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Abstract: In the study of stationary stochastic processes on the real line, the co-

variance function and the spectral density function are parameters of considerable

interest. They are equivalent ways of expressing the temporal dependence in the

process. In this article, we consider the spectral density function and propose a new

estimator that is not based on the periodogram; the estimator is derived through a

regularized inverse problem. A further feature of the estimator is that the data are

not required to be observed on a grid. When the regularization condition is based

on the function’s first derivative, we give the estimator in closed form as well as a

bound on its mean squared error. Our numerical studies compare our new estima-

tor of the spectral density to several well known estimators, and we demonstrate

its increased statistical efficiency and much faster computation time.
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1. Introduction

Consider a real-valued second-order stationary process X = {X(t), t ∈ R}
with mean 0 and covariance function R. Assume that X has a spectral density
function f so that

R(t) =
∫

eitωf(ω)dω = 2
∫ ∞

0
cos(tω)f(ω)dω, (1.1)

f(ω) = (2π)−1

∫
e−iωtR(t)dt. (1.2)

The nonparametric estimation of f is a classical problem in the study of stochastic
processes. Suppose that complete data {X(t), 0 ≤ t ≤ T} are available. Define
the periodogram,

IT (ω) = T−1
∣∣∣ ∫ T

0
X(t)e−itωdt

∣∣∣2 =
∫ T

−T
e−itωR̂(t)dt,

where R̂(t) = T−1
∫ T−|t|
0 X(u)X(u + |t|)du. From (1.2), IT (ω) is asymptotically

unbiased for 2πf(ω), as T → ∞. However, IT (ω) is not consistent in that the
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variance does not tend to zero as T → ∞. From the references at the end of
this paragraph, consistent estimators of f can be obtained by local averaging
of the periodogram. Much of the spectral-analysis literature has focused on
how to make this procedure work using various smoothing techniques. In that
regard, discrete-index stochastic processes (i.e., time series) have received more
attention than continuous-index stochastic processes (such as represented in (1.1)
and (1.2)). For early literature, see Bartlett (1950), Grenander and Rosenblatt
(1953), Jenkins and Watts (1968), Parzen (1957), and Priestley (1981). More
recent works on data-driven procedures based on the periodogram include Beltrão
and Bloomfield (1987), Fan and Kreutzberger (1998), Hurvich (1985), Hurvich
and Beltrão (1990), and Pawitan and O’Sullivan (1994), to name a few.

In this paper we consider an approach for estimating f without directly
using (1.2), and indeed without using the periodogram. The basic idea of our
approach is to estimate f from an estimate of R by solving a regularized inverse
problem; that is, “algorithmic inversion” takes the place of analytic inversion.
The potential of our general approach can be realized in a number of settings,
including stationary and intrinsically stationary processes indexed in Rk (cf.,
Cressie (1993), Matheron (1973), and Yaglom (1987)), each of which entails con-
siderations unique to that setting. In this paper, we focus on stationary processes
indexed by R. Clearly, the data will be collected on a finite subset set of R. In
Section 2, we give the notation and describe the basic methodology that leads
to the new spectral density estimator. In Section 3, we consider gridded data
(i.e., time series data) and derive a representation of the estimator for that case.
We describe a weighted cross-validation approach for choosing the smoothing
parameter in our method, and we compare that procedure with a number of
benchmark spectral procedures for stationary time series. In addition, Section 3
considers the computation of bounds on the mean squared error of the estimator.
In Section 4, we demonstrate how our method can be modified to accommodate
non-gridded (i.e., irregularly located) data. A mean squared error bound of the
estimator is also obtained, and a comparison is made with existing procedures
in the literature. Discussion and conclusions are given in Section 5. All of the
proofs are given in the Appendix.

2. Methodology

In the developments below, it is convenient notationally to absorb the con-
stant 2 into f in equation (1.1); that is, from now on we write

R(t) =
∫ ∞

0
cos(tω)f(ω)dω, (2.1)

and keep in mind that we are estimating twice the usual spectral density function.
Suppose that we observe the process X(t) at t = ti, 1 ≤ i ≤ N . Since X has
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mean zero, the product X(ti)X(tj) is an unbiased estimator of R(ti − tj) =∫ ∞
0 cos((ti− tj)ω)f(ω)dω. Thus, intuitively, the following sum of squares is small

for a function g close to f :∑
1≤i,j≤N

[
X(ti)X(tj) −

∫ ∞

0
cos((ti − tj)ω)g(ω)dω

]2
. (2.2)

Conversely, any function g that makes the sum of squares small can be thought of
as a candidate estimator of f . However, searching for an estimator in this manner
constitutes an ill-posed inverse problem in that the solution is unstable and often
non-unique. Including a roughness penalty term in (2.2) as a way to regularize the
solution is often an effective way to make it a well-posed problem (cf., O’Sullivan
(1986) and Tikhonov and Arsenin (1977)). Before we proceed with our approach
of regularizing the inverse problem, it is worth pointing out that, even though
our aim is to estimate the spectrum on the whole real line, based on partially
observed X, it often only makes sense to conduct the estimation on a bounded
interval. For instance, if we observe X(ti), i = 1, . . . , N , where ti = kiτ for
some constant τ > 0 and integers ki, then it is natural to estimate the spectrum
only on [0, ν] with ν = π/τ to avoid the aliasing effect; see Yaglom (1987, p.187).
When {t1, . . . , tN} are irregularly spaced but are randomly scattered in [t1, tN ], a
reasonable bounded interval is [0, ν], where ν = %π and % is the average sampling
rate; see Broersen and Bos (2006), Eyer and Bartholdi (1999), and Press et al.
(1992). In Eyer and Bartholdi (1999), a case is made that a larger ν should be
used in this situation, since the “Nyquist frequency” is usually much larger than
the average sampling rate.

To develop our estimator for different ν based on a unified theoretical frame-
work, we first transform the frequency domain from [0, ν] to [0, 1]. Then a possible
formulation for the regularized optimization problem described above is to focus
on functions g on [0, 1] such that their first m− 1 derivates g, g(1), . . . , g(m−1) are
absolutely continuous and

∫ 1
0 [g(m)(u)]2du < ∞, for some m ≥ 1; we look for such

g on [0, 1] that solve the minimization problem:

ĝλ = argmin
{ ∑

1≤i,j≤N

[
X(ti)X(tj) −

∫ 1

0
cos(ν(ti − tj)u)g(u)du

]2

+λ

∫ 1

0
[g(m)(u)]2du

}
, (2.3)

where λ is an appropriately selected positive constant. Transforming the domain
back to [0, ν], we define the estimator of f as

f̂λ(ω) ≡


1
ν ĝλ(ω

ν ), ω ∈ [0, ν],

0, otherwise.
(2.4)
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The parameter λ controls the smoothness of the solution. A data-driven proce-
dure to select λ is presented in Section 3.2.

In the literature, the space of functions on [0, 1] with square-integrable mth
derivatives is often denoted by Wm[0, 1], or simply Wm, and referred to as a
Sobolev space of order m (cf., Wahba (1990)). In this article, we derive the de-
tailed computational and theoretical properties of f̂λ for the case m = 1. Extend-
ing the optimization algorithm to a general m is computationally straightforward,
which will be apparent from the derivation of (2.9) below.

