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Abstract: Recent work on multistratum fractional factorial designs is set in a general

and unified framework, and a criterion for selecting multistratum fractional factorial

designs that takes stratum variances into account is proposed. Application of the

general theory is illustrated on designs of experiments with multiple processing

stages, including split-lot designs, blocked strip-plot designs, and post-fractionated

strip-block designs. In particular, this helps elucidate the relationship between the

three different design settings studied by Miller (1997), Bingham et al. (2008), and

Vivacqua and Bisgaard (2009). The construction and selection of two-stage designs

in these settings are shown to be equivalent. Good designs based on our criterion

are found and compared with those tabulated in Vivacqua and Bisgaard (2009).
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1. Introduction

Multistratum experiments refer to those with multiple sources of errors. The
error structure of an experiment is determined by the structure of experimental
units, called the block structure. The block structure, treatment structure, and
design (assignment of the treatments to experimental units) together specify a
linear model based on which estimates of the treatment contrasts of interest are
computed from the data. In two important papers, Nelder (1965a,b) developed
a unified theory for the analysis of randomized experiments with what he called
simple block structures, which cover most of the block structures encountered in
practice. Speed and Bailey (1982) and Tjur (1984) further developed the theory
to cover the more general orthogonal block structures. An excellent account can
be found in Bailey (2008). In a series of papers, Brien and Bailey (2006, 2009,
2010) discussed experiments involving multiple randomizations.

Multistratum experiments are common in agriculture. Federer and King
(2007) provided a comprehensive treatment of the design and analysis of split
plot and split block experiments. In recent years, we have seen rising interest
in design of industrial experiments with multiple strata. Some treatment factors
may require larger experimental units than others since their levels are more dif-
ficult to change, or in experiments with multiple processing stages the levels of
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the treatment factors are assigned at different stages. Such constraints render
complete randomization not possible, and the resulting restriction on ran-
domization leads to the consideration of split-plots (Huang, Chen, and Voelkel
(1998), Bingham and Sitter (1999a,b, 2001), Bingham, Schoen, and Sitter (2004),
McLeod and Brewster (2004)) and strip-plots (Miller (1997)). All of these in-
volve block structures that are examples of Nelder’s simple block structures.
The split-lot designs of Mee and Bates (1998) for experiments with multiple pro-
cessing stages, and the recent extensions in Bingham et al. (2008) and Ranjan,
Bingham and Dean (2009) deal with block structures that are not simple block
structures, but are still within the scope studied by Speed and Bailey (1982) and
Tjur (1984). The highly relevant work of Nelder, Speed, Bailey, and Tjur has not
been cited in the recent literature, although the general theory they developed
has much to offer on issues ranging from analysis to design construction. One
objective of this paper is to revisit this important line of work. We demonstrate
its utility by showing how it provides a general framework for investigating facto-
rial experiments with multiple processing stages. In particular, it helps elucidate
the relationship between the three different design settings studied by Miller
(1997), Bingham et al. (2008), and Vivacqua and Bisgaard (2009). We also show
how more general results on the analysis of experiments with multiple processing
stages follow from the general theory.

Our second objective is to take up the issue of selecting good multistratum
fractional factorial designs. Most of the existing work has used ad hoc modifica-
tions of the minimum aberration criterion (Fries and Hunter (1980)) that are not
guided by a consistent principle. For example, block effects in blocked designs
are usually treated as fixed effects while their counterparts in split-plot designs,
the whole-plot effects, are considered as random, and the selection of split-plot
designs is based on the usual minimum aberration criterion for unstructured
units. In particular, variances of the different sources of errors are not taken into
account, whereas one would expect the relative sizes of such variances to play
a role in design selection. Cheng and Tsai (2009) proposed a criterion for the
selection of blocked and split-plot fractional factorial designs that incorporates
the ratio of inter- and intra-block (whole-plot and subplot) variances. We extend
this approach to general multistratum fractional factorial designs.

Block structures and the associated strata are reviewed in Section 2. The
analysis of experiments with multiple processing stages is discussed in Section 3.
Our criterion for selecting orthogonal multistratum fractional factorial designs is
presented in Section 4, and applied to designs of experiments with two processing
stages in the settings of Miller (1997), Bingham et al. (2008), and Vivacqua and
Bisgaard (2009). Better designs are reported.
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We make the hierarchical assumption that lower-order effects are more im-
portant than higher order effects and effects of the same order are equally im-
portant, a situation in which minimum aberration is a suitable criterion. For
simplicity, we further assume that three-factor and higher order interactions are
negligible. Our study is focused on regular fractional factorial designs. We also
assume that estimates of the main effects are required; thus no aliasing among
the main effects is allowed.

2. Block Structures, Strata, and Orthogonal Designs

We denote the number of experimental units by N . A block structure can
be described by a set F of factors on the experimental units, called unit factors.
Each unit factor F can be thought of as a partition of the experimental units into
disjoint classes, called F-classes or levels of F . A unit factor is called uniform if
all its classes are of the same size. If F1 6= F2 and each F1-class is contained in
some F2-class, then we write F1 ≺ F2 and say that F1 is finer than F2 (F2 is
coarser than F1, or F1 is nested in F2). We also write F1 ¹ F2 if F1 ≺ F2 or
F1 = F2. The coarsest unit factor has all the experimental units in one single
class; at the other extreme, for the finest factor, each class consists of one single
unit. The former is called the universal factor and the latter the equality factor,
and they are denoted by U and E , respectively.

For example, the block structure of a split-plot experiment with w whole-
plots each containing s subplots is determined by two uniform factors: the ws-
level equality factor E and a w-level factor P that partitions the N = ws units
into w classes of equal size. For convenience, we always include the trivial factor
U when describing a block structure since it corresponds to the single degree of
freedom for the mean in the ANOVA. Then the block structure of a split-plot
experiment consists of the three factors U , E , and P with E ≺ P ≺ U . Such a
block structure is denoted by w/s, where / stands for nesting.

