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Abstract: This paper develops an estimation approach for nonparametric regres-
sion analysis with measurement error in covariates, assuming the availability of
independent validation data on them, in addition to primary data on the response
variable and surrogate covariates. Without specifying any error model structure
between the surrogate and true covariates, we propose an estimator that integrates
local linear regression and Fourier transformation methods. Under mild conditions,
the consistency of the proposed estimator is established and the convergence rate
is also obtained. Numerical examples show that it performs well in applications.
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1. Introduction

In the last two decades, the errors-in-variables (EV) model has drawn much
attention. An increasing number of applications of the linear and non-linear
EV models have been seen in recent years due to their simple forms and wide
applicabilities. Comprehensive reviews can be found in [Fuller| (1987), [Carroll et
all (2000) and the references therein. In practice, the relationship between the
measured (surrogate) variables and the true variables can be rather complicated
compared to the classical additive error structure. In such cases, obtaining correct
statistical analyses becomes challenging. One solution is to use validation data
to capture the underlying relationship between the true and surrogate variables.
For instance, in the measurement of heart muscle damage caused by a myocardial
infection, the peak cardiac enzyme level in the bloodstream is a variable easily
obtained, though it cannot accurately assess the damage to the heart muscle.
Instead, the arterioscintograph, an invasive and expensive procedure, can be
employed to produce a more accurate measure of the heart muscle in a small
subset of subjects(cf., [Wittes, Lakatos and Probstfield (1989))). Here, for heart
damage, peak cardiac enzyme level in the bloodstream is used as a surrogate
variable, with exact data measured by arterioscintograph used as a validation
variable for a small subset of subjects.
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Inference based on surrogate data and a validation sample has been the ob-
ject of much attention. [Carroll and Stefanski (1990), [Carroll and Wand| (19971)),
Pepe and Fleming| (1991)), Pepe| (1992), [Carroll, Knickerbocker, and Wang| (1995)),
Lee and Sepanski| (1995), [Sepanski and Lee| (1995), Wang| (1999)), Wang and Rao
(2002), and [Stute, Xue and Zhu| (2007)) developed suitable methods for different
models. Most focus on specifying some parametric relationship between covari-
ates and response. While parametric methods are useful in certain applications,
questions always arise about the adequacy of parametric model assumptions and
about potential impact of model mis-specifications on statistical analyses. In
comparison, it is well known that nonparametric regression provides a useful
tool, especially when the relationship is complicated. This motivates us to con-
sider nonparametric regression when the covariate is measured erroneously and
some validation data are available to relate the surrogate and true variables.

To be specific, we assume that an independent validation dataset V =
{(tj, t;) ;V: B 1 is available, in addition to the primary (surrogate) dataset S =
{(Y;, %)}, which is generated by the nonparametric model

Y =m(t) +e, (1.1)

where Y is a scalar response variable, t is a univariate explanatory variable,
t is the surrogate variable of t, and ¢ is a random error with E[e[t] = 0 and
E[e?] < oo. Given t;’s, the errors ¢;’s are assumed to be independent and identi-
cally distributed. Our objective is to estimate the unknown regression function
m(t) in (LI) with the datasets V and S. Obviously, standard methodologies
based on regression calibration developed for parametric inferences, such as
Carroll and Wand! (1991)), [Sepanski and Lee| (1995)), and [Stute, Xue and Zhu
(2007) are not applicable in this situation. Recently, Wang] (2006) developed an
estimation approach for nonparametric regression analysis with surrogate data
and validation sampling, but which cannot be applied to our problem.

In this paper, we propose a nonparametric estimator m(z) that integrates
the local linear regression and Fourier transformation methods. This estima-
tion approach consists of two major steps: An estimator combining two local
linear kernel estimators (LLKE) based on V and S, respectively, is first pro-
posed to calibrate the function E[Y|U(f) = z|, in which U(f) = E[t|{]. Al
though E[Y|U(f) = z] is not our objective function, the relationship between
m(z) = E[Y |t = 2] and E[Y|U(#) = 2] can be derived through the trigonometric
series approach suggested by [Delaigle, Hall, and Qiu/ (2006). Under mild condi-
tions, the consistency of m(z) is established and the convergence rate derived.

In the next section, we describe our estimation approach and state the main
asymptotic results. In Section 3, we investigate the finite sample properties of
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our proposed approach. A data example is used to demonstrate the method in
Section 4. Section 5 concludes this paper by suggesting some future research
issues. The proofs are given in the Appendix.