From now on, we focus on the case where the optimization in (2.3) is per-
formed with g ∈ W1. Let yi, 1 ≤ i ≤ n, be an arbitrary enumeration of the
products of pairs X(tj), X(tk), 1 ≤ j ≤ k ≤ N , where n = N + N(N − 1)/2,
and write y ≡ (y1, . . . , yn)T ; accordingly, let hi, 1 ≤ i ≤ n, be the corresponding
differences, |tj − tk|, between the observational time points for the pairs and

h′
i ≡ νhi, 1 ≤ i ≤ n. (2.5)

Also, define functions

ξi(s) ≡

s − 1
2s2 hi = 0,

sin(h′
i)h

′
is+cos(h′

is)−1

h
′2
i

hi 6= 0, 1 ≤ i ≤ n,
(2.6)

and matrices

Tn×1 ≡
[ ∫ 1

0
cos(h′

1u)du,

∫ 1

0
(cos(h′

2u)du, . . . ,

∫ 1

0
cos(h′

nu)du
]T

, (2.7)

Σn×n ≡
{∫ 1

0
cos(h′

iu)ξj(u)du
}n

i,j=1
, and Mn×n ≡ Σ + λI, (2.8)

where I denotes the identity matrix. Note that T in (2.7) is a matrix, and it
should not be confused with T used for the observation interval [0;T ]; its use
should be clear from the context. Then, from the Appendix, it can be seen that

ĝλ(u) = d +
n∑

i=1

ciξi(u), u ∈ [0, 1], (2.9)

where

d = (T T M−1T )−1T T M−1y, (2.10)

and
c ≡ [c1, . . . , cn]T = M−1(I − T (T T M−1T )−1T T M−1)y. (2.11)
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In the rest of this paper, we focus on the estimator (2.9). Note that this algorithm
in general does not require the data to be observed on a grid, although gridded
data do lead to simpler computational formulas. Also, the algorithm can be
extended to processes whose index sets are multi-dimensional by working with
more general Sobolev spaces.

Theoretically, it is possible for f̂λ(ω) to exhibit negative values, which we
handle by truncation; see below. In all of the examples that we have investigated,
this is a minor issue. We demonstrate this point numerically in Section 3.3, by
estimating a spectrum that is equal to 0 in a part of the frequency domain. To
remove negativity, a practical solution is to threshold f̂λ(ω) and consider

f̂+
λ (ω) = max{f̂λ(ω), 0}. (2.12)

As seen in Theorems 3 and 5 below, the consistency of f̂λ(ω) can be established
under very general conditions, in which case the difference f̂λ(ω) and f̂+

λ (ω)
becomes negligible as the sample information increases.

Other approaches to removing negativity include using the constrained op-
timization algorithm described in Section 9.4 of Wahba (1990). Let u1, . . . , u` be
a set of points in [0, 1]. Adding the constraints g(u1) ≥ 0, . . . , g(u`) ≥ 0 in the
optimization problem (2.3), the solution can be written as f̌λ(ω) = (1/ν)ǧλ(ω/ν),
ω ∈ [0, ν], with

ǧλ(u) =
∑

k

bk{1 + min(uk, u)} + d +
n∑

i=1

ciξi(u), u ∈ [0, 1],

where the constants {bk}, {ci}, d can be obtained by solving a quadratic pro-
gramming problem. Since the functions in W1 are smooth, the nonnegativity of
f̌λ at a suitably selected set of points, ωk = νuk, virtually guarantees that f̌λ

is nonnegative everywhere. Compared with f̂λ, the price paid for nonnegativity
in f̌λ is a less-efficient computational algorithm, a lack of deep understanding of
how to choose optimally the smoothing parameter, and the absence of a closed-
form solution that could be useful for theoretical considerations. The latter two
points are amplified in future sections. Another approach to address the lack
of complete nonnegativity is to consider the estimation of the logarithm of f .
This is common in time series analysis, where the fact that the periodogram
values computed at discrete Fourier frequencies are asymptotically uncorrelated
and exponentially distributed, makes it natural to conduct approximate likeli-
hood inference on the log spectrum (cf., Pawitan and O’Sullivan (1994)). Such a
procedure usually employs numerical optimizations, for which the computations
can be quite costly. We do not use these approaches here, although both are
worthy of future consideration.
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3. Gridded Data

In this section, assume that the observational points t1 < · · · < tN are on
the grid {kτ, k = 1, 2, . . .} for some τ > 0. However, to be consistent with the
notation in Section 2, we consider the grid G ≡ {kπ/ν, k = 1, 2, . . .} for some
ν, and estimate the spectral density f on [0, ν]. Note that the data are not
required to be sequentially observed on G, and hence our results are equally rel-
evant for a spatial process in one dimension. In Section 3.1, Theorem 1 gives
a closed-form formula for spectral-density estimation from gridded data. The
smoothing parameter selection is considered in Section 3.2, and numerical com-
parisons with existing time-series procedures for estimating the spectral density
are made in Section 3.3. Section 3.4 considers the computation of bounds for the
mean squared error. All of the proofs are given in the Appendix.

3.1. A closed-form representation of the estimator

Let K ≡ (tN − t1)ν/π, nk ≡
∑N

i=1

∑N
j=i I(tj − ti = kπ/ν), k = 0, . . . ,K,

and n ≡
∑K

k=0 nk, where I stands for the indicator function. Define a sequence
{yi, i = 1, . . . , n} as follows. For each k ≥ 0, define yi,

∑k−1
j=0 nj+1 ≤ i ≤

∑k
j=0 nj ,

to be each a product of the form X(tu)X(tv) for some tu, tv, 1 ≤ u ≤ v ≤ N ,
such that tv − tu = kπ/ν. (For k = 0, use the convention that

∑−1
j=0 nj ≡ 0.)

The particular order in which the pairs are indexed within the kth sub-sequence
is not important. Thus, for k = 0, the n0 yi’s are equal to the squares of the
data; the next n1 yi’s are products of pairs of data that are observed at distance
π/ν apart, and so on. Also recall from Section 2 that hi, 1 ≤ i ≤ n, is defined as
|tu − tv| if yi = X(tu)X(tv). Thus, the first n0 hi’s are all equal to 0, the next
n1 hi’s are all equal to π/ν, and so on. Define

S0 ≡
n0∑
i=1

yi and Sk ≡

Pk
j=0 nj∑

i=
Pk−1

j=0 nj+1

yi, 1 ≤ k ≤ K.

Let f̂λ be the estimator defined by (2.4).

Theorem 1. For each ω ∈ [0, ν], we have f̂λ(ω) =
∑K

k=0 bk(ω)Sk, where

bk(ω) =


1
ν

1
n0

, k = 0,

2
ν

cos(kπω/ν)
nk+2(kπ)2λ

, k ≥ 1.

Remark. Suppose now we have time series data where ti = i. The periodogram
can be written as IT (ω) = (1/N)S0 +(2/N)

∑K
k=1 cos(kω)Sk. The natural choice

of ν in our procedure is ν = π. We now compare the formulas for f̂λ and π−1IT .
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In the summation over 1 ≤ k ≤ K, the coefficient of cos(kω)Sk is 1/[nk+2(kπ)2λ]
for f̂λ, where nk = N−k, in comparison to 1/N for π−1IT . Intuitively, having nk

in the denominator for f̂λ reduces the bias, since that is the number of terms in Sk.
While it appears that the other component 2(kπ)2λ in the denominator makes
the bias worse as k increases, its real effect is to down-weight the contribution of
Sk for large k. This serves to control the variance of f̂λ, since the number of terms
in Sk tends to decrease as k increases. The manner in which bias and variance are
controlled by weights attached to the estimated covariances in our estimator is
similar in spirit to the lag-window estimator of the spectral density; see Priestley
(1981, pp.432-449), and Brockwell and Davis (1991, pp.351-382). However, the
weights in the two procedures are different in form, and, more importantly, the
weights in the estimator f̂λ arise naturally from an optimization criterion.

For the gridded data described in this section, consider the modified opti-
mization problem: Find g ∈ W1 to minimize

K∑
k=1

nk

(
Sk/nk −

∫ 1

0
cos(kπu)g(u)du

)2
+ λ

∫ 1

0
[g(1)(u)]2du, (3.1)

where g(1) is the first derivative of g. Corollary 2 shows that this leads to precisely
f̂λ.