For a row-column experiment with N = rc units arranged in r rows and
c columns, the block structure consists of four factors U , R, C, and E , with
E ≺ R ≺ U and E ≺ C ≺ U , where R has r levels, C has c levels and E has rc

levels. Such a block structure, denoted by r × c, where × stands for crossing, is
the block structure of a strip-plot (also called strip-block) experiment in which
some treatment factors have their main effects confounded with rows or columns.
This arises, e.g., in an experiment involving two processing stages, where at the
first stage rc batches of material are grouped into r classes of size c, with the
same level of each first-stage treatment factor assigned to all the batches in the
same group, and at the second stage they are regrouped into c classes of size r,
again with the same level of each second-stage factor assigned to all the batches
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Figure 1. A 2/(4 × 4) block structure.

in the same group. In a strip-plot experiment, the groupings at the two stages
are based on the rows and columns.

Simple block structures are those that can be obtained by iterations of cross-
ing and nesting operators. The blocked strip-plot designs studied in Miller (1997)
have the simple block structure b/(r × c), with an r × c row-column structure
within each of b blocks. Such a block structure consists of five uniform factors E ,
R′, C′, B, and U on brc units, with E ≺ R′ ≺ B ≺ U and E ≺ C′ ≺ B ≺ U , where
B has b levels, R′ has br levels and C′ has bc levels. A 2/(4 × 4) block structure
is depicted in Figure 1.

Given two factors F1 and F2, the finest factor G such that F1 ¹ G and
F2 ¹ G, denoted by F1 ∨ F2, is called the supremum of F1 and F2. It is easy to
see that for the r × c block structure, R∨ C = U , and for b/(r × c), R′ ∨ C′ = B.

We say that two factors F1 and F2 have proportional frequencies if the size of
the intersection of any F1-class and any F2-class is proportional to the product of
the sizes of the relevant classes of F1 and F2. Clearly the two factors R and C in
r× c have proportional frequencies since each R-class meets with each C-class at
exactly one unit. The condition of proportional frequencies can be characterized
geometrically as follows. For any factor F , let VF be the space {y ∈ RN : yi = yj

if unit i and unit j are in the same F-class}. Then dimVF = nF , where nF is
the number of levels of F . A necessary and sufficient condition for F1 and F2 to
have proportional frequencies is that

VF1 ª VU and VF2 ª VU are orthogonal,. (2.1)

where VFi ªVU is the orthogonal complement of VU relative to VFi . We note that
VU is the one-dimensional space spanned by the vector of all 1’s; thus VF ª VU
is the (nF − 1)-dimensional space {y ∈ VF :

∑N
i=1 yi = 0}. We denote this space

by CF .
It can be shown that for any F1 and F2,

VF1∨F2 = VF1 ∩ VF2 , and CF1∨F2 = CF1 ∩ CF2 . (2.2)

We say that F1 and F2 are orthogonal if

VF1 ª (VF1 ∩ VF2) and VF2 ª (VF1 ∩ VF2) are orthogonal. (2.3)
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If (2.1) holds, i.e., F1 and F2 have proportional frequencies, then each F1-class
has nonempty intersection with each F2-class. It follows that F1 ∨ F2 = U . By
(2.2), (2.1) is a sufficient condition for (2.3).

Condition (2.3), generally weaker than (2.1), is equivalent to that within
each (F1 ∨ F2)-class, F1 and F2 have proportional frequencies. Thus, although
the two factors R′ and C′ in the block structure b/(r×c) do not have proportional
frequencies, they are orthogonal. All the block structures w/s, r×c and b/(r×c)
we have seen so far are simple block structures and consist of pairwise orthogonal
factors.

Now suppose there are t treatments in an experiment with block structure
F. For each i = 1, . . ., N , let yi be the observation on the ith unit and T (i) ∈ {1,
. . ., t} be the treatment assigned to unit i, and for each F ∈ F, let F(i) ∈ {1,
. . ., nF} be the F-class to which unit i belongs. Then we assume that

yi = µ + αT (i) +
∑
F∈F

βF
F(i),

where µ and the treatment effects α1, . . ., αt are unknown constants, and {βF
1 , . . .,

βF
nF}F∈F are uncorrelated random variables with E(βF

k ) = 0 and var(βF
k ) = σ2

F .
We further assume that σ2

F > 0 for all F 6= U . Allowing σ2
U = 0 covers the

models that do not contain a random term corresponding to the mean.
Let XT be the N × t (0,1)-matrix with the (i, j)th entry equal to 1 if and

only if the jth treatment is observed on the ith unit, and for each F , let XF be
the N ×nF (0,1)-matrix in which the (i, j)th entry is equal to 1 if and only if the
ith unit belongs to the jth F-class. Then we can write y = (y1, . . ., yN )T as

y = µ1N + XT α +
∑
F∈F

XFβF , (2.4)

where 1N is the N ×1 vector of 1’s, α = (α1, . . .,αt)T and βF = (βF
1 , . . ., βF

nF )T .
For simple block structures, Nelder (1965a) provided an algorithm for de-

termining orthogonal projections of y onto the eigenspaces of cov(y), which is
crucial for carrying out the ANOVA. Speed and Bailey (1982) and Tjur (1984)
extended this result to more general block structures. We assume that F satisfies
the following.

(a) All the factors in F are uniform and pairwise orthogonal. (2.5)
(b) E ∈ F and U ∈ F. (2.6)
(c) F1, F2 ∈ F ⇒ F1 ∨ F2 ∈ F. (2.7)

For a block structure satisfying (2.5)−(2.7), cov(y) can be written in the
spectral form

cov(y) =
∑
F∈F

ξFPWF , (2.8)
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where {WF}F∈F are mutually orthogonal eigenspaces of V such that RN =
⊕F∈FWF , and PWF is the orthogonal projection matrix onto WF . Furthermore,
for each F ∈ F,

WF = VF ª (
∑
F≺G

VG) and ξF =
∑
H¹F

N

nH
σ2
H. (2.9)

Each eigenspace WF is called a stratum, and ξF is called a stratum variance. It
is easy to see that if c ∈ WF , then var(cT y) = (cT c)ξF . It follows from (2.9)
that

F1 ¹ F2 ⇒ ξF1 ≤ ξF2 . (2.10)

Then for any F , since E ¹ F , we have ξE ≤ ξF . We call WE the bottom or unit
stratum.