2. Methodology
Recall model (L)) and the assumptions below it. We rewrite (L)) as

Y =m(U(t) + 1) +e,

t=U(t) +n, (2.2)

where U(t), ¢, and n are independent. With U(¢) as a new variable, this can be
regarded as a Berkson EV model (Berkson! (1950); [Carroll et all (2006])). This
enables us to apply a recent nonparametric technique developed by |[Delaigle,
Hall, and Qiul (2006]), as long as we have an estimate of the distribution of  and
E[Y|U(%) = 2], on which we elaborate next.

2.1. Estimating E[Y|U(t) = 2]
Represent (2.1)) as
Y = MU) +¢, (2.3)

where M(z) = E[Y|U(t) = 2], E[£|f] = 0, and E[¢?] < co. Generally, M is not
equal to m and £ # ¢ + 7. Based on the validation set V, we can estimate U (%)
by means of local linear fit, that is

[7({) _ Z;V:JE\?—H tiL ((LZJ - 5)/bn) {Sn2 — (fj - 7§)Snl}
ij:—"x;+1 L ((Ej - E)/bn) {Sn2 - (fj - g)snl} 7

where

1 N+n i
- i~ POV _
Sy = 1 Z L( - >(t] B, ~v=0,1,2,
j=N+1

L(-) is a symmetric density kernel function, and b, is a bandwidth. Here we
choose the LLKE rather than the Nadaraya-Watson estimator since the former
possesses superior boundary behavior (cf., [Fanl (1992)).

So far, with the datasets V and S, we can estimate the function M (-) by
plugging U (%) into the LLKE of {(Y;, U (%))}, that is,

Ty = S YK (@) = 2)/hx) {Sy2 = (OE) = 2)Sw}
S K (@) = 2)/hn ) {Sw2 = (O(F) = 2)Sn1}

(2.4)
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where

A~ ~

N
1 U(tl) —Z =~
= — E K| ———— ti) — 7; = 71727 )

K(-) is a symmetric density kernel function, and hy is a bandwidth.

Remark 1. The preceding algorithms require the LLKE of U(f) regressed on ¢
in the validation data. As discussed by [Carroll and Wand! (1991]), [Sepanski and
Carrolll (1993)), Sepanski, Knickerbocker and Carroll (1994)), and others, the range
of ¢ in the validation data is usually smaller than that in primary data observed,
which could affect the LLKE U (t) studied above; if used blindly, this would lead

to an extrapolation. The LLKE U (t) used here is calculated on a compact set
N+n

© = [tV min, v max] interior to the support of ¢, where ty i, = min{fj }j:NJrl and
tV max = max{t; jy:'wﬂ. Sums in the primary data are taken only for those t € ©.

While this truncation causes a certain loss in efficiency, it is counterbalanced by
a gain in robustness.

2.2. Estimating m(z)

In what follows, we assume that the densities of ¢, £, and 7, denoted as f;,
f7 and f;, respectively, are compactly supported and bounded away from zero.
Without loss of generality, we suppose their support intervals have been rescaled
to be within Q = [—7, w]. In addition, to assure that m is identifiable, we suppose

that the the support of f; is contained within the range of U(t). After obtaining

—

M (z) by (2:4), the Fourier transformation method introduced by Delaigle, Hall,
and Qiul (2006) can be used to find the relationship between m(z) and M (z).
On Q we write the trigonometric series for m(z) as

m(z) = mg + Z{mu cos(lz) + my sin(lz)}, (2.5)
=1

where
S / (t)dt _ 1 / () cos(1#)dt _ / () sin(lt)dt
my = o Qm ;o= Qm ;Mo = Qm in )

Analogously, M (U) can be written as

M(U) = My + Z{MU cos({U) + My sin(IU)}, (2.6)
=1

where the constants My, My, and My, I = 1,2, ..., are the Fourier coefficients
determined by M. Furthermore, the coefficients mq;, mo; are uniquely determined
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by Mj; and My, if U and n are independent, which is implied by the Berkson
model (ZI)—(22]). Hence, simple calculations yield

my) 1 . —ay My,
- , (2.7)
may ap taz \ axy oy My
where ay; = E{cos(In)} and agy = E{sin(ln)}, provided o2, + a3, # 0 for | > 1.
In the present problem, the distribution of 7 is not explicitly available. How-

ever, with the help of validation data, the empirical distribution of the 7);’s can
be used instead, where

ni=ti—U({), j=N+1,....,N+n.