Corollary 2. The estimator of f defined by (3.1) and (2.4) is equal to f̂λ given
by Theorem 1 for all λ > 0.

3.2. Choosing λ by generalized cross-validation

One approach for selecting λ in f̂λ is generalized cross-validation (GCV); see
Chapter 4 of Wahba (1990). The GCV function is ordinarily defined as

GCV (λ) ≡ ‖(I − Hλ)y‖2

[tr(I − Hλ)]2
, λ > 0, (3.2)

where Hλ is the hat matrix (denoted by A(λ) in Wahba (1990)) defined by

Hλ ≡ I − λM−1 + λM−1T (T T M−1T T )−1T T M−1,

and T and M are defined by (2.7) and (2.8) in Section 2. One would then
choose λ as the minimizer of GCV (λ) given by (3.2). However, as pointed out
on p. 65 of Wahba (1990), GCV is likely to give unsatisfactory results when {yi}
are highly correlated. This is of course the case, due to the way {yi} are chosen
as all possible cross-products. Kohn, Ansley, and Wong (1992) represented a
smoothing spline by a state-space model and extended CV, GCV, and GML to
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an ARMA setting. Wang (1998) considered smoothing-parameter selection to
spatial and spatio-temporal data.

Below we consider two alternatives to minimizing (3.2). Consider the loss
L(λ) = (1/n)||ŷ − E(y)||2, where ŷ = Hλy. An unbiased estimator of the risk,
E[L(λ)], is

V (λ) ≡ 1
n
||(I − Hλ)y||2 − 1

n
tr(Ξ) +

2
n

tr(ΞHλ),

where Ξ is an unbiased estimator of the covariance matrix of y. Thus, one can
obtain λ as the minimizer of V (λ). Another consideration is motivated by the
“nil-trace” estimation argument in Li (1985, 1987). Let

α ≡ tr(ΞHλ)
tr(Ξ) − tr(ΞHλ)

,

and H̃λ ≡ −αI + (1 + α)Hλ. Note that tr(ΞH̃λ) = 0; then

Ṽ (λ) ≡ 1
n
||(I − H̃λ)y||2 − 1

n
tr(Ξ) +

2
n

tr(ΞH̃λ)

=
tr(Ξ)
n2

(1/n)||(I − Hλ)y||2

[(1/n)tr(Ξ(I − Hλ))]2
− 1

n
tr(Ξ).

One can then choose λ to minimize

G̃CV (λ) ≡ (1/n)||(I − Hλ)y||2

[(1/n)tr(Ξ(I − Hλ))]2
.

In general, having a high-quality unbiased estimator Ξ of the covariance in
this problem may be overly ambitious. However, for the situation where data are
observed on a grid, as described in Section 3 (or Lemma A3 in the Appendix), it
can be seen that Hλ is block-diagonal. As a result, in computing tr(ΞHλ) only
the corresponding diagonal blocks of Ξ are relevant and, in fact,

tr(ΞHλ) =
K∑

k=0

1
nk + 2(kπ)2λ

tr(ΞkJnk×nk
),

where Ξk is the kth nk×nk diagonal block matrix of Ξ and Jnk×nk
stands for the

matrix of 1’s with dimension nk × nk. It is clear that Ξk is the estimator of the
covariance of yi, i =

∑k−1
j=0 nj + 1, . . . ,

∑k
j=0 nj , which can be obtained through

the method of moments.
To see how this works numerically, a simulation study was conducted for the

stationary Gaussian process with spectral density,

f(ω) =


1 0 ≤ ω < 0.4,

1
2

[
1 + cos

(
π(ω−0.4)

π−0.8

)]
0.4 ≤ ω ≤ π − 0.4,

0 otherwise.

(3.3)
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Figure 1. The left plot shows L(λi) versus i; the middle plot shows V (λi)
versus i; the right plot shows G̃CV (λi) versus i.

Suppose the process is observed at t = 1, . . ., 2,000. We illustrate our method for
λi = 10vi , where vi = −5+14(i−1)/49, 1 ≤ i ≤ 50, based on a single simulation.
We computed {L(λi)}, {V (λi)}, and {G̃CV (λi)} and show them plotted against
i in Figure 1. It can be seen that the optimal λ determined by these three
functions are remarkably close, and V (λ) and G̃CV (λ) are very similar to each
other. In the comparisons that follow in the next subsection, we use G̃CV (λ).

3.3. Comparisons with existing time-series procedures

While our procedure is not restricted to time series, a comparison with lead-
ing spectral-density-estimation procedures in the time-series literature is insight-
ful. The procedures chosen here are the following.

Method I: The smoothed periodogram estimator using the Daniell (rectangular)
window with the smoothing parameter picked by the cross-validation criterion
CVLL, introduced by Beltrão and Bloomfield (1987); see also Hurvich (1985) and
Hurvich and Beltrão (1990). Other windows, including the Bartlett, Blackman,
Hamming, and Hanning windows, were also tested, but they did not yield better
results than the Daniell window.

Method II: The local linear smoother m̂LS and local maximum likelihood estima-
tor m̂LK, introduced in Fan and Kreutzberger (1998), with smoothing parameters
selected by the constant bandwidth selector in Fan and Gijbels (1995).



1124 CHUNFENG HUANG, TAILEN HSING AND NOEL CRESSIE

Table 1. Running Time Comparison (in seconds).

HHC BB FK.LS (FK.LK) PS
Running time (sec.) 11.34 17.21 69.30 248.35

Method III: The nonparametric approach based on the penalized Whittle likeli-
hood due to Pawitan and O’Sullivan (1994).

We made the comparisons by simulating from a time-series model, and we
found overall that our procedure competed well with Methods I, II, and III.
We focused on the stationary Gaussian time series with spectral density f given
by (3.3), from which we ran 400 simulations of X(t), t = 1, . . ., 2,000. The
spectral-density estimate f̂ was computed for each of five methods, one of which
includes our estimator given by Theorem 1. We then computed the sample
average of {f̂(ω) − f(ω)}2 for ω ∈ [0, π], and the results are displayed in Figure
2. The abbreviations “HHC”, “BB”, ”PS”, “FK.LS”, and “FK.LK” stand for,
respectively, our estimator, the Beltrão and Bloomfield estimator in Beltrão and
Bloomfield (1987) (Method I), the Pawitan and O’Sullivan estimator in Pawitan
and O’Sullivan (1994) (Method III), and the Fan and Kreutzberger’s estimators
m̂LS and m̂LK in Fan and Kreutzberger (1998) (Method II).

An important point in this comparison is that our procedure is the most
computationally efficient, requiring only a small fraction of the computing time
required by the Pawitan and O’Sullivan and the Fan and Kreutzberger proce-
dures. A running-time comparison is shown in Table 1 where all four procedures
were coded in R (R Development Core Team (2008)); the codes are available
upon request. All computations were conducted on a Dual-Core Intel Xeon 1.33
Ghz, Mac Pro machine with 4GB of RAM.

It can be seen from Figure 2 and Table 1 that our estimator performed
quite a lot better than the Beltrão and Bloomfield estimator with slightly faster
running time, somewhat better than the Fan and Kreutzberger estimators with
much faster running time. Finally, our estimator was comparable to the Pawitan
and O’Sullivan estimator, but with only a fraction (4.6%) of the running time.