Let VT be the column space of XT and CT be VT ªVU . Then {E(cTy)}c∈CT

are all the estimable treatment contrasts. We call a design orthogonal if CT can
be decomposed as ⊕iCi, such that each Ci is contained in a certain WF (but
different Ci’s may be in different WF ’s), and E(cT y), c ∈ Ci, are contrasts of
interest. Clearly none of these WF can be WU , which we call the mean stratum.
Under an orthogonal design, all the treatment contrasts E(cT y) with c ∈ Ci

have simple estimators: cT y is the best linear unbiased estimator of E(cT y),
with var(cT y) = (cT c)ξF . Also, cov(cT

1 y, cT
2 y) = 0 if c1 and c2 belong to dif-

ferent strata. In factorial experiments, typically these are contrasts representing
main effects and interactions or, in the case of fractional factorial designs, linear
combinations of aliased factorial effects. In this paper, we focus on such orthog-
onal multistratum designs, under which each factorial effect is estimated in one
single stratum.

Remark 2.1. The proofs of (2.8) and (2.9) can be found in Tjur (1984). We
mostly adopt the notation in Bailey (2008); in Tjur (1984), VF , WF , and N/nF
are denoted by LF , VF , and nF , respectively, uniform factors are called balanced
factors, F1 ¹ F2 is denoted by F1 ≥ F2, and therefore the supremum of factors
defined here is called infimum there. Tjur (1984) does not require that U ∈ F,
but it can be dealt with by assuming σ2

U = 0.

3. Factorial Experiments with Multiple Processing Stages

Many industrial experiments involve a sequence of processing stages, where
at each stage the experimental units are partitioned into disjoint classes, with
those in the same class assigned the same level of certain treatment factors. An
experiment with s processing stages can be thought to have the block structure
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F = {U , E , F1, . . . ,Fs}, where F1, . . ., Fs define the partitions of the experi-
mental units at the s stages. Model (2.4) with one set of random effects for each
factor in F is the same as that adopted by Mee and Bates (1998), Bingham et al.
(2008), and Ranjan, Bingham and Dean (2009), except that they do not have a
random term for U . This, as commented in Remark 2.1, is the same as to assume
that σ2

U = 0 in (2.4).
If (2.5)-(2.7) hold for F, then there is a stratum associated with each factor

in F, which can be determined by the rule given in (2.9). When E 6= Fi for all i,
we have

WFi = VFi ª (
∑

j:Fi≺Fj

VFj ), ξFi = σ2
E +

∑
j:Fj¹Fi

N

nFj

σ2
Fj

,

dim(WFi) = nFi − 1 −
∑

j:Fi≺Fj

dim(WFj ), i = 1, . . . , s,

WE =
[ s∑

i=1

VFi

]⊥
, ξE = σ2

E , dim(WE) = N − 1 −
s∑

i=1

dim(WFi).

In the special case where the factors F1, . . . ,Fs are not nested in one another,
the above reduces to

WFi = VFi ª VU = CFi , ξFi =
N

nFi

σ2
Fi

+ σ2
E , dim(WFi) = nFi − 1, i = 1, . . . , s,

WE =
[ s∑

i=1

VFi

]⊥
, ξE = σ2

E , dim(WE) = N − 1 −
s∑

i=1

(nFi − 1).

We show that this special case is equivalent to that F1, . . . ,Fs define an
orthogonal array of strength two on the experimental units. Note that this refers
to an orthogonal array with variable numbers of symbols as defined by Rao (1973)
if F1, . . . ,Fs have different numbers of levels.

Proposition 3.1. F1, . . . ,Fs define an orthogonal array of strength two on the
units if and only if they are not nested in one another and F = {U , E, F1, . . . ,Fs}
satisfies (2.5)−(2.7)

Proof. Strength two of the array is equivalent to the uniformity and pairwise
proportional frequencies of F1, . . . ,Fs. Since pairwise proportional frequencies
implies pairwise orthogonality and Fi ∨ Fj = U for all i 6= j, if F1, . . . ,Fs define
an orthogonal array of strength two on the units, then F satisfies (2.5)-(2.7).
Furthermore, pairwise proportional frequencies of F1, . . . ,Fs precludes any of
them from nesting any others.

Conversely, suppose F satisfies (2.5)-(2.7) and F1, . . . ,Fs are not nested in
one another. Then by (2.7), Fi ∨ Fj ∈ F for all i 6= j. Since F1, . . . ,Fs are not
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nested in one another, we must have Fi ∨ Fj = U , and hence VFi ∩ VFj = VU ,
for all i 6= j. This and the pairwise orthogonality of F1, . . . ,Fs imply that they
have pairwise proportional frequencies and therefore define an orthogonal array
of strength two on the units.

The split-lot designs studied in Mee and Bates (1998) fall in this category.
For example, suppose 16 batches of material are to be partitioned into four
groups of equal size at each of two stages. Then, as discussed in Section 2, one
can arrange the 16 batches in four rows and four columns, and the grouping at
the two stages can be done according to the rows and columns, respectively. This
yields the simple block structure 4×4. If there are four stages, then the partitions
at the two additional stages can be based on the Latin and Greek letters in the
following Graeco-Latin square:

Aα Bβ Cγ Dδ
Bγ Aδ Dα Cβ
Cδ Dγ Aβ Bα
Dβ Cα Bδ Aγ

This is an example where the experimental units form a fraction of all pos-
sible combinations of the unit factors (N <

∏s
i=1 nFi). The four factors, rows,

columns, Latin letters and Greek letters, define an orthogonal array of strength
two on the 16 units. It follows that in this case there are five strata in addition
to the mean stratum: the bottom stratum and one stratum associated with each
of the four unit factors. We note that Section 4 of Ranjan, Bingham and Dean
(2009) essentially addresses the existence and construction of certain orthogonal
arrays of strength two.

