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Abstract: Binary response experiments are common in scientific studies. However,

the study of optimal designs in this area is in a very underdeveloped stage. Sitter

and Torsney (1995a) studied optimal designs for binary response experiments with

two design variables. In this paper, we consider a general situation with multiple

design variables. A novel approach is proposed to identify optimal designs for the

commonly used multi-factor logistic and probit models. We give explicit formulas

for a large class of optimal designs, including D-, A-, and E-optimal designs. In

addition, we identify the general structure of optimal designs, which has a rela-

tively simple format. This property makes it feasible to solve seemingly intractable

problems. This result can also be applied in a multi-stage approach.

Key words and phrases: A-optimality, D-optimality, E-optimality, Loewner order-

ing, logistic model, probit model.

1. Introduction

We consider experiments with a binary response in which a subject is ad-
ministered m covariates at level XT

i = (1, xi1, . . . , xim). Here XT
i represents a

vector of m +1 design variables selected from a design space X ⊂ Rm. A typical
analysis for this situation is a multi-factor logistic or probit regression model that
can be written as

Prob(Yi = 1) = P (β0 + β1xi1 + · · · + βmxim). (1.1)

Here, Yi is the response of subject i with covariates level Xi, β = (β0, . . . , βm) are
unknown parameters with βj 6= 0 for j > 0, and P (x) is a cumulative distribution
function (cdf). The two most commonly used P (x)’s are ex/(1 + ex) for the
logistic model and Φ(x), the cdf of the standard normal distribution, for the
probit model. Such models have been studied extensively for data analysis (see
for example, Agresti (2002)), but little is known about design selection. With a
careful choice of design, statistical inferences can be greatly improved. From a
cost-benefit perspective, an efficient design can reduce the sample size needed for
achieving a specified precision, or improve the precision for a given sample size.
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A complication in studying optimal designs when using a nonlinear model
is that, unlike the case of a linear model, the information matrices and optimal
designs depend on the unknown parameters. Thus the challenge in designing
an experiment for such a model is that one is looking for the best design with
the aim of estimating the unknown parameters, and yet one has to know the
parameters to find the best design. One way to solve this problem is to use a
locally optimal design based on the best guess of the parameters. Other ways
are available to address this issue, for example, by using a Bayesian approach
(Agin and Chaloner (1999)). While a good guess may not always be available,
the locally optimal design approach remains of value. As pointed out in Ford,
Torsney, and Wu (1992), locally optimal designs are important if good initial
parameter estimates are available from previous experiments. They can also be
a benchmark for designs chosen to satisfy experimental constraints. Most of the
currently available results pertain to locally optimal designs. Hereafter, the word
“locally” is omitted for simplicity.

Many optimality results for GLMs focus on models with one covariate. Ford,
Torsney, and Wu (1992) studied c-optimal and D-optimal designs; Sitter and
Wu (1993a,b) studied A- and F -optimal designs; Dette and Haines (1994); in-
vestigated E-optimal designs. Mathew and Sinha (2001) obtained a series of
optimality results for the logistic model by using an algebraic approach, whereas
Biedermann, Dette, and Zhu (2006) recently obtained Φp-optimal designs for a
restricted design space using a geometric approach.

These contributions are important. However, frequently in practice the re-
sponse is affected by more than one covariate and thus multiple-covariate GLMs
are commonly used (Agresti (2002)). Most of the efforts in optimizing designs
in this setting rely on limited computational tools. Methodological research on
optimal designs is still lacking, and theoretical guidance remains at a very under-
developed stage. Computational results are mainly achieved by search methods.
Notable works include Woods et al. (2006) and Dror and Steinberg (2006) for
studying robust designs, as well as Dror and Steinberg (2008) for studying se-
quential designs. These all used D-optimality and provided algorithms. For
example, Dror and Steinberg (2006) provided computer programs for deriving
D-optimal designs for general models. We are aware of only three papers that
provide explicit formulas in the setting of generalized linear models. Russell et
al. (2009) obtained an explicit formula for D-optimal designs under a Poisson
regression model, which has the same format of linear predictors as those in
Model (1.1). Sitter and Torsney (1995a) applied the geometric approaches of
Silvey and Titterington (1973) and of Elfving (1952), respectively, to study D-
and c-optimal designs when there are two covariates in Model (1.1). Sitter and
Torsney (1995b) extended the results to D-optimal designs when m > 2 in Model
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(1.1). Under a slightly different set-up, Haines et al. (2007) studied D- optimal
designs for logistic regression in two variables. Although the geometric approach
is a powerful tool for studying nonlinear designs, it has its limitations: it works
fine when the dimension of the parameters is two; it becomes more complicated
when the dimension is three, and seems intractable when the dimension is larger
than three (Elfving (1952)). Khuri et al. (2006) surveyed design issues for GLMs
and pointed out that results on designs for generalized linear models with multi-
ple covariates requires extensive work to evaluate “optimal” or, at least, efficient
designs.