We now revisit the issue that our estimator f̂λ given by (2.9) may take
on negative values. Note that the spectrum f used in this example is zero on
[π− 0.4, π]. Thus, if the negativity of f̂λ is a prevalent issue in our methodology,
we would expect to see a substantial number of negative values for f̂λ(ω) when
ω is close to π. In fact, f̂λ given by (2.9) estimated f exceedingly well close to
π; only 18 out of 400 runs produced estimates that had negative values for some
ω’s. The percentage of negative values in all of the estimates given by (2.9),
out of all of the simulations, was .6%, and the minimum of all of the values was
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Figure 2. Mean squared error comparisons of our (HHC) estimator with
four other estimators. The upper-left plot compares HHC with the Beltrão
and Bloomfield (BB) method, the upper-right plot compares HHC with the
Pawitan and O’Sullivan (PS) estimator, and the two lower plots compare
HHC with the estimators of Fan and Kreutzberger (FK.LS and FK.LK).

−0.050. Thus, the estimator f̂+
λ in (2.12) obtained by thresholding differs little

from the original estimator f̂λ in (2.4).

3.4. The mean squared error of the estimator

We assume in this subsection that the data are observed on a grid, and we
continue to use the notation developed in Section 3.1. Our goal is to compute
bias and variance bounds for f̂λ(ω). Note that a generic symbol used for a finite
positive constant is C, where C may take on different values in different places.

We begin by describing the assumptions. First, the assumption that the
stationary process X has a spectral density guarantees that X has the linear-
process representation (cf., Yaglom (1987)),

X(t) =
∫

a(t − s)dZ(s), t ∈ R, (3.4)
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where
∫

a2(t)dt < ∞, and Z has stationary uncorrelated increments with mean
zero. However, we assume additionally that Z has independent increments; this
simplifies the derivations considerably. Let

E[Z(dt)]2 = dt and E[Z(dt)]4 = µ4dt, (3.5)

for some finite µ4. In the theorems below, these assumptions on X are assumed
without further reference.

Also assume that the observational points ti, 1 ≤ i ≤ N , are such that {nk}
satisfy

inf
k≤ζN

nk ≥ δN (3.6)

for some ζ, δ ∈ (0, 1). The condition (3.6) ensures that there are sufficiently many
pairs of data associated with each “small” time lag compared with the sample
size. This condition is obviously fulfilled if the data are a time series on G.

The following regularity conditions are also needed.

(C1) Let B be a bounded, symmetric function on R with B(t) ↓ for t > 0, such
that for some α > 2 and C > 0,

B(t) ≤ Ct−α−1, for all large t; (3.7)∫
|a(u)a(u + t)|du ≤ B(t), for all t; (3.8)

and for some ν0 > 0,

sup
ν≥ν0

1
ν

∑
k

|a(
kπ

ν
+ u)a(

kπ

ν
+ u + t)| ≤ B(t), for all u, t. (3.9)

(C2) The covariance function R(t) ≡ E[X(0)X(t)] is differentiable with
∫
|R(1)(t)|

dt < ∞.

Note that R(t) =
∫

a(u)a(u + t)dt from (3.4) and (3.5). Hence, (3.8) implies
that

|R(t)| ≤ B(t), for all t, (3.10)

and (3.7) then implies that X is a short-memory process (cf., Brockwell and Davis
(1991, Sec. 13.2)). Observe that the expression on the left of (3.9) approximates∫
|a(u)a(u + t)|du if a is continuous and ν0 is large. Thus, (3.9) is not a strong

condition in the presence of (3.8). The condition (C2) requires the covariance
function to be sufficiently smooth.

The following result gives bounds for the variance and the absolute bias of
f̂λ.
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Theorem 3. Assume that (C1) and (C2) hold. Then there exists a bounded
universal constant C such that for all ν ≥ ν0, ω ∈ [0, ν], N satisfying (3.6), and
λ ∈ [N−1, N ],

var(f̂λ(ω)) ≤ C(Nλ)−1/2, (3.11)

|bias(f̂λ(ω))| ≤ C
[
ν−1 +

λν2

N
+

( ν

N

)α]
. (3.12)

Corollary 4. Assume that (C1) and (C2) hold. Then for

λ =
N3/5

ν8/5
, (3.13)

there exists a bounded universal constant C such that for all ω ∈ [0, ν], N satis-
fying (3.6), and ν satisfying N ≥ ν ≥ ν0,

MSE(f̂λ(ω)) ≤ C
[( ν

N

)4/5
+ ν−2

]
. (3.14)

Proof. The proof follows immediately from Theorem 3.

We now discuss the implications for (3.14). Note that Nπ/ν is roughly the
range of the data. As such, (3.14) can be interpreted as

MSE(f̂λ(ω)) ≤ C[(range of data)−4/5 + ν−2].

Suppose X(t) is continuously observed for t ∈ [0, T ]. Then, taking N = [Tν]
equally spaced observations, where ν satisfies ν−2 ≤ T−4/5, and for λ given by
(3.13), we obtain

MSE(f̂λ(ω)) ≤ CT−4/5.

While Theorem 3 and Corollary 4 are proved for the continuous-parameter
process (3.4), a quick inspection of the proofs reveals that they also hold for the
discrete-parameter process under parallel assumptions. The only major difference
is that the absolute bias is bounded by C(λN−1 + N−α) due to the omission of
a Riemann approximation in the derivation. Thus, a MSE rate of N−4/5 can be
achieved under those assumptions. Note that this coincides with the optimal rate
of convergence of the smoothed periodogram estimator; see the discussions on
pp. 567-568 of Priestley (1981) and in Section 4.7 of Grenander and Rosenblatt
(1984).

Theorem 3 can be generalized in a number of ways, including relaxing (3.6)
and conditions (C1) and (C2), or going beyond the linear process (3.4). These
extensions, while useful, make the proofs longer and more technical. In Section
4, we consider the more pertinent extension of allowing {ti} to be nongridded.
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4. Non-gridded Data

We have demonstrated that our methodology competes well with perio-
dogram-based approaches in the context of time series data. However, one enor-
mous advantage of our approach is the flexibility it offers in terms of the wide
range of spectral estimation problems that we can readily address. In this sec-
tion, the same approach is applied when the observational points t1, . . . , tN are
not on a grid. Spectral-density estimation in the case of non-gridded data has
received relatively little attention. Note that non-gridded data can always be
presented as approximately gridded data with missing values. As such, any pro-
cedure for gridded data that allows missing values can potentially be used for
this situation; see, for instance, Broersen and Bos (2006), Bos, de Waele, and
Broersen (2002), Broersen (2008), Lomb (1976), Scargle (1992), and Stoica and
Sandgren (2006). Our procedure intrinsically does not distinguish between grid-
ded and non-gridded data; indeed the general formula (2.9) can be readily used
to handle both data scenarios. However, in the cases of non-gridded data, ap-
plying (2.9) lacks computational efficiency since matrices of size O(N2)×O(N2)
are involved. We present an approach that approximates non-gridded data by
gridded data below.

The closed-form formula in Theorem 1 can be used by projecting the irregu-
larly observed points onto the nearest grid G ≡ {kπ/ν, k = 1, 2, . . .}. Should {ti}
be randomly scattered in [t1, tN ], in accordance with the discussion on choice of
ν in Section 2, we recommend choosing ν to be three to four times %π, where
% is the average sampling rate. Numerical studies later in this section show
that the estimation result is not sensitive to this choice. For each k = 0, 1, . . .,
let Lk =

{
(ti, tj) : ti ∈ kiπ/ν ± π/(2ν), tj ∈ kjπ/ν ± π/(2ν), |ki − kj | = k

}
and n′

k = |Lk|, where, for convenience, kiπ/ν ± π/(2ν) denotes the interval
(kiπ/ν − π/(2ν), kiπ/ν + π/(2ν)]. Then, by Theorem 1, an estimator of f is

f̃λ(ω) =
1
ν

1
n′

0

S′
0 +

2
ν

K∑
k=1

cos(kπω/ν)
n′

k + 2(kπ)2λ
S′

k, (4.1)

where S′
k =

∑
(ti,tj)∈Lk

X(ti)X(tj).
To evaluate the bias and variance bounds for the spectrum estimator, we

need first to strengthen the conditions (C1) and (C2), as follows.