Proposition 3.1 implies that if F1, . . . ,Fs are uniform, pairwise orthogonal,
and are not nested in one another, but do not define an orthogonal array of
strength two, then (2.7) cannot hold, and hence (2.9) does not apply, causing
complications in the design and analysis. This phenomenon arose in Bingham et
al. (2008) and Vivacqua and Bisgaard (2009).

In order to have enough degrees of freedom when using normal or half normal
plots to judge significance of the effects estimated in the same stratum, Bingham
et al. (2008) advocated the partition of experimental units into large number of
groups at each stage, which results in large dim(CFi). Geometrically, it may cause
some of the CFi ’s to have nontrivial intersections. Bingham et al. (2008) observed
that if CFi and CFj have a nontrivial intersection, then for a ∈ CFi ∩ CFj ,
a 6= 0, var(aT y) is greater than if a ∈ CFi or a ∈ CFj when CFi ∩ CFj =
{0}. Combinatorially, having a large number of groups at each stage may make
proportional frequencies not possible for some of the Fi’s. For example, if we
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have to partition 32 experimental units into eight groups of size four at each of
two stages then, since 82 > 32, not all F1-classes can meet with every F2-class.
As in Mee and Bates (1998), the 32 units also form a fraction of complete crossing
of the two unit factors (rows and columns); an important difference, however, is
that since there are only two unit factors in two-stage experiments, no proper
fraction of their combinations can be an orthogonal array of strength two, and
(2.7) would fail to hold.

Suppose, for example, the 32 units are the starred cells of the following 8×8
square, with the eight rows of size 4 constituting the first-stage groups, and the
eight columns constituting the second-stage groups:

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Figure 2. Incomplete crossing.

We can see that both F1 and F2 are nested in a two-level factor that divides the
32 units into two “blocks” of size 16. Let this factor be B. Then F1∨F2 = B /∈ F.
Thus (2.7) does not hold.

In general, suppose F1, . . . ,Fs are uniform and pairwise orthogonal, but
(2.7) does not hold. Then one can expand F = {U , E , F1, . . . ,Fs} by adding the
supremums of existing factors in F, if needed, to a larger F̃ that satisfies (2.7). In
other words, F̃ is the smallest block structure with F ⊂ F̃ that satisfies (2.7). In
general, if ∩k

j=1CFij
6= {0}, then ∨k

j=1Fij 6= U , and we need to include ∨k
j=1Fij

in F̃, if it is not already in F. Such an F̃ still has pairwise orthogonal factors
since it can be shown that if F1, F2, F3 are pairwise orthogonal, then F1 ∨F2 is
orthogonal to each of F1, F2 and F3; see Corollary 10.4 of Bailey (2008). There
is no guarantee that the added factors are uniform, but if all the added factors
are indeed uniform, then (2.5)-(2.7) hold for F̃. We call the added factors pseudo
factors since they are not in the originally intended block structure. Model (2.4)
for F̃ remains the same as the original one for F as long as we make σ2

F = 0 for
all the added pseudo factors. Then it follows that there is one stratum for each
factor in F̃, and (2.9) can be applied to F̃ to determine the strata and stratum
variances. We have

ξFi1
∨···∨Fik

> ξFij
, for all j = 1, . . . , k.
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If F satisfies (2.7), in particular, if F1, . . . ,Fs define an orthogonal array of
strength two, then for all the factors whose levels are assigned at the ith stage,
their main effects and interactions are estimated in stratum WFi . On the other
hand, some of these effects may be estimated in WFi1

∨···∨Fik
, resulting in larger

variances if F does not satisfy (2.7), and Fi1 ∨ · · · ∨ Fik is a pseudo factor in F̃

with i = ij for some j.
In Section 3 of Ranjan, Bingham and Dean (2009), analysis of designs when

some of the CFi ’s have nontrivial intersections was derived for the case where the
nFi ’s are powers of 2, and it was commented that the result could be extended
to the case where the nFi ’s are powers of prime numbers. This can be seen to
follow from the general theory presented in Section 2, as sketched in the previous
paragraph. It suffices to show that the factors F1, . . . ,Fs in their setting satisfy
(2.5), and that all the added pseudo factors are uniform. Since the partition
of the treatment combinations into disjoint classes at each stage, as done in
Ranjan, Bingham and Dean (2009), is based on parallel flats in a finite Euclidean
geometry, it can be seen that the resulting unit factors F1, . . . ,Fs for the s stages
are uniform and pairwise orthogonal. Therefore (2.5) is satisfied. It is also a
consequence of the geometric construction that the disjoint classes induced by
∨k

j=1Fij are parallel flats, and hence are of the same size, i.e., ∨k
j=1Fij is uniform.

The approach presented here applies to more general situations, including
the case where nesting exists among F1, . . . ,Fs, as well as the case where the
nFi ’s are not necessarily prime powers. We have also related the extra stratum
variances to the presence of pseudo factors. This provides a better understanding
in the combinatorial context and is useful for design construction.

For the block structure in Figure 2, the two pseudo blocks of size 16 create
an extra stratum with larger variance than both ξF1 and ξF2 . Formally the block
structure, with the two-level pseudo factor included, is the same as the block
structure 2/(4 × 4) in Figure 1. In general, if there are 2m units that are to be
divided into 2u groups of size 2m−u at the first stage and 2v groups of size 2m−v

at the second stage, where u + v > m, and there are 2f pseudo blocks of equal
size, then we must have f = u + v − m. With the pseudo factor included, the
block structure is the same as 2u+v−m/(2m−v × 2m−u).

