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Proofs

Let g(t) be the density function for t. The following technical conditions are imposed
in this section. They are not the weakest possible conditions, but they are imposed to
facilitate the proofs.

Technical Conditions:

A π1(t) and p(t) has continuous second derivative at t0 and 0 < π1(t0) < 1 and 0 <
p(t0) < 1. (For the constant proportion semiparametric mixture model (3), we use
the same assumption for p(t) and assume 0 < π1 < 1.)

B g(t) has continuous second derivative at the point t0 and g(t0) > 0.

C K(·) is a symmetric (about 0) kernel density with compact support [−1, 1].

D The bandwidth h tends to zero such that nh →∞.

Let αn = (nh)−1/2 + h2, θ0 = {π1(t0), p(t0)},

f(x, θ) = π1I(x = 0) + π2

(
N

x

)
px{1− p}N−x,

l(x, θ) = log f(x, θ), where θ = (π1, p). Then the objective function (4) can be written
as

`(θ) =
1
n

n∑

i=1

Kh(ti − t0) log f(xi, θ) =
1
n

n∑

i=1

Kh(ti − t0)l(x, θ).

Define

l1(x, θ) =
∂

∂θ
l(x, θ) and l2(x, θ) =

∂2

∂θ∂θT
l(x, θ),
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G(t) = E{l1(X, θ0) | t} and I(t) = −E{l2(X, θ0) | t}. The moments of K and K2 are
denoted respectively by

µj =
∫

tjK(t)dt and νj =
∫

tjK2(t)dt.

By some simple calculations, we can get the following results.

Lemma 1. Assume that the regularity conditions A–C hold. We have the following
results

1. The G(t) has continuous second derivative at t0 and E{l1(X, θ0)2 | t} is continuous
at t0.

2. The ∂3`(θ0)/(∂θi∂θj∂θk) is a bounded function for all θ in a neighborhood of θ0

and all x.

3. I(t) is continuous at t0 and positive definite at t0 and

I(t0) = E{l1(X, θ0)l1(X, θ0)T | t0}.

Proof of Theorem 2.1.

Note that

`(θ) =
1
n

n∑

i=1

Kh(ti − t0) log f(xi, θ).

Hence,

`(θ(k+1))− `(θ(k)) =
n∑

i=1

log

{
f(xi, θ

(k+1))

f(xi, θ
(k))

}
Kh(ti − t0)

=
n∑

i=1

log

{
π

(k)
1 B(xi, N, 0)

f(xi, θ
(k))

π
(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

+
π

(k)
2 B(xi, N, p(k))

f(xi, θ
(k))

π
(k+1)
2 B(xi, N, p(k+1))

π
(k)
2 B(xi, N, p(k))

}
Kh(xi − x0)

=
n∑

i=1

log

{
r
(k+1)
i1

π
(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

+ r
(k+1)
i2

π
(k+1)
2 B(xi, N, p(k+1))

π
(k)
2 B(xi, N, p(k))

}
Kh(xi − x0)

Based on the Jensen’s inequality, we have

`(θ(k+1))− `(θ(k)) ≥
n∑

i=1

[
r
(k+1)
i1 log

{
π

(k+1)
1 B(xi, N, 0)

π
(k)
1 B(xi, N, 0)

}
Kh(xi − x0)

+r
(k+1)
i2 log

{
π

(k+1)
2 B(xi, N, p(k+1))

π
(k)
2 B(xi, N, p(k))

}
Kh(xi − x0)

]
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Based on the property of M-step of (5), we have

`(θ(k+1))− `(θ(k)) ≥ 0.

Proof of Theorem 3.1. Denote αn = (nh)−1/2 + h2. It is sufficient to show that for any
given η > 0, there exists a large constant c such that

P{ sup
|u‖=c

`(θ0 + αnu) < `(θ0)} ≥ 1− η, (13)

where `(θ) is defined in (4).

By using Taylor expansion, it follows that

`(θ0 + αnu)− `(θ0) =
1
n

n∑

i=1

Kh(ti − t0) {l(xi, θ0 + αnu)− l(xi, θ0)}

=
1
n

n∑

i=1

Kh(ti − t0)
{

l1(xi, θ0)T uαn + uT l2(xi, θ0)uα2
n + α3

nq(xi, θ̃)
}

= I1 + I2 + I3,

where ‖θ̃ − θ0‖ ≤ cαn and

q(xi, θ̃) =
2∑

i=1

2∑

j=1

2∑

k=1

∂3l(xi, θ̃)
∂θi∂θj∂θk

uiujuk,

where u = (u1, u2).

By directly calculating the mean and variance and note that G(t0) = 0, we obtain

E(I1) = αnE
{
Kh(t− t0)G(t)T u

}
= O(cαnh2);

var(I1) = n−1α2
nvar[Kh(ti − t0)l1(θ0, xi)T u] = O(c2α2

n(nh)−1).