(C1′) Let B be a bounded, symmetric function on R with B(t) ↓ for t > 0, such
that for some α > 2 and C > 0,

B(t) ≤ Ct−α−1, for all t large.
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Let β(t) ≡ sup|δ|≤π/ν0
|a(t + δ)|, for some ν0 > 0. Then B satisfies∫

β(u)β(u + t)du ≤ B(t), for all t, (4.2)

sup
ν≥ν0

ν−1
∑

k

β(
kπ

ν
+ u)β(

kπ

ν
+ u + t) ≤ B(t), for all u, t.

(C2′) The covariance function R(t) is differentiable. If Q(t) ≡ sup|δ|≤π/ν0
|R(1)

(t + δ)|, then
∫

Q(t)dt < ∞.

Let ρν ≡ supk #{ti : ti ∈ kπ/ν ± π/(2ν)}, the maximum number of {ti}
projected to any grid point. The following result gives bounds for the variance
and the absolute bias of f̃λ.

Theorem 5. Assume that (C1′) and (C2′) hold. Then there exists a bounded
universal constant C such that for all ν ≥ ν0, ω ∈ [0, ν], N satisfying (3.6), and
λ ∈ [N−1, N ],

var(f̃λ(ω)) ≤ Cρν(Nλ)−1/2,

|bias(f̃λ(ω))| ≤ C
[
ν−1 +

λν2

N
+

( ν

N

)α]
.

Observe that ρν is bounded if the {ti} are randomly scattered and ν is larger
than the average sampling rate. In that case, the variance and absolute bias
bounds are identical to those for the gridded case in (3.11) and (3.12) and as
a consequence, the same MSE rate described in Corollary 4 holds. To the best
of our knowledge, precise MSE-rate computations for other procedures for non-
gridded data are not available.

To demonstrate how f̃λ works, we consider estimation of the spectral density
of a continuous-parameter Gaussian process whose values are observed at random
time points (or locations). Specifically, we assumed the spectral density to be
f(ω) = 10(1 + ω2)−1, ω ∈ R. In our simulations, the process was observed at
2,000 points that were i.i.d. uniformly distributed on [0, 1,000]. We then carried
out the analysis using the estimator (4.1), with smoothing parameter λ selected
by G̃CV (λ). Note that in this case, we could have multiple observations, or no
observation at all, at any grid point. Recall our recommendation that ν be 3 to
4 times ρπ, where ρ is the average sampling rate. In this example, ρ is about 2,
and hence to assess the choice of ν we considered f̃λ for ν = 2π, 4π, 6π, and 10π,
based on one simulation. The results are plotted in Figure 3; for the range of ν

considered, the performance of the estimator was quite stable.
We next compared our approach with other approaches for non-gridded data

in the literature. We focused on the comparison with a procedure due to P.
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Figure 3. Plots of true spectral density (solid line) and estimated spectral
density f̃λ (dashed line) using different choices of ν.

Broersen, introduced in Broersen and Bos (2006); we did not compare with the
Lomb-Scargle periodogram, as it is mainly intended for detecting frequencies.
To implement Broersen’s method, we used his MATLAB package available at
MATLAB Central. The results for analyzing one simulation are presented in the
left plot of Figure 4. From 100 simulations, the average squared prediction error
was computed for each estimator as a function of ω. The comparison is shown
in the right plot of Figure 4. Based on these simulation results, our method did
better overall and, especially so for smaller values of ω.

5. Discussion and Conclusions

We have limited our attention to stationary processes on R. The formulation
of our methodology can, in principle, be adapted for spectral-density estimation
of spatial processes that are stationary, or are intrinsic random functions. These
extensions will be investigated in future work. We restricted our estimator to be
in the Sobolev space W1 to keep technical derivations and the requirement on
the smoothness of the spectral density to a minimum. The theoretical properties
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Figure 4. Plots of true spectral density (solid line), our (HHC) estimate f̃λ

(dashed line), and Broersen’s (BR) estimate (dotted line). The right plot
compares the mean squared error for HHC and BR based on 100 simulations.

of the estimator when the space is taken to be a Sobolev space of higher order
would be an interesting but complicated extension.

In conclusion, we have described a new methodology for estimating the spec-
tral density function of a stationary process based on a regularized inverse prob-
lem. The methodology

1. does not require the data to be observed on a regular grid, and holds strong
promise for being adaptable to more general settings such as for intrinsic
random functions (cf., Matheron (1973));

2. is computationally and statistically efficient;

3. does not make use of the periodogram in the time-series setting (where it per-
forms at least as well as, and sometimes better than bench-mark periodogram-
based procedures).
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Appendix

Proof of (2.9). This proof is an application of Theorem 1.3.1 of Wahba (1990),
to which readers are referred for details. We briefly review the background.
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Define an inner product on W1 as

〈g1, g2〉W1
≡ g1(0)g2(0) +

∫ 1

0
g′1(u)g′2(u)du, g1, g2 ∈ W1.

Let H0 be the space of constant functions on [0, 1], and H1 be the space of abso-
lutely continuous, measurable functions q on [0, 1] with q(0)=0 and

∫ 1
0 [q(1)(u)]2du

< ∞; also make H0 and H1 Hilbert spaces by defining the inner products
〈p1, p2〉H0

= p1(0)p2(0), p1, p2 ∈ H0 and 〈q1, q2〉H1
=

∫ 1
0 q

(1)
1 (u)q(1)

2 (u)du, q1, q2 ∈
H1. It is easy to see that each function g in W1 can be uniquely written as
g = p + q, for some p ∈ H0 and q ∈ H1. This decomposition is often described
by the notation W1 = H0 ⊕ H1. Note that W1 is a reproducing kernel Hilbert
space, since

〈g,R(·, t)〉W1
= g(t), for each t ∈ [0, 1], (A.1)

where the bivariate function R(s, t) ≡ 1 + min(s, t), s, t ∈ [0, 1], is called the
reproducing kernel and (A.1) is referred to as the reproducing property. Let
Rs = R(s, ·). Define the bounded linear functional, Lig ≡

∫ 1
0 cos(h′

iu)g(u)du, g ∈
W1, where h′

i is defined by (2.5); let ηi be the representer of Li, so that Lig =
〈ηi, g〉W1

, g ∈ W1. By the reproducing property,

ηi(s) = 〈ηi,Rs〉W1
= LiRs =

∫ 1

0
cos(h′

iu)(1 + min(s, u))du

=
∫ 1

0
cos(h′

iu)du +
∫ s

0
cos(h′

iu)udu +
∫ 1

s
cos(h′

iu)sdu

=
sin(h′

i)
h′

i

+
(sinh′

i)h
′
is + cos(h′

is) − 1
h

′2
i

.

It is clear that ξi(s) defined by (2.6) is the projection of ηi on H1. Then (2.9)
follows from a direct application of Theorem 1.3.1 of Wahba (1990).

Proof of Theorem 1. To make the proof more readable, we include the techni-
cal details in a few lemmas below. In the following, let Ik be the identity matrix
of dimension k × k, and let Jk1×k2 be the matrix of 1’s with dimension k1 × k2.
Define the matrices:

Bk ≡
[ 1
2[(k − 1)π]2

Jnk−1×nk−1
+ λInk−1

]−1
, 2 ≤ k ≤ K + 1, (A.2)

A1 ≡ In0 , Ak ≡ 1
[(k − 1)π]2

BkJnk−1×n0 , 2 ≤ k ≤ K + 1, (A.3)

A0 ≡
[1
3
Jn0×n0 + λIn0

]
−

K+1∑
k=2

1
[(k − 1)π]2

Jn0×nk−1
Ak, (A.4)
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and write

A =


A1

A2
...