Vivacqua and Bisgaard (2009) considered two-stage experiments with a 2k−p

row design at the first stage and a 2q−r column design at the second stage, but
instead of complete crossing of the row and column designs, to save experimental
effort, only a 1/2f -fraction is observed. The fraction is defined by f independent
generators, called post-fraction generators. It is equivalent to a design in the
Bingham et al. (2008) setting in which 2k−p+q−r−f units are to be divided into
2k−p groups at the first stage and 2q−r groups at the second stage. Therefore
there is an extra stratum with larger variance resulting from a 2f -level pseudo
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factor. Each of the f post-fraction generators aliases an effect involving only
the first-stage treatment factors with an effect involving only the second-stage
factors. These aliased effects are confounded with the pseudo blocks, and the f

effects involving only the first-stage treatment factors (or the f effects involving
only the second-stage factors) together define the 2f pseudo blocks. Again, with
this pseudo factor included, the structure is the same as 2f/(2k−p−f × 2q−r−f ).
Indeed Vivacqua and Bisgaard (2009) pointed out that the design can be executed
as a set of 2f blocks.

Therefore the construction and selection of two-stage designs in the settings
of Vivacqua and Bisgaard (2009), Bingham et al. (2008), and Miller (1997) are
equivalent. In Section 5, we apply the optimality criterion formulated in the
next section to search for good designs and compare them with those tabulated
in Vivacqua and Bisgaard (2009).

Remark 3.1. Under a simple block structure F, for any two crossing factors F1

and F2, F1 ∧F2 is also included in F, where F1 ∧F2 is the coarsest factor that is
nested in both F1 and F2. This was also done in Paniagua-Quiñones and Box’s
(2008, 2009) model for three processing-stage experiments. Discussions in this
section still apply with simple modifications.

4. Optimality Criterion

For regular designs with unstructured units, Cheng, Steinberg, and Sun
(1999) showed that minimum aberration is a good surrogate for the model-
robustness criterion of maximizing the number of estimable models containing
all the main effects and a given number of two-factor interactions. In the mul-
tistratum situation, different estimable models may be estimated with different
efficiencies. In the spirit of Sun (1993) and Tsai, Gilmour, and Mead (2000),
we use the average efficiency over a set of candidate models to measure the per-
formance of a multistratum design, as Cheng and Tsai (2009) did for block and
split-plot designs. We take the candidate models to be those which contain all
the main effects and k two-factor interactions. If the main effect of a factor must
be estimated in a designated stratum (for example, in a split-plot experiment, the
main effect of a whole-plot factor must be estimated in the whole-plot stratum),
then the efficiency of its estimator is fixed. When a main effect is not required
to be estimated in a specific stratum, due to the hierarchical principle, we pre-
fer that it be estimated in the bottom stratum to attain the smallest possible
variance; then the efficiency of its estimator is also fixed. Thus it is enough to
consider the efficiencies of the estimators of two-factor interactions, measured by
D1/k, where D is the determinant of the information matrix for the two-factor
interactions. We normalize the interaction contrasts so that their estimators are
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of the form cT y with cT c =1. For a given design d we define the information
capacity Ik(d) as the average of D1/k over the candidate models. The objective
is to find a design with large Ik(d).

For simplicity only two-level designs are considered here. Extension to the
case where the number of levels is a prime number or power of a prime number
is straightforward. Suppose N = 2n−p, where n is the number of treatment
factors. Then there are a total of 2n−p − 1 alias sets, 2n−p − 1 − n of which
do not contain main effects. Suppose the effects in hF of these alias sets are
estimated in stratum WF . For each 1 ≤ i ≤ hF , let mF

i be the number of two-
factor interactions contained in the ith of these alias sets. Then an argument
similar to that in Cheng and Tsai (2009) shows that Ik(d) is a Schur concave
function of the vector whose components consist of {ξ−1/k

F mF
i : 1 ≤ i ≤ hF ,

F ∈ F, F 6= U }. Since Ik(d) is increasing in each of these components, a good
surrogate for maximizing Ik(d) is to

maximize
∑

F∈F,F6=U

ξ
−1/k
F

hF∑
i=1

mF
i , (4.1)

and

minimize
∑

F∈F,F6=U

ξ
− 2

k
F

hF∑
i=1

[mF
i ]2among those which maximize

∑
F∈F,F6=U

ξ
−1/k
F

hF∑
i=1

mF
i .

(4.2)
We use the two-stage criterion (4.1) and (4.2) in lieu of the maximization

of Ik(d). The study carried out in Cheng and Tsai (2009) for blocked fractional
factorial designs showed that the rankings given by the information capacity
criterion and its surrogate such as (4.1) and (4.2) are quite consistent.

The following theorem provides a useful sufficient condition for a design to
be optimal with respect to (4.1) and (4.2) for all possible stratum variances.

Theorem 4.1. A sufficient condition for a design d to be optimal with respect
to (4.1) and (4.2) for all k and all {ξF}F∈F,F6=U satisfying (2.10) is that for all
subsets G of F\{U} such that

F ∈ G and F ′ ≺ F ⇒ F ′ ∈ G,

(i) d maximizes
∑

F∈G

∑hF
i=1 mF

i , and

(ii) d minimizes
∑

F∈G

∑hF
i=1[m

F
i ]2 among those which maximize

∑
F∈G

∑hF
i=1 mF

i .
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Theorem 4.1 can be used to verify the strong optimality with respect to all
possible values of the stratum variances. It can also be used to eliminate inferior
designs. We say that d1 dominates another design d2 if d1 is at least as good as
d2 with respect to (4.1) and (4.2) for all possible stratum variances, and is better
than d2 for some stratum variances. A design that is dominated by another design
is said to be inadmissible. If d1 is better than d2 with respect to (i) and (ii) in
Theorem 4.1, then d1 dominates d2, and d2 can be ruled out from consideration.
This provides a way of eliminating inadmissible designs without having to know
the stratum variances. Then the admissible designs can be compared by using
available knowledge about stratum variances or other relevant information. In
the next section we illustrate applications of this tool by using it to study optimal
designs for experiments with two processing stages in the settings of Vivacqua
and Bisgaard (2009), Bingham et al. (2008), and Miller (1997). The proof of
Theorem 4.1 is presented in the appendix.