This type of estimation has been proposed and studied by [Akritas and
Van Keilegom| (2001). Correspondingly, ay; and ag, [ = 1,2,..., can be esti-

mated by
1 N-+n 1 N—+n

aq = — n; Qg = — in(in;). 2.
Gu= > cos(liy), au=_ > sin(li) (23)

Thus, the estimated coefficients of my;, mg; in ([27) can be represented as
<m11> _ 1 < ay  —ay ) My, (2.9)
Moy af, +a3 \ ay  ay My )’

— 1 — — 1 —~
My =~ / M(t) cos(it)dt, My = — / M (t) sin(lt)dt,
™ JH ™ JH

where

—~ 1 —~
mo=My=— [ M(t)dt
fio = 1y = 5= [ S(eyar,
M (+) is defined in (2.4)), and H C Q contains the support of M. Combining (2.5])
and (2.9), our estimator is

q
M(z) = o + » [y cos(lz) + gy sin(lz)], (2.10)
=1
where ¢ denotes the number of Fourier coefficients that are included in the es-
timator and can be deemed as another smoothing (regularization) parameter
besides b, and hy.

Remark 2. Based on (2I)—(22]), we can see that inference on the relation-
ship between m(z) and M(z) essentially lies in nonparametric regression with
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additive EV structure. Nonparametric methods for inference in the settings of
the classical EV model, that is £ = ¢ + 6, include kernel approaches (e.g., [Fanl
and Truong| (1993); Delaigle, Fan and Carroll (2009)) and techniques based on
simulation and extrapolation (Cook and Stefanskil (1994); [Carroll, Maca, and
Ruppert| (1999); [Staudenmayer and Ruppert| (2004)). These approaches may be
also used in the present circumstance with modifications, although the Berkson
model is particularly appropriate by (Z2). This problem is a subject for future
research.

2.3. Main results

In this subsection, we study the asymptotic behavior of the proposed esti-
mator. Some conditions are needed. Let Ft|£ denotes the conditional distribution

function of ¢ given t.

(C1) m(-) has an s-order Lipschitz continuous second derivative for some real
s> 0.

(C2) The functions U(-) and M (-) are bounded and twice continuously differen-
tiable.

(C3) The density function of U(t), denoted as fi, is Lipschitz continuous and
bounded away from O.

(C4) The kernel functions K(w) and L(w) are bounded and symmetric probabil-
ity density functions and satisfy [ K(w)w?dw < oo, [ L(w)w?dw < co. In
addition, K (w) is twice differentiable and satisfies [ K'?(w)w?dw < oo and
[ K" (w)]|dw < oco.

C5) N, n, b,, hy satisfy v,/hy — 0, nb, — oo, and Nhy — oo, where v, =
i
(1/v/nby, + b2)log/?(1/by,).
(C6) im N/n = X € [0,00).
C7) The density function f; is three times continuously differentiable.
( y i Y
(C8) F}is continuous in (¢, ) and sup, ; [t*F

t|t t|t R
partial derivatives of Ft‘g with respect to ¢t and ¢ up to order two.

| < 0o; the same holds for all other

Remark 3. Conditions (C1)—(C4) are standard in nonparametric regression,
as is the bandwidth condition, (C5) (C6) is standard in the study of validation
sampling, and is reasonable in practice. (C7) and (C8) are mild conditions used in
the proof of Theorem 2, that guarantees the consistency of the moment estimators
2:3).

Due to the relationship between m(z) and M(z), the performance of esti-
mator M (z) plays a role in the convergence rate of m(z). Moreover, M (2) is
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rather complicated and its properties cannot be derived by using the standard
technique of LLKE, since it involves the two error terms, ¢ and n. We begin by
studying the asymptotic properties of M (z).

Theorem 1. If Conditions (C1)—(C6) hold, then

VNhN[M(z) — M(z) — B(2)] = N(0,V(2)), (2.11)
where
[ K?(w)dw

) fulz) (2.12)
B(z) = 5M”(z)fﬁv / K (w)w?dw 4+ O(b2).

V(z) = [Var (&) + AVar (n)MlQ(z)}

Furthermore, if U is reversible,
1 " ]_ !/ "
B(z) = oM (z)h?V/K(w)dew - oM (2)U (Ul(z))bﬁ/L(w)dew,
where U~ denotes the inverse function of U.

Remark 4. If A = 0, which means n >> N, the asymptotic property of M (2) is
the same as that of the standard LLKE (Fanl (1992)). In reality, A is usually larger
than 1, because the covariates {t; };V: ‘41 are expensive to obtain. However, M (2)
still achieves the optimal convergence rate of the standard LLKE by choosing

appropriate hy and b,.
The next theorem establishes the convergence rate of the estimator m(z).