Yang and Stufken (2009) proposed an algebraic approach to nonlinear models
with two parameters. In this paper, we extend this to optimal designs for GLMs
with multiple covariates. With a focus on logistic and probit models, we identify
a dominating class of relatively simple designs, which means that for any design
ξ that does not belong to this class, there is a design in the class that has
an information matrix that dominates ξ in the Loewner ordering. Therefore,
we can focus on the subclass when we derive optimal designs. This structural
property makes identifying optimal designs for multi-factor GLMs a feasible task.
Specifically, we give explicit formulas for all or some of the parameters of a large
class of optimal designs. This structural property can also be applied in a multi-
stage approach. This is important, because, in a multi-stage approach, the first
stage may give us information about the unknown parameters, which can in turn
be used in the local optimality approach for adding additional design points in
the second stage.

This paper is organized as follows. In Section 2, we introduce the models
and the corresponding information matrices. We also identify the structure of
optimal designs for GLMs with multiple covariates. Explicit formulas are given
in Section 3 for a large class of D-, A-, and E-optimal designs. The parameters
of interest can be the full or a subset of the parameters. A closing discussion
is presented in Section 4, and the proofs of the technical results given in the
Appendix.

2. Statistical Models and Information Matrices

Under (1.1), an exact design can be presented as {(Xi, ni), i = 1, . . . , k},
where ni is the number of subjects with covariates Xi. With n denoting the
total number of subjects,

∑
i ni = n. Since finding an optimal exact design is a

difficult and often intractable optimization problem, the corresponding approxi-
mate design, in which ni/n is replaced by ωi, is considered. Thus a design can
be given as ξ = {(Xi, ωi), i = 1, . . . , k}, where ωi > 0 and

∑
i ωi = 1. For

known parameters, there is a one-to-one mapping between Xi and Ci, where
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CT
i = (1, xi1, . . . , xi,m−1, ci). Here ci = β0 +β1xi1 + · · ·+βmxim. It is convenient

to denote the design ξ as ξ = {(Ci, ωi), i = 1, . . . , k}.
By standard methods, the information matrix for β under (1.1) can be writ-

ten as

Iξ(β) = n

k∑
i=1

ωiXiΨ(ci)(Xi)T

= nA(β)

(
k∑

i=1

ωiCiΨ(ci)(Ci)T

)
AT (β), (2.1)

where Ψ(x) = [P ′(x)]2/[P (x)(1 − P (x))]. In deriving (2.1), we utilize Xi =

A(β)Ci. Here A(β) =
(

Im 0
A1(β) 1/βm

)
, where A1(β) = (−β0/βm,−β1/βm, . . .,

−βm−1/βm).
For multi-factor GLMs, m − 1 covariates must be bounded, otherwise, the

optimality criterion can be made arbitrarily large by the choice of design (Sitter
and Torsney (1995a)). Although Dorta-Guerra, Gonzalez-Davina, and Ginebra
(2008) showed that bounds are not needed, their conclusion is based on the
assumption that the covariates only take two values. Many researchers choose the
constraints as [−1, 1]m (Dror and Steinberg (2006, 2008); Woods et al. (2006)).
In this paper, we assume that the first m − 1 covariates are bounded, i.e., xij ∈
[Uj , Vj ], j = 1, . . . ,m − 1. There is no constraint on the last covariate, i.e.,
xim ∈ (−∞,∞). In this paper, we show that for an optimal design, all covariates
take two values except for one covariate (the one without constraints), which can
take 2m possible values.

Suppose that we are interested in η = F (β), a vector-valued function of β.
For any two designs ξ1 and ξ2, if Iξ1(β) ≤ Iξ2(β) (here and elsewhere, matrix
inequalities are under the Loewner ordering), then design ξ2 is at least as good
as design ξ1 for F (β) under the commonly used optimality criteria. This can be
easily verified by the following equation

Σξ(η̂) =
∂F (β)
∂βT

I−ξ (β)(
∂F (β)
∂βT

)T . (2.2)

Here, Σξ(η̂) is the variance-covariance matrix of η̂ = F (β̂), where β̂ is the MLE
of β.