We say that two designs are equivalent if they have the same mF
i values for

each F ∈ F, F 6= U . Equivalent designs have the same performance under the
information capacity criterion with respect to all possible stratum variances.

5. Optimal Designs for Experiments with Two Processing Stages

Denote the five unit factors in a blocked strip-plot experiment with block
structure b/(r ∗ c) by U ,R′, C′,B, and E . Then by (2.9), there are four strata
other than the mean stratum:

WB = VB ª VU , WR′ = VR′ ª VB, WC′ = VC′ ª VB, WE = (VR′ + VC′)⊥,

with variances

ξB = rcσ2
B + cσ2

R′ + rσ2
C′ + σ2

E , ξR′ = cσ2
R′ + σ2

E , ξC′ = rσ2
C′ + σ2

E , ξE = σ2
E .

The main effects of the first-stage (row) treatment factors are estimated in
the row stratum WR′ and those of the second-stage (column) factors are esti-
mated in the column stratum WC′ . To apply Theorem 4.1, we need to verify
conditions (i) and (ii) in the theorem for G = {B,R′, C′, E}, {R′, C′, E}, {R′, E},
{C′, E} and {E}. Maximizing

∑hB
i=1 mB

i +
∑hR′

i=1 mR′
i +

∑hC′
i=1 mC′

i +
∑hE

i=1 mE
i

is the same as maximizing the number of two-factor interactions that are not
aliased with main effects; following this by minimizing

∑hB
i=1[m

B
i ]2+

∑hR′
i=1 [mR′

i ]2+∑hC′
i=1[m

C′
i ]2+

∑hE
i=1[m

E
i ]2 assures that these two-factor interactions are distributed

over the alias sets as uniformly as possible. These two steps are expected to pro-
duce a good overall design (for unstructured units); see Cheng, Steinberg, and
Sun (1999). Doing the same thing for G = {R′, C′, E} produces a design that
maximizes the number of two-factor interactions that are neither aliased with
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main effects nor confounded with blocks, and these interactions are also dis-
tributed over the alias sets as uniformly as possible. This is expected to produce
a good blocked design. Similarly, maximizing

∑hR′
i=1 mR′

i +
∑hE

i=1 mE
i (respectively,∑hC′

i=1 mC′
i +

∑hE
i=1 mE

i ) is the same as maximizing the number of two-factor inter-
actions that are not aliased with main effects and are confounded with neither
blocks nor columns (respectively, rows). Following with the minimization of sum
of squares of the mi values produces a good blocked column (respectively, row)
designs. Applying the procedure to {E} assures a good design in the bottom
stratum. This has a similar flavor to the Trinca and Gilmour (2001) stratum-to-
stratum construction.

As discussed in Section 3, the procedure described in the previous paragraph
also produces good designs under our criterion for the problems considered in
Bingham et al. (2008) and Vivacqua and Bisgaard (2009), with F1, F2, and the
added pseudo factors corresponding to R′, C′, and B, respectively, provided that
we impose the requirement that main effects of all the treatment factors are not
confounded with pseudo blocks. In the rest of the paper, we compare our findings
with the designs tabulated in Vivacqua and Bisgaard (2009).

Following the notation in Vivacqua and Bisgaard (2009), we use (k, q, p, r,
f) to label the case with a 2k−p row design at the first stage, a 2q−r column design
at the second stage, and a 1/2f -fraction of their product to be observed. The
corresponding blocked strip-plot design has b = 2f , r′ = 2k−p−f and c′ = 2q−r−f .

For example, for k = 2, q = 7, p = 0, r = 3, and f = 1, the first-stage
design is a 22 complete factorial, the second-stage design is a 27−3 factorial, and
the corresponding blocked strip-plot design has 2 rows and 8 columns nested in
each of two blocks. In this case, WB, WR′ , WC′ , and WE have 1, 2, 14, and 14
degrees of freedom, respectively. Let the first-stage treatment factors be A and
B, and the second-stage factors be N , O, P , Q, R, S, and T . For the design
in Table 8 of Vivacqua and Bisgaard (2009), the second-stage design is defined
by R = NOP , S = OPQ, and T = NPQ, and the post-fraction generator is
AB = NOPQ. Let this design be d1. Consider a design d2 with the second-stage
design also defined by R = NOP , S = OPQ, T = NPQ, but with a different
post-fraction generator AB = NOQ. Then the following are the mi values of the
two designs in the four strata WB, WR′ , WC′ and WE :

d1 d2

WB 4 1
WR′

WC′ 3 3 3 3 3 3 0 3 3 3 3 3 3 3
WE 2 2 2 2 2 2 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Note that for both designs there is no entry in the row stratum since the
two-factor interaction AB is confounded with the pseudo blocks. The values of∑hB

i=1 mB
i +

∑hR′
i=1 mR′

i +
∑hC′

i=1 mC′
i +

∑hE
i=1 mE

i ,
∑hR′

i=1 mR′
i +

∑hC′
i=1 mC′

i +
∑hE

i=1 mE
i ,∑hR′

i=1 mR′
i +

∑hE
i=1 mE

i ,
∑hC′

i=1 mC′
i +

∑hE
i=1 mE

i , and
∑hE

i=1 mE
i are 36, 32, 14, 32

and 14, respectively for d1 and 36, 35, 14, 35, 14, respectively, for d2. We see
that d2 beats d1 for

∑hR′
i=1 mR′

i +
∑hC′

i=1 mC′
i +

∑hE
i=1 mE

i and
∑hC′

i=1 mC′
i +

∑hE
i=1 mE

i ,
and the two designs are tied for the other three sums. For these three sums, the
corresponding sums of squares of the mi’s are 96, 26, 26, respectively, for d1 and
78, 14, 14, respectively, for d2. In all three cases, d2 beats d1. Therefore d2 is a
better design and d1 is inadmissible.