Theorem 2. Suppose Conditions (C1)—(C8) hold. If c1j=" < |agj| < cof ™™
and |My;| < c3j7% for some positive constants ci,ca,c3,a1 and az, we have

[ B mods = OV 4 i 4 b )
Q
where b = max (a1,2a; — a2), s > 0 is defined in Condition (C1).

Remark 5. The convergence rate of M (z) presented in Theorem 1 has the mean
square error of ]\//Tkl — My of Op(N -1y hﬁl\, + bfl). Similarly, the mean square
error of ay; — ay is of order Op(n_1 + b}), as shown in the proof of Theorem
2. Combining the convergence rates of Mkz — My, and ay; — oy results in the
first three terms of mean integrated square error of m(z) presented in Theorem
2. Condition (C5) and Theorem 2 motivate us to choose hy and by, in the region
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of [N~1/3 N=1/4] as then the mean integrated squared error of m(t) will mainly
depend on N and ¢. In particular, undersmoothing at the stage of estimating
M decreases the estimation bias at the expense of variance to some extent, but
further oversmoothing at the stage of Fourier transformation can compensate for
the increase of variance.

2.4. Smoothing parameters selection

As is the case with any nonparametric regression procedure, an important
choice to be made is the amount of local averaging performed to obtain the
regression estimate. For the local polynomial regression estimator, bandwidth
selection rules were considered in [Ruppert, Sheather and Wand| (1995) and [Fan!
and Gijbels (1996]), among others. [Delaigle, Hall, and Qiu| (2006]) proposed an
automatic way of choosing the smoothing parameters q and hy as a combination
of an existing plug-in bandwidth selector for LLKE and the cross-validation (CV)
rule for trigonometric series. Since our estimator m(z) involves three regulariza-
tion parameters hy, by, and g, we present modification of the leave-one-out CV
selection criterion.

First, we use En = ben 1/ 20 where be is the delete-one CV bandwidth selector
for the validation sample, that is the minimizer of

N-+n
1 ~
CV(ba) = — > (t; = U (E5:00)),
j=N+1

where U (=9)(-;b,) denotes the leave-one-out version of U using b,. Here the
multiplier n 1/ 20 is recommended partially due to Condition (C5) and the order
of the cross-validation selector that has an optimal O,(n~'/?) rate (Hérdle, Hall,
and Marron| (I988))). This bandwidth undersmoothes U , which is appropriate
from the explanatlon provided in Remark 5.

After obtaining b and defining the corresponding U with the selected band-
width bn, a cross-validation criterion for selecting hy and ¢ chooses

1 NP
= — - (1) - 2
(hn, Q) = argrr}lvlgN § [Y; — " (U(&); b, )],

where m(=9(-; hy, q) denotes the version of m that is constructed on omitting
(t;,Y;) from the surrogate data using hy and ¢ terms in the trigonometric series.
In this criterion, U( ;) is used as an empirical approximation of ¢; in the sense
of ignoring the error item 7);, because in applications the true regressor t; is not
observable. Note that, since ¢ is an integer, this two-dimensional CV criterion
does not require extensive computation effort. Furthermore, based on our numer-
ical results, it suffices to choose ¢ from 1 to 5 in accordance with the empirical
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Figure 1. The estimated curves of M(z) for the regression function (I)
through 1,000 repetitions when (a): (n,N) = (30,120), U is given by (i);
(b): (n,N) = (30,120), U is given by (iii). The solid, dashed, dotted, and
two dashed-dotted curves represent M (z), the median of ma(z), the median
of M (2), and the quartiles of M (2), respectively.

findings in [Delaigle, Hall, and Qiu/ (2006)). For instance, when (n, N) = (60, 120),
it requires less than 3 seconds to complete the curve fitting on 201 grid points
using a Pentium-M 2.4MHz CPU.

3. Numerical Performance Assessment

We conducted a simulation study to evaluate numerical properties of the
proposed estimator using the smoothing parameters selection method described
in Section 2.4. Our goal is to show the effectiveness and robustness of the pro-
posed estimator m(z), and thus we only chose certain representative examples
for illustration.