Next, we will show that for any given design ξ = {(Ci, ωi), i = 1, . . . , k},
there exists a design ξ̃ with a simple form such that Iξ(θ) ≤ Iξ̃(θ). Let

al,j =

Uj d l
2m−1−j e is odd,

Vj d l
2m−1−j e is even,

l = 1, . . . , 2m−1; j = 1, . . . ,m − 1, (2.3)
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where dae is the smallest integer greater than or equal to a.

Theorem 1. For any given design ξ = {(Ci, ωi), i = 1, . . . , k}, there exists a
design ξ̃ such that Iξ(β) ≤ Iξ̃(β). Here

ξ̃ = {(C̃l1, ωl1) and (C̃l2, ωl2), l = 1, . . . , 2m−1}, (2.4)

where (C̃l1)T = (1, al,1, . . . , al,m−1, c̃l), (C̃l2)T = (1, al,1, . . . , al,m−1,−c̃l), and
c̃l > 0; al,j is either Uj or Vj, and (al,1, . . . , al,m−1), l = 1, . . . , 2m−1, are all
possible such combinations.

Proof. By (2.1) and Lemma 1 in the Appendix, we have

Iξ(β) ≤ nA(β)

 k∑
i=1

2m−1∑
l=1

ωl
iC

l
iΨ(ci)(C l

i)
T

 AT (β), (2.5)

where (C l
i)

T = (1, al,1, . . . , al,m−1, ci), and ωl
i is the associated weight. Notice

that

C l
iΨ(ci)(C l

i)
T = Bl

(
Ψ(ci) ciΨ(ci)

ciΨ(ci) c2
i Ψ(ci)

)
BT

l , (2.6)

where BT
l =

(
1 al,1 · · · al,m−1 0
0 0 · · · 0 1

)
. By (2.5) and (2.6), we have

Iξ(β) ≤ nA(β)

2m−1∑
l=1

Bl

(
k∑

i=1

ωl
i

(
Ψ(ci) ciΨ(ci)

ciΨ(ci) c2
i Ψ(ci)

))
BT

l

AT (β)

≤ nA(β)

2m−1∑
l=1

2∑
i=1

ωliC̃liΨ(c̃l)C̃T
li

AT (β)

= Iξ̃(β). (2.7)

The second inequality in (2.7) is due to Lemma 2 in the Appendix and the fact
that Ψ(c̃l) = Ψ(−c̃l).

Torsney and Gunduz (2001) derived a similar structure for D-optimal de-
signs. With Theorem 1, we can restrict our focus to a subclass to search for
optimal designs based on the information matrix. These designs have a rela-
tively simple format: except for the last covariate, all have been identified. To-
tally there are 2m−1 points to be identified when we search for a specific design.
When m is small, say m ≤ 3, we can use a computer algorithm to find them.
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However, when m is moderate to large, a computer search is out of the question
and the best solution for this situation is an explicit formula, if available.

3. Explicit Formulas for Optimal Designs

In this section, we provide closed-form solutions for a large class of optimal
designs. Instead of studying the original parameter, β, directly, we consider the
transformed parameter θ = (θ0, θ1, . . . , θm). Here θ0 = (β0 +

∑m−1
j=1 βj(Uj +

Vj)/2)/βm, θj = βj/βm, j = 1, . . . ,m − 1, and θm = βm. When the constraints
are symmetric (Uj = −Vj), for example [−1, 1]m−1, then θ0 = β0/βm. Under the
commonly used D-optimality, an optimal design is invariant to such a transfor-
mation, and many optimality results have been obtained in this way. Examples
are found in Minkin (1987), Sitter and Wu (1993a,b), Sitter and Torsney (1995a),
Mathew and Sinha (2001), and Biedermann, Dette, and Zhu (2006), to name a
few.

We consider D-, A-, and E-optimality, the three commonly used optimal-
ity criteria. A D-optimal design maximizes the determinant of the information
matrix and minimizes the joint confidence ellipsoid of the parameters. An A-
optimal design minimizes the trace of the inverse of the information matrix and
minimizes the sum of the variances of parameter estimators. An E-optimal de-
sign maximizes the smallest eigenvalue of the information matrix and protects
against the worst scenario when we estimate the parameters.