Both designs are of resolution IV. The mi values show that both of them
have 14 two-factor interactions estimated in the bottom stratum, but unlike d1,
under d2 these 14 two-factor interactions are distributed uniformly over the 14
alias sets. Among the other 22 two-factor interactions, four are confounded with
the pseudo blocks under d1, whereas there is only one such two-factor interaction
under d2. In view of (2.10), d2 is clearly a better design. We also point out that
there are 15 clear two-factor interactions under d2, and there are only two under
d1. Our criterion successfully identifies d2 as a better design. In fact, d2 is the
unique admissible design (up to equivalence), and therefore is optimal for k = 2,
q = 7, p = 0, r = 3 and f = 1.

Miller (1997) constructed a blocked strip-plot design with 6 first-stage and
4 second-stage treatment factors for the block structure 2/(4× 4). It is the same
as a design with (k, q, p, r, f) = (6, 4, 3, 1, 1) in Vivacqua and Bisgaard (2009)’s
setting. If we switch rows and columns, then it is the design with (k, q, p, r,
f) = (4, 6, 1, 3, 1) in Table 8 of Vivacqua and Bisgaard (2009). Let the treatment
factors for the row design be A, B, C, D, and the factors for the column design
be N , O, P , Q, R, S, respectively. Call this design d3, which is defined by
D = ABC, Q = NO, R = NP , and S = NOP , with the post-fraction generator
AB = OP . In this case, we found that d3 is one of two admissible designs (up to
equivalence). The other admissible design, denoted by d4, is defined by D = AC,
Q = NO, R = NP , and S = NOP , with the post-fraction generator AB = OP .
Neither design dominates the other in all situations.

The following are the mi values for d3 and d4:

d3 d4

WB 5 4
WR′ 2 2 1 1
WC′

WE 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
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Note that for both designs there is no entry in the column stratum since

each two-factor interaction in the column stratum is aliased with a main effect.

Design d3 has more (33) two-factor interactions that are not aliased with main

effects than d4 (30). The two designs have the same number (24) of two-factor

interactions estimated in the bottom stratum, but the aliasing of these interac-

tions is less severe under d4. Thus d3 is a better overall design for unstructured

units, as well as when ξE is not too small compared with ξR′ . We expect d4 to

be better if ξE is substantially smaller than ξR′ . We also point out that there are

14 clear two-factor interactions under d4 while there are none under d3.

Among the 43 cases of 32-run designs in Table 8 of Vivacqua and Bisgaard

(2009), 17 have some main effects confounded with pseudo blocks. In five of these

cases, we found the following designs that do not confound main effects with

pseudo blocks, and are unique admissible (optimal) designs up to equivalence.

k q p r f fractional factorial generators post-fraction generators

3 4 0 0 2 AB=NO, AC=NPQ
3 5 0 2 1 Q=NOP, R=NP ABC=NO
4 4 0 0 3 AB=NO, AC=NP, AD=OQ
4 5 0 1 3 R=OPQ AB=NO, AC=NP, AD=OQ
5 5 1 1 3 E=ABC,R=NOQ AB=NO, AC=NP, AD=NQ

There is one case, (k, q, p, r, f) = (3, 4, 1, 0, 1), where the design in the

table has a 24−1 column design instead of a 24 complete factorial as suggested by

the parameter values. In this case one cannot avoid confounding a main effect

with pseudo blocks without fractionating the column design. Among the other

25 cases, with equivalent designs considered as the same, there is only one case

with four admissible designs and one case with three admissible designs; all the

others have at most two admissible designs, in twelve of which the designs in the

table are the unique admissible designs. In addition to the case k = 2, q = 7,

p = 0, r = 3 and f = 1 discussed earlier, we found four other cases where the

designs in the table are inadmissible: (k, q, p, r, f) = (2, 5, 0, 1, 1), (3, 5, 0, 1 ,2),

(4, 6, 0, 2, 3), (5, 6, 1, 2, 3). In each of these cases, there is a unique admissible

(optimal) design up to equivalence. The following are the defining relations and

post-fraction generators for the optimal designs we found for (k, q, p, r, f) = (2,

5, 0, 1, 1), (3, 5, 0, 1 ,2), (2, 7, 0, 3, 1), (4, 6, 0, 2,3), (5, 6, 1, 2, 3):
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k q p r f fractional factorial generators post-fraction generators

2 5 0 1 1 R=OPQ AB=NOP
3 5 0 1 2 R=NOP AB=NO,AC=NPQ
2 7 0 3 1 R=NOP,S=OPQ,T=NPQ AB=NOQ
4 6 0 2 3 R=OPQ,S=NPQ, AB=NO,AC=NP,AD=OQ
5 6 1 2 3 E=ACD,R=NOQ,S=NPQ AB=NQ,AC=NO,AD=NP

Butler (2004) constructed some designs for two, three, and four process-
ing stages. All the 21 designs for two processing stages in his Table 1 are
admissible. Except for one 32-run case and two 64-run cases, the designs he
constructed are optimal. There are three admissible designs (up to equiva-
lence) for (b, r, c, nR, nC) = (2, 4, 4, 4, 4), and two admissible designs each for
(b, r, c, nR, nC) = (2, 8, 4, 5, 2) and (2, 8, 4, 5, 3), where nR is the number of row
(first-stage) treatment factors, and nC is the number of column (second-stage)
treatment factors. Note that in Butler (2004)’s notations, m1 = nR, m2 = nC ,
n1 = br, and n2 = bc.