We considered two regression functions m(-) taken from the examples of
Delaigle, Hall, and Qiu/ (2006):

D m(z) =01~ 22)2I{ze[—1,1}}7
(I1) m(z) = (1 - 2%)? eXp(QZ)[{ze[—l,l}},

where Iy, is the indicator function. Three cases for U were considered: (i) t =
t+9, the classical Berkson model; (ii) ¢ = #2 —1/4+; (iii) t = cos(27t) +4, where
§ is independent of £ and follows the uniform distribution U[—1,1]. The ¢'s were
generated from two distributions: (1) ¢ ~ N(0,0.52); (2) £ ~ exp(1)—1, where the
latter denotes the centered standard exponential distribution. Throughout this
section the &’s are assumed to follow the normal distribution N (0, 0.252). For each
of several choices of m, U and the distribution of ¢, 1,000 simulated datasets were
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Figure 2. Median Curves of 1,000 estimators of regression function (I) with
(n, N) = (60,120) when (a): U is given by (i), f; is given by (1); (b): U is
given by (ii), f; is given by (1). The solid, dashed, dotted, and dashed-dotted
curves represent m(z), m(z), mi(z), and mq(z), respectively.

generated for each sample size combination of (n, N) = (30, 120), (60,200). The
kernel functions K and L used in (2.4]) were both chosen to be the Epanechnikov
kernel function 0.75(1 — 22)I(—1 < x < 1), that has certain optimal properties
(cf., [Fan and Gijbels (1996))).

It is challenging to compare the proposed method with alternative methods,
since there is no obvious comparable method in the literature. Here, we con-
sider the method of [Delaigle, Hall, and Qiul (2006]) where a simple Berkson error
structure is assumed (denoted as mi). Another alternative is the naive LLKE
based on the dataset {(V;,#;)}; (denoted as fms), although it is not a consistent
estimate due to ignoring of the measurement error. For 71, the method proposed
in [Delaigle, Hall, and Qiu/ (2006) for determining the parameters is considered.
For Mg, the leave-one-out CV approach is used for choosing bandwidth Ay .

First, as the performance of our final estimator m(z) relies heavily on the
estimator M (z), it is interesting to see how well M(z) works. Figure 1 shows
the regression function M (z), the curves of the median and quartiles of 1,000
estimates M (z) and the median of ma(z) with two different settings for the
regression function (I). In both settings, the first f; is considered. Since the closed
form of true function M(z) is not available, we used simulation to approximate
it through 100,000 repetitions. In the first setting where U is considered as
the additive Berkson error model, ma(z) certainly looks a consistent estimator
in Figure 1(a). However, this is not the case for the second setting in which
the nonlinear error structure (III) is considered. Here, ma(z) is far from the true
M (z), as we would expect, but M (z) still performs reasonably well as guaranteed
by Theorem 1.
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Figure 3. Median Curves of 1,000 estimators of regression function (II) with
(n,N) = (60,120) when (a): U given by (i), f; given by (2); (b): U given
by (ii), f; given by (2). The solid, dashed, dotted, and dashed-dotted curves
represent m(z), m(z), mi(z) and mo(z) respectively.

Table 1. The estimated MISE comparison for the estimators m(z), mi(z)

and ma(z).
m(z) m1(2) ma(2)
(n,N) U f; regression function m
@ (1) @ (1) @ (1)
(30,120) (1) (1) L73e2 7.32e2  1.052 2.5de2  L.ldel 2.65e-1
(i) (2) 1.53e-2 6.95e-2 1.10e-2  2.35e-2 1.11e-1  2.74e-1
(i) (1) 3.69e-2 8.95e-2 9.80e-2 1.47e-1 1.33e-1  3.67e-1
(ii) (2) 3.40e-2 8.19e-2 9.66e-2  1.39e-1 1.28e-1  3.68e-1
(60,120) (i) (1) 1.25e2 6.22e2  7.49e3 19662  1.0lel 2.60e-1
(i) (2) 1.07e-2 5.80e-2 7.18e¢-3  1.75e-2 9.85e-2  2.48e-1
(i) (1) 2.55e2 7.77e2  9.64e2 1.39-1  1.23e1 3.45e-1
(ii) (2) 2.22e-2 7.49e-2 1.03e-1  1.58e-1 1.16e-1  3.31le-1

Figures 2 and 3 show the regression function curve m(z), the curves of the
medians of 1,000 estimates m(z), m1(z) and meo(z) under different settings of U
and f; for (n, N) = (60, 120), in the two examples (I) and (II) respectively. From
these two figures, we see that m(z) can capture the patterns of the true curves
as well as mj(z) does, although m(z) tends to have larger bias at boundaries
and peaks due to its explicit dependence on the size of the validation dataset.
Taking sample size and noise level into account, the proposed estimator m(z)
and smoothing parameter selection method appear to perform very well for the
test functions considered in this study, while mg(2) fails to produce the correct
curves, as we expected.