AK+1

 .

First note that by the identity(1
c
Jk×k + Ik

)−1
= Ik − 1

k + c
Jk×k, c 6= 0, (A.5)

we obtain

Bk = λ−1
(
Ink−1

− 1
nk−1 + 2[(k − 1)π]2λ

Jnk−1×nk−1

)
, (A.6)

which implies that

Ak =
1

[(k − 1)π]2
BkJnk−1×n0 =

2
nk−1 + 2[(k − 1)π]2λ

Jnk−1×n0 . (A.7)

Lemma A.1.

A−1
0 = λ−1In0 − λ−1 1

n0 + λ/b0
Jn0×n0 , (A.8)

where

b0 ≡ 1
3
− 2

K+1∑
k=2

1
[(k − 1)π]2

nk−1

nk−1 + 2[(k − 1)π]2λ
. (A.9)

Proof. By (A.4) and (A.7),

A0 =
[1
3
Jn0×n0 + λIn0

]
−

K+1∑
k=2

1
[(k − 1)π]2

Jn0×nk−1
Ak

=
[1
3
Jn0×n0 + λIn0

]
− 2

K+1∑
k=2

1
[(k − 1)π]2

nk−1

nk−1 + 2[(k − 1)π]2λ
Jn0×n0

= λIn0 + b0Jn0×n0 .

The result then follows from (A.5).

Lemma A.2. M−1 = diag{0, B2, . . . , BK+1} + AA−1
0 AT .
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Proof. Recall the definition of Σ and M in (2.8). We first compute Σ. It follows
from (2.6) that

ξ
(1)
i (s) =

1 − s h′
i = 0,

sin(h′
i)−sin(h′

is)

h′
i

h′
i 6= 0.

Straightforward calculations show that

〈ξi, ξj〉W1
=

∫ 1

0
(1 − s)2ds =

1
3
, h′

i = h′
j = 0,

〈ξi, ξj〉W1
= −

∫ 1

0
(1 − s)

sin(kπs)
kπ

ds = − 1
(kπ)2

, h′
i = 0, h′

j = kπ, k 6= 0,

〈ξi, ξj〉W1
=

∫ 1

0

(sin(kπs)
kπ

)2
ds =

1
2(kπ)2

, h′
i = h′

j = kπ, k 6= 0,

〈ξi, ξj〉W1
=

∫ 1

0

(sin(k1πs)
k1π

)(sin(k2πs)
k2π

)
ds = 0,

h′
i = k1π, h′

j = k2π, 0 6= k1 6=k2 6=0.

It follows that Σ is symmetric and has a block structure: Σ = {Σi,j}K
i,j=0, where

Σ0,0 =
1
3
Jn0×n0 ,

Σ0,k = − 1
kπ2

Jn0×nk
, 1 ≤ k ≤ K,

Σk,k =
1

2π2
Jnk×nk

, 1 ≤ k ≤ K,

Σi,j = 0, otherwise.

We now compute M−1 ≡ {M ij}, where the M ij are the block matrices corre-
sponding to the blocks in Σ. To solve for Mk1, 1 ≤ k ≤ K + 1, the first column
(or row) of M−1, we note that

In0

0
...
0

 = (Σ + λI)


M11

M21

...
M (K+1),1

 ,

which gives

In0 =
(1

3
Jn0×n0 + λIn0

)
M11 − 1

π2
Jn0×n1M

21 − . . . − 1
(Kπ)2

Jn0×nK M (K+1),1,

0 = − 1
π2

Jn1×n0M
11 +

( 1
2π2

Jn1×n1 + λIn1

)
M21,
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...

0 = − 1
(Kπ)2

JnK×n0M
11 +

( 1
2(Kπ)2

JnK×nK + λInK

)
M (K+1),1.

It is clear that Mk1 = AkM
11, 2 ≤ k ≤ K + 1, and M11 = A−1

0 . Proceeding in
this manner, in general we have

Mkj = AkA
−1
0 AT

j , k 6= j,

M11 = A−1
0 ,

Mkk = Bk + AkA
−1
0 AT

k , 2 ≤ k ≤ K + 1.

By (2.7) and the fact that {hi} is on a regular grid, we have

T =
[

1n0

0n−n0

]
. (A.10)

Let Hλ = I − λM−1 + λM−1T (T T M−1T T )−1T T M−1, so that from (2.11),

c = λ−1(I − Hλ)y. (A.11)

Lemma A.3.
1. With b0 is given by (A.9),

a0 ≡ (T T M−1T )−1 = λ
n0 + λ/b0

n0λ/b0
.

2. Hλ = diag{n−1
0 Jn0×n0 , In1 − λB2, . . . , InK − λBK+1}

= diag
{ 1

n0
Jn0×n0 ,

1
n1 + 2π2λ

Jn1×n1 , . . . ,
1

nK + 2(Kπ)2λ
JnK×nK

}
.

Proof. Since A1 = In0 , it follows from (A.10) and Lemma A.2 that a0 =
(1T

n0
A−1

0 1n0)
−1. Hence, (i) follows simply from Lemma A.1 and (A.5). Similarly,

we have

M−1T (T T M−1T )−1T T M−1 = a0AA−1
0 1n01

T
n0

A−1
0 AT .

By this and Lemma A.2,

Hλ = I − λ diag{0, B2, . . . , BK+1} − λAA−1
0 AT + λa0AA−1

0 1n01
T
n0

A−1
0 AT

= diag{In0 , In1 − λB2, . . . , InK − λBK+1} + λÃ, (A.12)

where

Ã = −AA−1
0 AT + a0AA−1

0 1n01
T
n0

A−1
0 AT

= {−AiA
−1
0 AT

j + a0AiA
−1
0 1n01

T
n0

A−1
0 AT

j }i,j=1,...,K+1.
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If at least one of i, j is greater than or equal to 2, say i ≥ 2, then by part (i)
(already proved) and (A.3),

a0AiA
−1
0 1n01

T
n0

A−1
0 AT

j =
a0

[(i − 1)π]2
BiJni−1×n0A

−1
0 1n01

T
n0

A−1
0 AT

j

=
a0

[(i − 1)π]2
Bi1ni−11

T
n0

A−1
0 1n01

T
n0

A−1
0 AT

j

=
a0

[(i − 1)π]2
Bi1ni−1a

−1
0 1T

n0
A−1

0 AT
j

=
1

[(i − 1)π]2
Bi1ni−11

T
n0

A−1
0 AT

j = AiA
−1
0 AT

j .

This shows that the blocks in the matrix Ã are all zero except for the first
block Ã11 with size n0 × n0. It is then easy to verify, using (A.8) and part (i)
of this lemma, that Ã11 = −λ−1In0 + λ−1n−1

0 Jn0×n0 . This shows that λÃ =
diag{−In0 + n−1

0 Jn0×n0 , 0, · · · , 0}. Thus, (ii) follows from (A.12) and (A.6).

By (i) of Lemma A.3 and Lemma A.1,

a01T
n0

A−1
0 = λ

n0 + λ/b0

n0λ/b0
1T

n0

(
λ−1In0 − λ−1 1

n0 + λ/b0
Jn0×n0

)
=

n0 + λ/b0

n0λ/b0

(
1 − n0

n0 + λ/b0

)
1T

n0
= n−1

0 1T
n0

,

and by (A.7),

a01T
n0

A−1
0 AT

k+1 = n−1
0 1T

n0
Jn0×nk

2
nk + 2(kπ)2λ

=
2

nk + 2(kπ)2λ
1T

nk
.