6. Concluding Remarks

We have shown how the theory of randomized experiments with orthogo-
nal block structures developed by Nelder, Speed, Bailey, and Tjur can be used
to study design of experiments with multiple processing stages. In particular,
it provides a clear understanding of the issue of extra error strata arising from
pseudo unit factors. We also propose an optimality criterion for selecting mul-
tistratum fractional factorial designs. Using our criterion, which takes stratum
variances into account, we are able to find better designs than those available in
the literatures in some cases, and verify the optimality of the available designs
or identify additional admissible designs as possible alternatives in the others.
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Appendix

Proof of Theorem 4.1. We prove the more general result that for any subset
F′ of F\{U}, if for all subsets G of F′ such that

F ∈ G,F ′ ∈ F′ and F ′ ≺ F ⇒ F ′ ∈ G, (A.1)

d maximizes
∑
F∈G

hF∑
i=1

mF
i , (A.2)

d minimizes
∑
F∈G

hF∑
i=1

[mF
i ]2 among those which maximize

∑
F∈G

hF∑
i=1

mF
i , (A.3)

then

d maximizes
∑
F∈F′

uF

hF∑
i=1

mF
i , (A.4)

and

d minimizes
∑
F∈F′

vF

hF∑
i=1

[mF
i ]2 among those maximizing

∑
F∈F′

uF

hF∑
i=1

mF
i ,

(A.5)
for all {uF}F∈F′ and {vF}F∈F′ satisfying

uF > 0, vF > 0, (A.6)

F ′ ¹ F ⇒ uF ≤ uF ′ , (A.7)

uF < uF ′ ⇔ vF < vF ′ . (A.8)

Theorem 4.1 then follows by choosing F′ = F\{U}, uF = ξ
−1/k
F , and vF = ξ

−2/k
F .

We prove this assertion by induction on the number of factors in F′. The
claim is obviously true if F′ consists of one single factor. Under the hypothesis
that it holds whenever F′ has fewer than s factors, s ≥ 2, we prove that it is true
if F′ contains s factors.

Suppose (A.2) and (A.3) hold for all the subsets G of F′ that satisfy (A.1).
Given {uF}F∈F′ and {vF}F∈F′ for which (A.6), (A.7), and (A.8) hold, we need
to show (A.4) and (A.5). Let F0 have the smallest uF among all the F ’s in
F′. Then by (A.8), it also has the smallest vF . Let u0 = uF0 , v0 = vF0 , and
F∗ = {F ∈ F′ : uF > u0}.

If F∗ is empty, then all the F ’s in F′ have the same uF and vF . In this case
(A.4) and (A.5) are obtained by applying (A.2) and (A.3) to G = F′.

On the other hand, if F∗ is nonempty, then it contains fewer than s factors.
For each F ∈ F∗, let u∗

F = uF − u0 and v∗F = vF − v0. Then (A.6), (A.7), and
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(A.8) hold for {u∗
F}F∈F∗ and {v∗F}F∈F∗ . Furthermore,

∑
F∈F′

uF

hF∑
i=1

mF
i =

∑
F∈F∗

u∗
F

hF∑
i=1

mF
i +

∑
F∈F′

u0

hF∑
i=1

mF
i , (A.9)

∑
F∈F′

vF

hF∑
i=1

[mF
i ]2 =

∑
F∈F∗

v∗F

hF∑
i=1

[mF
i ]2 +

∑
F∈F′

v0

hF∑
i=1

[mF
i ]2. (A.10)

We claim that for all subsets G of F∗, the following condition implies (A.1):

F ∈ G,F ′ ∈ F∗ and F ′ ≺ F ⇒ F ′ ∈ G. (A.11)

If this claim is true, then by assumption, (A.2) and (A.3) hold for all sub-
sets G of F∗ that satisfy (A.11). Since F∗ contains fewer than s factors by the
induction hypothesis,

d maximizes
∑
F∈F∗

u∗
F

hF∑
i=1

mF
i , (A.12)

and

d minimizes
∑
F∈F∗

v∗F

hF∑
i=1

[mF
i ]2 among those maximizing

∑
F∈F∗

u∗
F

hF∑
i=1

mF
i .

(A.13)
Also, by taking G = F′ in (A.1), (A.2), and (A.3), we have

d maximizes
∑
F∈F′

hF∑
i=1

mF
i , (A.14)

and

d minimizes
∑
F∈F′

hF∑
i=1

[mF
i ]2 among those maximizing

∑
F∈F′

hF∑
i=1

mF
i . (A.15)

By (A.9), (A.12) and (A.14), d maximizes
∑

F∈F′ uF
∑hF

i=1 mF
i . If another

design d′ also maximizes
∑

F∈F′ uF
∑hF

i=1 mF
i , then it must maximize both

∑
F∈F∗

u∗
F

∑hF
i=1 mF

i and
∑

F∈F′
∑hF

i=1 mF
i as well. Then, by (A.13) and (A.15), its∑

F∈F∗ v∗F
∑hF

i=1[m
F
i ]2 and

∑
F∈F′ v0

∑hF
i=1[m

F
i ]2 values cannot be smaller than

those of d. By (A.10), this implies that the value of
∑

F∈F′ vF
∑hF

i=1[m
F
i ]2 for d

is at least as small as that for d′.
Therefore it remains to show that for all subsets G of F∗, (A.11) implies

(A.1). Suppose (A.11) holds. Given F ∈ G, F ′ ∈ F′, and F ′ ≺ F , we need to
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show that F ′ ∈ G. By the definition of F∗, if F ∈ G, F ′ ∈ F′, and F ′ ≺ F ,
then uF > u0 (since F ∈ G ⊆ F∗) and uF ′ ≥ uF (since F ′ ≺ F). It follows that
uF ′ > u0, i.e., F ′ ∈ F∗. Then by (A.11), F ′ ∈ G.
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