Table 1 summarizes the results shown in Figures 2—3. The estimated mean
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Figure 4. Median Curves of 1,000 estimators with (n, N) = (60, 120) when
(a): m is given by (I), U is given by (iii), f7 is given by (2); (b): m is given
by (II), U is given by (iii), f; is given by (2). The solid, dashed, dotted, and
dashed-dotted curves represent m(z), m(z), m1(z), and Mma(2), respectively.

integrated squared errors (MISE), evaluated on a grid of 201 equidistant values of
z in [-1,1], are presented. We can see that m;(z) had certain advantage over m(z)
when the function (i) is considered because its assumed error model is correct
in such a case. m(z) had much smaller MISE than m;(z) when the nonlinear
Berkson model (ii) were used. In these cases, the performance of m(z) improved
considerably as the sample sizes increased in terms of MISE, whereas m;(z) was
hardly affected by those changes. It is worth pointing out that the superiority of
m(z) to mi(z) may become more significant as the difference between the U and
the simple linear model gets more prominent. Figure 4 shows the median curve
comparison when U is chosen as (iii) with (n, N) = (60, 120). In both examples,
mi(z) fails to capture the main profile of the underlying regression function.
Note that in all the cases listed in Table 1, the mg(z) are totally incorrect which
indicates that the proposed method is necessary.

4. A Data Example

In this section, we apply our approach to a dataset of enzyme reaction speeds
collected in 1974. The reaction speed (Y') is calculated by the particle number
of radioactive matter obtained by reaction per minute in basal density (t). The
objective of this analysis is to relate Y to the basal density. There are two
ways to measure basal density: a simple chemical method can be used, but with
measurement errors; Another approach is to use a precision machine tool and
an expensive procedure to produce a more accurate measure for a small subset
of subjects enrolled in the study. The basal density obtained by the chemical
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Figure 5. Our estimator 7m(z) and the parametric model (4.1) fit of the re-
gression function m, represented by the solid and dotted curves, respectively.

method is used as the surrogate variable ¢, and the corresponding exact measure
for a small subset of subjects is used as the validation variable t.

This dataset has been analyzed by [Stute, Xue and Zhul (2007), in which a
nonparametric fit is applied to relate ¢ and ¢, and the following non-linear model
is considered as the underlying regression function m:

Bit
Bo 4+t

The dataset consists of n = 10 validation observations and N = 30 surrogate

m(t, B) = (4.1)

observations. Using the smoothing parameters selection method given in Section
2.4 results in three parameters b, = 0.453, hy = 0.144, and ¢ = 3. Figure 5
displays the corresponding estimated curve (m), along with the curve produced
by the parametric model (4.1) with 5 = 212.7 and (2 = 0.06484 obtained from
Stute, Xue and Zhul (2007). It is readily seen that the two curves have similar
patterns, although the estimator we proposed looks coarser, as the nonparametric
smoother absorbs considerably more degrees of freedom than does the paramet-
ric approach. In addition, m(z) differs considerably from the parametric fit at
the right boundary. This is not surprising because of the lack of data in the
interval ¢ € [—0.8,1.0]. Thus again, it should be emphasized that compared with
parametric methods, to use the proposed method requires relatively large sample
size, especially at the boundary. We think this has become a less significant limi-
tation with advances in various technologies. New instruments can capture more
information, and a large amount of data become available in modern statistical
analysis.
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5. Discussion

In the foregoing investigation, we have assumed without comment that in
the validation dataset only the true and surrogate covariables are observed. In
fact, in certain applications (e.g., [Chen| (2002])), observations on the response
variable are also available. In such situations, several naive nonparametric func-
tion estimators are obtainable. One is to directly use the matched {Yj,¢; };V;]\?H
which is apparently inefficient because the size of the validation dataset is usually
relatively small. An alternative estimator uses the proposed approach given in
Section 2, except in replacing the surrogate dataset with an extended sample by
;V: vy and {Y, t;}2¥,. However, this estimator ignores the in-
formation provided by {Yj,t; }éV: “;\7,‘ +1 and hence may not be efficient either. How
to construct an estimator able to fully incorporate the information given by data

combining {Y},,}

in this case warrants further research.