It now follows from (2.10) that

d = (T T M−1T )−1T T M−1y = a01T
n0

A−1
0 ATy =

1
n0

S0 + 2
K∑

k=1

1
nk + 2(kπ)2λ

Sk,

where yk is the nk × 1 vector of y’s that correspond to pairs of ti < tj with
tj − ti = kπ/ν. By (A.11), (ii) of Lemma A.3, and (2.6),

∑
i

ciξi(u) = λ−11T
n0

(In0−n−1
0 Jn0×n0)y0(u−

u2

2
)+

K∑
k=1

1T
nk

Bk+1yk
cos(kπu) − 1

(kπ)2
.

The first term is equal to 0, whereas, by (A.6), the second term is equal to

K∑
k=1

1T
nk

(
λ−1Ink

− λ−1 1
nk + 2(kπ)2λ

Jnk×nk

)
yk

cos(kπu) − 1
(kπ)2
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=
K∑

k=1

(
λ−1Sk − λ−1 nk

nk + 2(kπ)2λ
Sk

)cos(kπu) − 1
(kπ)2

= 2
K∑

k=1

(kπ)2

nk + 2(kπ)2λ
Sk

cos(kπu) − 1
(kπ)2

= 2
K∑

k=1

1
nk + 2(kπ)2λ

Sk(cos(kπu) − 1).

Combining d and
∑

i ciξi(u) and making the transformation (2.4), we obtain the
formula for f̂λ(ω) in Theorem 1. This concludes the proof of Theorem 1.

Proof of Corollary 2. The proof follows from a simple adaptation of the proof
of Theorem 1. Redefine the first n0 y’s to be all equal to S0/n0, the next n1 y’s
to be all equal to S1/n1, and so on.

Proof of Theorem 3. Recall the notation that C is a generic symbol for a
finite positive constant (whose value may be different in different places). We
first prove the bound for the variance. Write

var(f̂λ(ω)) =
K∑

k1=0

K∑
k2=0

bk1bk2cov(Sk1 , Sk2),

where we suppress the argument ω in bk. For 1 ≤ k ≤ K, define wk(i, j) =
I(tj − ti = kπ/ν), 1 ≤ i ≤ j ≤ N . Let Ik = {1 ≤ i ≤ N :

∑N
j=i wk(i, j) > 0}, so

that Sk =
∑

i∈Ik

∑N
j=i wk(i, j)X(ti)X(tj). Then

cov(Sk1 , Sk2)

=
∑

i1∈Ik1

∑
i2∈Ik2

N∑
j1=i1

N∑
j2=i2

wk1(i1, j1)wk2(i2, j2)cov(X(ti1)X(tj1), X(ti2)X(tj2))

=
∑

i1∈Ik1

∑
i2∈Ik2

N∑
j1=i1

N∑
j2=i2

wk1(i1, j1)wk2(i2, j2)

×
{

E[X(ti1)X(tj1)X(ti2)X(tj2)] − E[X(ti1)X(tj1)]E[X(ti2)X(tj2)]
}

= A1 − A2,

where

A1 =
∑

i1∈Ik1

∑
i2∈Ik2

N∑
j1=i1

N∑
j2=i2

wk1(i1, j1)wk2(i2, j2)
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×
∫∫∫∫

a(ti1 − u1)a(tj1−u2)a(ti2−u3)a(tj2−u4)

×E[Z(du1)Z(du2)Z(du3)Z(du4)],

A2 =
∑

i1∈Ik1

∑
i2∈Ik2

N∑
j1=i1

N∑
j2=i2

wk1(i1, j1)wk2(i2, j2)R(ti1 − tj1)R(ti2 − tj2).

Write g(u; i, k) =
∑N

j=i wk(i, j)a(tj − u). Clearly,

|g(u; i, k)| ≤ |a(ti +
kπ

ν
− u)|. (A.13)

Recall that Z has independent increments. Hence, we decompose A1 into four
terms: A1 = A11 + A12 + A13 + A14, where

A11 = µ4

∑
i1∈Ik1

∑
i2∈Ik2

∫
u
a(ti1 − u)g(u; i1, k1)a(ti2 − u)g(u; i2, k2)du,

A12 =
∑

i1∈Ik1

∑
i2∈Ik2

∫
u1

∫
u2

a(ti1 − u1)g(u1; i1, k1)a(ti2 − u2)g(u2; i2, k2)du1du2,

A13 =
∑

i1∈Ik1

∑
i2∈Ik2

∫
u1

∫
u2

a(ti1 − u1)g(u2; i1, k1)a(ti2 − u1)g(u2; i2, k2)du1du2,

A14 =
∑

i1∈Ik1

∑
i2∈Ik2

∫
u1

∫
u2

a(ti1 − u1)g(u2; i1, k1)a(ti2 − u2)g(u1; i2, k2)du1du2.

Clearly, A12 = A2. By the triangle inequality, (A.13), and condition (C1),

|A11| ≤ µ4

∑
i1∈Ik1

∫
u
|a(ti1 − u)g(u; i1, k1)|

∑
i2∈Ik2

|a(ti2 − u)g(u; i2, k2)|du

≤ C
∑

i1∈Ik1

∫
u
|a(ti1−u)a(ti1 +

k1π

ν
−u)|

∑
i2∈Ik2

|a(ti2−u)a(ti2 +
k2π

ν
−u)|du

≤ Cν
∑

i1∈Ik1

B(
k1π

ν
)B(

k2π

ν
) = Cνnk1B(

k1π

ν
)B(

k2π

ν
).

Similarly,

|A13| ≤
∑

i1∈Ik1

∑
i2∈Ik2

∫
u1

∫
u2

|a(ti1 − u1)a(ti1 +
k1π

ν
− u2)|

×|a(ti2 − u1)a(ti2 +
k2π

ν
− u2)|du1du2
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≤ C
∑

i∈Ik1

∑
i2∈Ik2

B(ti1 − ti2)B(ti1 − ti2 + (k1 − k2)
π

ν
)

≤ Cnk1

∑
i

B(ti)B(ti + (k1 − k2)
π

ν
),

|A14| ≤ Cnk1

∑
i

B(ti +
k1π

ν
)B(ti −

k2π

ν
),

Thus, var(f̂λ(ω)) ≤ T1 + T2 + T3, where

T1 = Cν

K∑
k1=0

nk1 |bk1 |B(
k1π

ν
)

K∑
k2=0

|bk2 |B(
k2π

ν
),

T2 = C

K∑
k1=0

nk1 |bk1 |
∑

i

B(ti)
K∑

k2=0

|bk2 |B(ti + (k1 − k2)
π

ν
),

T3 = C

K∑
k1=0

nk1 |bk1 |
∑

i

B(ti +
k1π

ν
)

K∑
k2=0

|bk2 |B(ti −
k2π

ν
).

It follows from (3.6) and the assumption λ ≥ N−1, that

1
nk + k2λ

≤ C max
(

1
N

,
1

N2λ

)
≤ C

N
, for all k. (A.14)

Since (1/ν)
∑

k B(kπ/ν + k′π/ν) = (1/ν)
∑

k B(kπ/ν) < ∞, for all k′, it follows
from (A.14) that

K∑
k=0

|bk|B(
kπ

ν
+

k′π

ν
) =

1
ν

∑
k

1
nk + k2λ

B(
kπ

ν
+

k′π

ν
) ≤ C

N
. (A.15)

Using this and the assumption that B is bounded,

T1 ≤ C

N

K∑
k1=0

nk

nk + k2λ
≤ C

N

K∑
k1=0

N

N + k2λ
.

Now
∑K

k1=0
N

N+k2λ
≤ 1 + I, where

I ≡
∫ ∞

0

N

N + λx2
dx =

√
N

λ

∫ ∞

0

1
1 + v2

dv =

√
N

λ

π

2
.