Hence
I1 = O(cαnh2) + αncOp((nh1)−1/2) = Op(cα2

n).

Similarly,

I3 =
1
n

n∑

i=1

Kh(ti − t0)α3
nq(xi, θ̃) = Op(α3

n).

and

I2 =
1
n

n∑

i=1

Kh(ti − t0)uT l2(xi, θ0)uα2
n = −α2

ng(t0)uTI(t0)u(1 + op(1)).

Noticing that I(t0) is a positive matrix, ‖u‖ = c, we can choose c large enough such
that I2 dominates both I1 and I3 with probability at least 1 − η. Thus (13) holds.
Hence with probability approaching 1 (wpa1), there exists a local maximizer θ̂ such that
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||θ̂−θ0|| ≤ αnc, where αn = (nh)−1/2+h2. Based on the definition of θ, we can also get,
wpa1, |π̂(t0)− π(t0)| = Op

(
(nh)−1/2 + h2

)
and |p̂(t0)− p(t0)| = Op

(
(nh)−1/2 + h2

)
.

Proof of Theorem 3.2.
Note that the estimate θ̂ satisfies the equation

0 = `′(θ̂) =
1
n

n∑

i=1

Kh(ti − t0)
{

l1(xi, θ0) + l2(xi, θ0)(θ̂ − θ0) + Op(||θ̂ − θ0||2)
}

. (14)

The order of the third term could be derived from the (2) of Lemma 1. Let

Wn =
1
n

n∑

i=1

Kh(ti − t0)l1(xi,θ0)

∆n = − 1
n

n∑

i=1

Kh(ti − t0)l2(xi, θ0).

Note that

E(Wn) = E{Kh(t− t0)G(t)} =
1
2
(Gg)′′(t0)µ2h

2(1 + o(1)),

cov(Wn) = n−1cov{Kh(ti − t0)l1(xi, θ0)}
= n−1

{
EK2

h(ti − t0)l1(xi, θ0)l1(xi, θ0)T − E(Wn)2
}

= (nh)−1g(t0)I(t0)ν0(1 + o(1)), (15)

where (Gg)′′(t) is the second derivative of G(t)g(t), and

E(∆n) = E{Kh(t− t0)I(t)} = I(t0)g(t0) + o(1),

var(∆n(i, j)) ≤ n−1E

[
K2

h(ti − t0)
{

∂2l(xi,θ0)
∂θi∂θj

}2
]

= O{(nh)−1} = o(1).

Therefore, we have
∆n = I(t0)g(t0) + op(1).

Note that ||θ̂ − θ0||2 = op(Wn). Then from (14), we have
√

nh(θ̂ − θ0) = g(t0)−1I(t0)−1
√

nhWn(1 + op(1)). (16)

In order to prove the asymptotic normality of (16), we only need to establish the asymp-
totic normality of

√
nhWn. Next we show, for any unit vector d ∈ <2, we prove

{dTcov(W ∗
n)d}− 1

2 {dT W ∗
n − dT E(W ∗

n)} L−→ N(0, 1),

where W ∗
n =

√
nhWn. Let

ξi =
√

h/nKh(ti − t0)dT l1(θ0, xi).
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Then dT W ∗
n =

∑n
i=1 ξi. We check the Lyapunov’s condition. Based on (15), we can get

cov(W ∗
n) = g(t0)I(t0)ν0(1+o(1)) and var(dT W ∗

nd) = dTcov(W ∗
n)d = g(t0)ν0d

TI(t0)d(1+
o(1)). So we only need to prove nE|ξ1|3 → 0. Noticing that l1(θ0, x) is bounded for any
x, and K(·) has compact support,

nE|ξ1|3 ≤ O(nn−3/2h3/2)E
∣∣K3

h(ti − t0)
∣∣

= O(n−1/2h3/2)O(h−2) = O((nh)−1/2) → 0.

So the asymptotic normality for W ∗
n holds such that

√
nh

{
Wn − 1

2
(Gg)′′(t0)µ2h

2 + o(h2)
}

D−→ N {0, g(t0)I(t0)ν0} .

Based on (16) and the Slutsky theorem, we can get the asymptotic result of θ̂

√
nh

{
θ̂ − θ0 − b(t0)h2 + o(h2)

}
D−→ N

{
0, g−1(t0)I−1(t0)ν0

}
,

where

b(t0) = I−1(t0)
{

G′(t0)g′(t0)
g(t0)

+
1
2
G′′(t0)

}
µ2.

Proof of Theorem 3.3.
Let

f(xi, π1, p̂(ti)) = log
[
π1I(xi = 0) + π2

(
N

xi

)
p̂(ti)xi(1− p̂(ti))N−xi

]
.