Another question is how to estimate nonparametric curve in a high dimen-
sional space when multi-covariates are contaminated with non-additive errors
with the use of a validation data. As we know, the Fourier transformation is
not directly applicable in this situation. To avoid the “curse of dimensional-
ity”, several dimension reduction models, such as the additive model, the single-
index model, the partially linear model, and the varying coefficient model, have
been studied and widely applied in applications. It is of interest to incorpo-
rate these dimension reduction methods into our proposed methodology to solve
high-dimensional problems with validation data. Specially, the case in which
only a univariate variable is measured with error in a multi-covariates model,
say, y = m(t,x) + ¢, where ¢ is measured with error but x is measured exactly, is
a common situation. How to deal with this kind of problem is a topic for future
study.
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Appendix: Proofs of Theorems

Unless otherwise stated, subscript ¢ runs from 1 to N, j from N+1 to N +n,
and denote surrogate and validation data, respectively. Let C1,Cs, ... be generic
positive constants, not depending on M, hy, b,,n or N.
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As Theorem 1 and its proof play an important role on establishing the other
results, we detail the steps of its proof. First, we state the following necessary
lemma. In what follows, we assume the function U is reversible; otherwise, the
terms involving U~! can be expressed as O(1) and the corresponding convergence
rate can be achieved.

Lemma 1. If Conditions C1—C6 hold, then

(i) Snvo = fu(2);
(ii) 5'12\]1 = 0p(Sn0SN2),  SN1Sn3 = Op(SJQ\Q)?

(iii) Sn1¢N1 = 0p(SN2dno), where
1 UE)— 2\ ~ -
ONk = Nhy ZZ:K (W) (UH) - 2)k, k=01

Proof. (i) Using a second-order Taylor expansion, we have

Sno = fu(2)
L) — 2 (UG — 2\ (OE) = UE)
e SR () s () B

o N2

1 g ) (0-010)
2Nhyn -

:= D1+ Da+ D3+ Dy.

Standard density theory (Parzenl (1962)) leads to Dy = fy(z) + Op(h%). Next,
we focus on Dy and Ds.

First, according to the asymptotic properties of LLKE (Fan and Gijbels
(1996)), we have

((7({5;) - U(E,»)) - {nbn}m N (- U@E) L (t}b;&>

J

+%b:ft(t) ZJ: U (@) (1 - &)2] L (tjbnt") }(1 +0p(1))
= (Uv + Up)(1 + 0p(1)). (A1)

Following Condition (C5) and (A.l), the uniform convergence rate of the
local linear smoother (e.g., [Carroll et all (1997))) reveals that

sup |U(F) = U(D)] = Op(m)- (A.2)

teQ
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Moreover, for any function g(x) € {K(x), K (z), K" ()}, by taking the expecta-
tion one can show that

1 U(f,)—z

—_— —— | | = 1). A3

NhN;)g( L )‘ 0, (1) (a3
By using (A.2)) and (A.3), we can verify that
Dy| < K| ————
’2’—Nh%vzi:‘ ( hy )

a0 00l e e (PR -0 (i) s

< sup}ﬁ(f) — U(t~)|2 X 2]\[1/1:;’\,21: ‘K” <U(t;L)N_Z> ‘ =0, (;;‘) . (A.5)

x |U(H) - U]

U (&) - U]

1
Ds| <
| 3’_2Nh§vzi:

eQ
Similarly, we can derive Dy = 0,(D3). Combining this with (A.4)—(AD]), we can
complete the proof.

(ii) By using similar arguments but tedious algebra in (i), and Conditions
(C4) and (C5), we get Sy1 = Op(h% + V), Sna = Op(hd + Ymhn), Sns =
Op(h + ymh%), which directly lead to the result (ii).

(iii) The proof follows from similar but tedious calculations, and hence is
omitted.

Proof of Theorem 1. By Lemma 1, collecting the leading terms, M\(z) —M(z)
can be written as

_ (Nan) T 50 K ((O(F) = 2)/hn ) [V = MU (@)
Mz) = M(z) = Ju()
7 ~ ~ ~ 2
(M"(2)/2Nhx) S5, K ((O(F) = 2)/hn) |O(E) — 2|
+ (1+0,(1))
fu(2)
. My + Mp o
- fU(Z) (1 + P(l))v

where Mp and My can be rewritten as

My = {QNth > (=2 ) ) - =

i
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NhNZK(ﬁIE I LIE )[U(&)—U(&)r}(1+op(1))

= {Mp1 + Mp2}(1 4 0p(1)),

MV—NthZ ( ) @)

_NthZL:K (U(hN ) [M(ﬁ(f)) M(U(fi))}
= MVl — MVQ-

For Mp1, a Taylor expansion of the kernel function yields
M’ (2) Ut;) — =z . 2
Mp, = K| = = &) —
Bl N ha Z < . (U@E) - =)
M’ (2) (UE) =2\ (A= . 5
K (=== )= U — 2% 1
tawig K (T (06 ~v@) 06— )
= Mpi11 + Mpi2 (1 +0p(1)).