When our main concern is the covariate effects only, optimality results for θ

are no longer optimal. We need to study the corresponding information matrix
for θ1 = (θ1, . . . , θm). Since θ1 is a function of β1, . . . , βm only, we consider
optimal designs for θ and θ1 separately.

3.1 Optimal designs for θ

For a given design ξ = {(Ci, ωi), i = 1, . . . , k}, the information matrix for θ

can be written as

Iξ(θ) = n
k∑

i=1

ωiC̃iΨ(ci)(C̃i)T , (3.1)

where (C̃i)T =(θm, θm(x1−(U1+V1)/2), . . . , θm(xm−1−(Um−1+Vm−1)/2), ci/θm).

Theorem 2. Under Model (1.1) for the logistic or probit model, ξ∗ is a D-, A-,
or E-optimal design for θ if ξ∗ = {(C∗

l1, 1/2m)&(C∗
l2, 1/2m), l = 1, . . . , 2m−1},

where (C∗
l1)

T = (1, al,1, . . . , al,m−1, c
∗) and (C∗

l2)
T = (1, al,1, . . . , al,m−1,−c∗), al,j
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is defined at (2.3), and c∗ minimizes f(c), with

f(c) =



c−2(Ψ(c))−m−1, D-optimality;

β2
m(c2Ψ(c))−1 + 1

β2
m

(
1 +

∑m−1
j=1

4
(Vj−Uj)2

)
(Ψ(c))−1, A-optimality;

max{
(
β2

mΨ(c)
)−1

,
(

1
4β2

m(V1 − U1)2Ψ(c)
)−1

, . . . ,(
1
4β2

m(Vm−1 − Um−1)2Ψ(c)
)−1

,
(

1
β2

m
c2Ψ(c)

)−1
}, E-optimality.

(3.2)

Proof. The proofs for D-, A-, and E-optimal designs are completely analogous,
so we prove only the result for D-optimality. First, we can limit our considera-
tions to a design such that its information matrix is positive definite, otherwise θ

is not estimable. By Theorem 1 and (2.2), for any such design ξ, there exists a de-
sign ξ̃ defined in (2.4) with Iξ(θ) ≤ Iξ̃(θ). Thus we have Det(Iξ(θ)) ≤ Det(Iξ̃(θ)).
By (3.1) and (2.4), the (i, j)’th (i ≤ j) element of Iξ̃(θ) is



θ2
m

2m−1∑
l=1

(ωl1+ωl2)Ψ(c̃l), i=j =1;

1
4θ2

m(Vj−1−Uj−1)2
2m−1∑
l=1

(ωl1+ωl2)Ψ(c̃l), i=j, j =2, . . . ,m;

1
θ2
m

2m−1∑
l=1

(ωl1+ωl2)c̃2
l Ψ(c̃l), i=j =m+1;

θ2
m

2m−1∑
l=1

(ωl1+ωl2)(al,j−1−
Uj−1+Vj−1

2 )Ψ(c̃l), i=1, j =2, . . . ,m;

2m−1∑
l=1

(ωl1−ωl2)c̃lΨ(c̃l), i=1, j =m+1;

θ2
m

2m−1∑
l=1

(ωl1+ωl2)(al,i−1− Ui−1+Vi−1

2 )(al,j−1−
Uj−1+Vj−1

2 )Ψ(c̃l), i 6=j, i, j =2, . . . ,m;

2m−1∑
l=1

(ωl1−ωl2)(al,j−1−
Uj−1+Vj−1

2 )c̃lΨ(c̃l), i=m+1, j =2, . . . ,m.

(3.3)
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By (A.4) of Lemma 3 in the Appendix,

Det(Iξ̃(θ)) ≤

θ2
m

2m−1∑
l=1

(ωl1 + ωl2)Ψ(c̃l)

  1
θ2
m

2m−1∑
l=1

(ωl1 + ωl2)c̃2
l Ψ(c̃l)


m−1∏
j=1

1
4
θ2
m(Vj − Uj)2

2m−1∑
l=1

(ωl1 + ωl2)Ψ(c̃l)


=

2m−1∑
l=1

(ωl1 + ωl2)Ψ(c̃l)

m 2m−1∑
l=1

(ωl1 + ωl2)c̃2
l Ψ(c̃l)


m−1∏
j=1

(
1
4
θ2
m(Vj − Uj)2

)
, (3.4)

with equality when all the off-diagonal components of Iξ̃(θ) are zeros. By (A.8)
of Lemma 4, there exists a point c̃, such that

2m−1∑
l=1

(ωl1 + ωl2)Ψ(c̃l) = Ψ(c̃),

2m−1∑
l=1

(ωl1 + ωl2)c̃2
l Ψ(c̃l) ≤ c̃2Ψ(c̃).