Based on a Taylor expansion of (4), similar to the proof of Theorem 3.2, we have that
√

n(π̃1 − π1) = B−1
n An + op(1).

where

An =
1√
n

n∑

i=1

∂f(xi, π1, p̂(ti))
∂π1

Bn = − 1
n

n∑

i=1

∂2f(xi, π1, p̂(ti))
∂π2

1

It can be shown that

Bn = −E
{

∂2f(xi, π1, p(ti))
∂π2

1

}
+ op(1)

= Iπ1 + op(1).

It can be shown that

An =
1√
n

n∑

i=1

∂f(xi, π1, p(ti))
∂π1

+
1√
n

n∑

i=1

∂2f(xi, π1, p(ti))
∂π1∂p

{p̂(ti)− p(ti)}+ Op(d1n)

=
1√
n

n∑

i=1

∂f(xi, π1, p(ti))
∂π1

+ Sn1 + Op(d1n).
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where d1n = n−1/2||π̃1 − π1||2∞ = op(1). Based on the proof of Theorem 3.2, we have

θ̂(ti)− θ(ti) =
1
n

g(ti)−1I(ti)−1
n∑

j=1

Kh(tj − ti)l1(xj , θ(ti)) + Op(dn2),

Based on Carroll et al. (1997) and Li and Liang (2008), we have that n1/2dn2 =
op(1) uniformly in ti, if nh2/ log(1/h) → ∞. Let ψ(tj , xj) be the second entry of
I(tj)−1l1(xj ,θ(tj)). Since p(ti) − p(tj) = O(ti − tj) and K(·) is symmetric about 0,
we have

Sn1 =
1

n−3/2

n∑

j=1

n∑

i=1

∂2f(xi, π1, p(ti))
∂π1∂p

g(ti)−1ψ(tj , xj)Kh(tj − ti) + Op(n1/2h2)

= Sn2 + Op(n1/2h2).

It can be shown, by calculating the second moment, that

Sn2 − Sn3 = op(1),

where Sn3 = −n−1/2
∑n

j=1 ξ(tj , xj), with

ξ(tj , xj) = −E
{

∂2f(x, π1, p(tj))
∂π1∂p

| t = tj

}
ψ(tj , xj)

= Iπ1p(tj)ψ(tj , xj).

By condition nh4 → 0, we know

An = n−1/2
n∑

i=1

{
∂f(xi, π1, p(ti))

∂π1
− ξ(ti, xi)

}
+ op(1).

We can show that E(An) = 0. Define

Σ = var(An) = var

{
∂f(x, π1, p(t))

∂π1
− ξ(t, x)

}
.

Based on the central limit theorem, we can have
√

n(π̃1 − π1) → N(0, I−2
π1

Σ).

Proof of Theorem 3.4.
Based on a Taylor expansion of (7), similar to the proof of Theorem 3.2, we have

√
nh{p̃(t0)− p(t0)} = g(t0)−1Ip(t0)−1W̃n(1 + op(1)),

where

Ip(t) = −E
{

∂2f(x, π1, p(t0))
∂p2

∣∣∣t
}
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and

W̃n =

√
h

n

n∑

i=1

∂f(xi, π1, p(t0))
∂p

Kh(ti − t0).

It can be calculated that

W̃n =

√
h

n

n∑

i=1

∂f(xi, π̃1, p(t0))
∂p

Kh(ti − t0) + Cn + op(1),

where

Cn =

√
h

n

n∑

i=1

∂2f(xi, π1, p(t0))
∂p∂π1

(π̃1 − π1)Kh(ti − t0).

Since
√

n(π̃1 − π1) = Op(1), it can be shown that

Cn = op(1).

Hence √
nh{p̃(t0)− p(t0)} = g(t0)−1Ip(t0)−1Wn(1 + op(1)),

where

Wn =

√
h

n

n∑

i=1

∂f(xi, π1, p(t0))
∂p

Kh(ti − t0).

Let

Γ(t) = E
{

∂f(x, π1, p(t0))
∂p

∣∣∣t
}

.

Note that Γ(t0) = 0. We can show that

var(Wn) = Ip(t0)g(t0)ν0(1 + op(1))

and

E(Wn) =

√
nh

2
{Γ′′(t0)g(t0) + 2Γ′(t0)g′(t0)}h2µ2(1 + op(1)).

Similar to the proof of Theorem 3.2, we can prove the asymptotic normality of Wn.
Hence, we have

√
nh{p̃(t0)− p(t0)− b̃(t0)h2} D−→ N(0, g(t0)−1Ip(t0)−1ν0),

where
b̃(t0) =

1
2g(t0)Ip(t0)

{Γ′′(t0)g(t0) + 2Γ′(t0)g′(t0)}µ2.


