

s,e

∣∣∣ > τT θ
√
log T · n−1

∑e
t=s Ỹ

2
t,T

}
and

B =

{
1

n

∣∣∣∣∣
e∑

t=s

(
Ỹ 2
t,T − EỸ 2

t,T

)∣∣∣∣∣ < h =
(ηp − s+ 1)σ21 + (e− ηp)σ

2
2

2n

}
,

where σ21 = σ2 (ηp/T ) and σ
2
2 = σ2 ((ηp + 1)/T ). We have P (A) = P (A ∩ B) +
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P (A |Bc )P (Bc) ≤ P (A ∩ B) +P (Bc) . The first part is bounded as

P (A ∩ B) ≤ P

(∣∣∣Ỹb
s,e

∣∣∣ > τT θ
√

log T · n−1
e∑

t=s

(
EỸ 2

t,T − h
))

. (1.8)

From Lemma 3, we have |Ỹb
s,e− S̃bs,e| ≤ log T . Also Lemmas 2.2 and 2.3 of Venka-

traman (1993) indicate that maxs<t<e |S̃ts,e| = |S̃ηp | = O(
√
n−1ϵT (n− CϵT )) =

O(
√
ϵT ). Therefore |Ỹb

s,e| ≤ |S̃ηp | + log T = O(
√
ϵT ) and (1.8) is bounded by

E
(
Ỹb
s,e

)2
/(τ2h2T 2θ log T ) ≤ O

(
T 1/2−2θ

)
−→ 0, by applying Markov’s inequal-

ity. Turning our attention to P (Bc), we need to show that

P

(
1

n

∣∣∣∣∣
e∑

t=s

σ2(t/T )(Z2
t,T − 1)

∣∣∣∣∣ > h

)
−→ 0.

This can be shown by applying Bernstein’s inequality as in the proof of Lemma

3, and the lemma follows. Similar arguments are applied when (ii) holds. �
We now prove Theorem 1. At the start of the algorithm, as s = 0 and

e = T − 1, all conditions for Lemma 5 are met and it finds a breakpoint within

the distance of CϵT from the true breakpoint, by Lemma 4. Under Assumption

2, both (1.2) and (1.3) are satisfied within each segment until every breakpoint

in σ2(t/T ) is identified. Then, either of two conditions (i) or (ii) in Lemma 6 is

met and therefore no further breakpoint is detected with probability converging

to 1.

Next we study how the bias present in EI(i)t,T (= σ2t,T ) affects the consistency.

First we define the autocorrelation wavelet Ψi(τ) =
∑∞

k=−∞ ψi,kψi,k+τ , the auto-

correlation wavelet inner product matrix Ai,j =
∑

τ Ψi(τ)Ψj(τ), and the across-

scales autocorrelation wavelets Ψi,j(τ) =
∑

k ψi,kψj,k+τ . Then it is shown in

Fryzlewicz and Nason (2006) that the integrated bias between EI(i)t,T and βi(t/T )

converges to zero.

Proposition 1 (Propositions 2.1-2.2 (Fryzlewicz and Nason (2006))). Let I
(i)
t,T

be the wavelet periodogram at a fixed scale i. Under Assumption 1,

T−1
T−1∑
t=0

∣∣∣EI(i)t,T − βi(t/T )
∣∣∣2 = O(T−12−i) + bi,T , (1.9)
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where bi,T depends on the sequence {Li}i. Further, each βi(z) is a piecewise

constant function with at most B jumps, all of which occur in the set B.

Suppose the interval [s, e] includes a true breakpoint ηp as in (1.2), and

denote b = argmaxt∈(s,e) |S̃ts,e| and b̂ = argmaxt∈(s,e)
∣∣Sts,e∣∣. Recall that EI(i)t,T

remains constant within each stationary segment, apart from short (of length

C2−i) intervals around the discontinuities in βi(t/T ). Suppose a jump occurs at

ηp in βi(t/T ) yet there is no change in EI(i)t,T for t ∈ [ηp−C2−i, ηp+C2−i]. Then

the integrated bias is bounded from below by CδT /T from Assumption 2, and

Proposition 1 is violated. Therefore there will be a change in EI(i)t,T as well on such

intervals around ηp and EI(i)t1,T
̸= EI(i)t2,T

for t1 ≤ ηp − C2−i and t2 ≥ ηp + C2−i.

Although the bias of EI(i)t,T in relation to βi(t/T ) may cause some bias between b̂

and b, we have that |b̂− b| ≤ C2I
∗
< ϵT holds for I∗ = O(log log T ), which is an

admissible rate for I∗. Besides, once one breakpoint is detected in such intervals,

the algorithm does not allow any more breakpoints to be detected within the

distance of ∆T from the detected breakpoint, by construction. Hence the bias

in EI(i)t,T does not affect the results of Lemmas 1–6 for wavelet periodograms at

finer scales and the consistency still holds for Y 2
t,T in (3).

Finally, we note that the within-scale post-processing step in Section 3.2.1

is in line with the theoretical consistency of our procedure; (a) Lemma 5 implies

that our test statistic exceeds the threshold when there is a breakpoint η within

a segment [s, e] which is of sufficient distance from both s and e, and (b) Lemma

6 shows that it does not exceed the threshold when (s, η, e) does not satisfy the

condition in (a).

2 The proof of Theorem 2

From Assumption 1 and the invertibility of the autocorrelation wavelet inner

product matrix A, there exists at least one sequence of wavelet periodograms

among I
(i)
t,T , i = −1, . . . ,−I∗ in which any breakpoint in B is detected. Suppose

there is only one such scale, i0, for νq ∈ B and denote the detected breakpoint

as η̂
(i0)
p0 . After the across-scales post-processing, η̂

(i0)
p0 is selected as ν̂q since no

other η̂
(i)
p , i ̸= i0, is within the distance of ΛT = CϵT from either ν̂q or η̂

(i0)
p0 , and∣∣∣νq − η̂

(i0)
p0

∣∣∣ ≤ ϵT with probability converging to 1 from Theorem 1. If there are
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D(≤ I∗) breakpoints detected for νq, denote them as η̂
(i1)
p1 , . . . , η̂

(iD)
pD . Then for

any 1 ≤ a < b ≤ D,
∣∣∣η̂(ia)pa − η̂

(ib)
pb

∣∣∣ ≤ ∣∣∣η̂(ia)pa − νq

∣∣∣ + ∣∣∣η̂(ib)pb − νq

∣∣∣ ≤ CϵT , and only

the one from the finest scale is selected as ν̂q among them by the post-processing

procedure. Hence the across-scales post-processing preserves the consistency for

the breakpoints selected as its outcome.
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