Since λ ≤ N , we conclude that T1 ≤ C/
√

Nλ. The same can be concluded for T2

and T3 using similar derivations, and so var(f̂λ(ω)) ≤ C/
√

Nλ. This concludes
the derivation for the bound of the variance.
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We next prove the bound for the absolute bias. Clearly,

|bias(f̂λ(ω))| = |f(ω) − E[f̂λ(ω)]|

≤
∣∣∣2∫ ∞

0
cos(uπω)R(uπ)du− 2

ν

K∑
k=1

cos(kπω/ν)
nk+k2λ

nkR(
kπ

ν
)
∣∣∣+ 1

ν

1
n0

E(S0)

≤ U1 + U2 + U3 +
1
ν

var(X(0)),

where

U1 = 2
∫ ∞

K/ν
|R(uπ)|du,

U2 =
∣∣∣2
ν

K∑
k=1

cos(
kπω

ν
)R(

kπ

ν
) − 2

∫ K/ν

0
cos(uπω)R(uπ)du

∣∣∣,
U3 =

2
ν

K∑
k=1

k2λ

nk + k2λ
|R(

kπ

ν
)|.

First, by (3.7) and (3.10),

U1 ≤ C

∫ ∞

K/ν
(uπ)−α−1du ≤ C

( ν

K

)α
. (A.16)

Now consider U2. Letting g(s) = cos(sπω/ν)R(sπ/ν), we obtain

U2 ≤ 1
ν

∣∣∣ K∑
k=1

g(k) −
∫ K

0
g(s)ds

∣∣∣ =
1
ν

∣∣∣ ∫ K

0
g(s)(dW (s) − ds)

∣∣∣,
where W (s) ≡

∑K
k=1 I(k ≤ s). Using integration by parts and the fact that

sups |W (s) − s| ≤ 1, we obtain∣∣∣ ∫ K

0
g(s)(dW (s) − ds)

∣∣∣ =
∣∣∣ ∫ K

0
g(1)(s)(W (s) − s)ds

∣∣∣
≤

∫ K

0
|g(1)(s)|ds ≤

∫ ∞

0
|g(1)(s)|ds,

which is finite by condition (C2). Thus,

U2 ≤ C

ν
. (A.17)

Now consider U3. By (3.7) and (3.10),

U3 ≤ C

ν

[ν]∑
k=1

k2λ

nk + k2λ
+

C

ν

∞∑
k=[ν]+1

k2λ

nk + k2λ
(k/ν)−α−1 ≡ V1 + V2,
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where [ν] denotes the integer part of ν. By (A.14),

V1 =
C

ν

[ν]∑
k=1

k2λ

nk + k2λ
≤ Cλν2

N
. (A.18)

Also, by (3.6),

V2 = Cναλ

∞∑
k=[ν]+1

k1−α

nk + k2λ
≤ Cναλ

[ ∞∑
k=[ν]+1

k1−α

N + k2λ
+

∞∑
k=[ζN ]

k1−α

nk + k2λ

]
.

Observe that
∞∑

k=[ν]+1

k1−α

N + k2λ
≤ ([ν] + 1)1−α

N + ([ν] + 1)2λ
+

∫ ∞

ν

x1−α

N + x2λ
dx

=
([ν] + 1)1−α

N + ([ν] + 1)2λ
+

(N

λ

)(2−α)/2
∫ ∞

ν
√

λ/N

u1−α

N(1 + u2)
du

≤ ν1−α

N + ν2λ
+

(N

λ

)(2−α)/2 1
N

∫ ∞

ν
√

λ/N
u1−αdu

=
ν1−α

N + ν2λ
+

1
α − 2

1
N

ν2−α.

Since ν ≥ ν0, it is easy to see that the two terms on the right-hand side can be
combined to give

∞∑
k=[ν]+1

k1−α

N + k2λ
≤ C

ν2−α

N
.

Also,
∞∑

k=[ζN ]

k1−α

nk + k2λ
≤ 1

λ

∞∑
k=[ζN ]

k−1−α ≤ C

Nα
.

Thus, we obtain

V2 ≤ C

[
λν2

N
+

( ν

N

)α
]

. (A.19)

Summarizing the results from (A.16)-(A.19), we conclude that

|bias(f̂λ(ω))| ≤ C

[( ν

K

)α
+

1
ν

+
λν2

N
+

( ν

N

)α
]
≤ C

[
1
ν

+
λν2

N
+

( ν

N

)α
]

,

since N ≤ K. This completes the proof of Theorem 3.
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Proof of Theorem 5. As in the proof of Theorem 3, we have

var(f̃λ(ω)) =
K∑

k1=0

K∑
k2=0

bk1bk2cov(S′
k1

, S′
k2

).

For 1 ≤ k ≤ K, define wk(i, j) ≡ I((i, j) ∈ Lk), 1 ≤ i ≤ j ≤ N , and let
Ik ≡ {1 ≤ i ≤ N :

∑N
j=i wk(i, j) > 0}. It follows that

S′
k =

∑
i∈Ik

N∑
j=i

wk(i, j)X(ti)X(tj).

Following the proof of Theorem 3, we define g(u; i, k) ≡
∑N

j=i wk(i, j)a(tj − u).
Then, for ti ∈ (kiπ/ν − π/2ν, kiπ/ν + π/2ν],

|g(u; i, k)| ≤ sup
|δ|≤π/ν

|a(
kiπ

ν
+

kπ

ν
− u + δ)| ≤ ρνβ(

kiπ

ν
+

kπ

ν
− u).

The rest of the derivation of the variance inequality is almost identical to that of
Theorem 3 using (C1′), and it is omitted.

We next prove the bound for the absolute bias. First,

|bias(f̃λ(ω))| = |f(ω) − E[f̃λ(ω)]|

≤
∣∣∣2∫ ∞

0
cos(uπω)R(uπ)du− 2

ν

K∑
k=1

cos(kπω/ν)
n′

k + k2λ
E(S′

k)
∣∣∣+ 1

ν

1
n′

0

E(S′
0),

where E(S′
k) =

∑
(ti,tj)∈Lk

E(X(ti)X(tj)) =
∑

(ti,tj)∈Lk
R(|ti − tj |). Note that

|ti − tj | ∈ (kπ/ν − π/ν, kπ/ν + π/ν]. By a Taylor expansion,

R(|ti − tj |) = R(
kπ

ν
) + R(1)(ξi,j,k)(|ti − tj | −

kπ

ν
),

where ξi,j,k ∈ kπ/ν ± π/ν. Mimicking the derivation of the bias in Theorem 3,
write

|bias(f̃λ(ω))| ≤ U1 + U2 + U3 + U4 +
1
ν

1
n′

0

E(S′
0),

where U1, U2, U3 are defined as in Theorem 3, except nk there is replaced by n′
k

here, and

U4 ≡
∣∣∣2
ν

K∑
k=1

cos(kπω/ν)
n′

k + k2λ

∑
(ti,tj)∈Lk

R′(ξi,j,k)(|ti − tj | −
kπ

ν
)
∣∣∣.
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The terms U1, U2, U3 are dealt with as in Theorem 3, and the same bounds can
be obtained. By (C2′),

U4 +
1
ν

1
n′

0

E(S′
0) ≤

C

ν2

K∑
k=0

n′
k

n′
k + k2λ

Q(
kπ

ν
)

=
C

ν2

∑
k<ν

n′
k

n′
k + k2λ

+
C

ν2

∑
k>ν

n′
k

n′
k + k2λ

Q(
kπ

ν
)

= O(
1
ν

).

Thus, the bound of |bias(f̃λ(ω))| is derived.
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