Simple calculations yield that

Mpi = %E {K <U(2>N_z> M (2)(U®) - z)2] (14 0,(1))

=5 /K(w)w2deN (Z)fU(Z)h?v + Op(h?\/)7

which is the same as the bias term of LLKE. As for Mg, using (A22) and ([A.3)),

~ ~ " 1 ’ U(EZ) —Z ~ 2
Mpio < Uit)—-U(t M — K |{———— Ul(t;) —
812_§z£‘ &) -U@)] x| (Z)!QN}L%V; ( e ) (U(E) - =)
= Op (mhn) .
Hence, we conclude that
]. 1"
Mpr = / K(w)w?dwM" (2) fu ()W + op(h). (A.6)
Similarly, we get
M = 0y(32). (A7)

Using (A.6)— (A7) with Condition (C5) leads to

_ % / K (w)w’dwd’ (2) fu ()3 + op(h). (A.8)
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Now we turn to My . First, by using a Taylor expansion and (A.2), we can
show that

1 n
My, = Ay + Op(\/m X ;LYiN)’ (AQ)
where we write Ay = ﬁ YK (%) &. A simple calculation yields
\Y
Var (My1) = arz(\fh,N/KQ Yaw(1 + o(1)). (A.10)

Finally, we focus on My 9, the main term in the variance:
(O - v

S e
)~~~

2
M'(UE) (0 - UE) }(1+op<1>>

Nh2 ZK <
= {MV21 +MV22} (1 + op 1) ,

)
where we can show that My = O, ( /hN) while

Myo1 = {NthZ ( ) Uv+UB)}(1+Op(1))
_ 1 ) U(EJ) —Z ’ 7
_ {WZM (P22 wrw

+2Nth ZK (U(ZJ)V_Z> M'(U(fz'))U”(fi)bi/L(w)dew}(Hop(l))

{A2+ M (U U (2)] fu(2)b? / de} (1+0,(1)).  (A.11)
Note that
E[A)] =0, E[AZ = Vf:;](v / K(w (A.12)

Recalling the independence between validation data and surrogate data, and
combining (A-8)—([A12), the Central Limit Theorem leads to the result.

Proof of Theorem 2. Based on the proof of Theorem 1, we have
M(2) = M(2) = (A1(2) + Da(2) + B(2)) (1 + 0,(1)), (A.13)

where A1, Ag, and B are defined in (A.9), (A1l and (ZI2]), respectively. By
using (A.13), it can be seen that

| Cov [M(z1), M (22)]]
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P () (5

) M (U(E)?

j N N
Var (§) 2 —U(t;) 29— U(t;) _
+ N2, ZK(l -~ >K<2 P~ ) +o(hk + b2 + (Nhy)™)
C
< NthK K< th1> +o(hN + by + (Nhy)™h). (A.14)

Now (A1), (AId) and the definitions of My and My, imply that
E(My — Mp)? < CoN~" + Csh + Cubl,
— (A.15)
E(Mkl - Mkl)2 S CQN_l + C3h/f]1\/' -+ C4bi,

uniformly in k£ and [. Hence, we have

/QE(m(t) —m(t))?dt
q 2
= /QE((ffLo —mp) + Z[(ﬁm —myy) cos(lt) + (Mo — myy) sin(lt)]) dt

=1

00 2
+ / ( > [magcos(it) + may sin(lt)]) dt
0 l=q+1
q 2
= 2w E(myg *M0)2+WZZE Mg — M) +Rq.
=1 k=1

Under Conditions (C7) and (C8), by some modifications of the proof of
Theorem 1 in [Akritas and Van Keilegom| (2001)), we can show

E(a; — agj)® < Csn™t 4 Cebl,

uniformly in k& and [. This property, the conditions given in Theorem 2, and

(A-10) yield that
q

=1

q
E(mg — mkl)Q < (C7N_1 + C8hZ]lV + Cgbi) Z 1%,
1 =1

B
Il ]

Note that by the general theory of trigonometric series we have

(e o]

Z [y cos(It) + moy sin(it)] < Crog > *
l=q+1

uniformly in t. Therefore, R, is of the order g~27%. Taking these results together
we can complete the proof.
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