(3.5)

By (3.4) and (3.5), we further have

Det(Iξ̃(θ)) ≤ Ψ(c̃)m
(
c̃2Ψ(c̃)

) m−1∏
j=1

(
1
4
θ2
m(Vj − Uj)2

)

≤ Ψ(c∗)m
(
(c∗)2Ψ(c∗)

) m−1∏
j=1

(
1
4
θ2
m(Vj − Uj)2

)
, (3.6)

the last inequality being due to the fact that c∗ minimizes f(c). This is equiv-
alent to maximizing c2(Ψ(c))m+1. On the other hand, applying (3.3), we can
directly check that Iξ∗(θ) is a diagonal matrix, which has the (i, i)’th diagonal
element θ2

mΨ(c∗) when i = 1, (1/4)θ2
m(Vj−1 − Uj−1)2Ψ(c∗) when i = 2, . . . ,m,

and (1/θ2
m)(c∗)2Ψ(c∗) when i = m + 1. Thus we have

Det(Iξ∗(θ)) = Ψ(c∗)m
(
(c∗)2Ψ(c∗)

) m−1∏
j=1

(
1
4
θ2
m(Vj − Uj)2

)
. (3.7)

Our conclusion follows from (3.7) and (3.6).
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Table 1. c∗ for logistic and probit models with D-optimality.

m 2 3 4 5 6 7 8
Logistic 1.2229 1.0436 0.9254 0.8399 0.7744 0.7222 0.6793
Probit 0.9376 0.8159 0.7320 0.6696 0.6209 0.5815 0.5487

From the proof of Theorem 2, it is clear that similar conclusions hold for
Φp-optimality. Theorem 2 provides explicit forms for optimal designs under com-
monly used optimality criteria. The only thing we need to do is to determine the
value of c∗ under different optimality criteria. Optimal designs have 2m support
points with the same weights; the 2m support points have m dimensions, the ith
element (i ≤ m − 1) is either the lower bound Ui or the upper bound Vi, the
m’th element is either c∗ or −c∗. Notice that a transformation is necessary if we
transform the design point Ci to the original design point Xi (see Section 2).

One advantage of D-optimality is that the D-optimal design is invariant
under one-to-one parameter transformations. Since θ is such a transformation
of β, the D-optimal design we obtained here is also D-optimal for the original
parameter β.

Corollary 1. Under Model (1.1), for the logistic or probit link function, ξ∗ is
a D-optimal design for parameter β. Here, ξ∗ = {(C∗

l1, 1/2m)&(C∗
l2, 1/2m), l =

1, . . . , 2m−1}, where (C∗
l1)

T = (1, al,1, . . . , al,m−1, c
∗) and (C∗

l2)
T = (1, al,1, . . .,

al,m−1,−c∗), al,j is defined in (2.3), and c∗ maximizes c2(Ψ(c))m+1.

Under D-optimality, the value of c∗ only depends on the value of m, the number
of covariates. Although it is easy to compute the value of c∗, for convenience we
table some of its values.

Sitter and Torsney (1995a,b) also derived D-optimal designs for θ under
Model (1.1). Corollary 1 is consistent with the Sitter and Torsney (1995a) D-
optimality results for logistic and probit models under (1.1) when m = 2, and
with the Sitter and Torsney (1995b) D-optimality results (Table 2) for logistic
models under (1.1) when m = 8. Dror and Steinberg (2006) provide an algorithm
and the corresponding program to derive D-optimality designs. The program can
identify an exact D-optimal design when m is moderate, say less than 5. However,
when m gets larger, the result is not optimal, but remains highly efficient.

Under A- or E- optimality, optimal designs depend on the values of βm and
on the restricted regions [Ui, Vi]. Given these values, we can derive the value of
c∗ by minimizing f(c) in (3.2) . Here is an example to illustrate the application,
with m = 3 and [Ui, Vi] = [−1, 1], i = 1, 2.

For an A-optimal design, we need to find the value of c∗ that minimizes
β2

3(c2Φ(c))−1 + 3Φ−1(c)/β2
3 . Assume β3 = 1. By routine algebra, we find c∗ =

1.0238 for the logistic link function and 0.8874 for the probit link function, but
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when β3 = 6, c∗ = 2.3778 for the logistic link function and 1.5709 for the probit
link function, respectively.

For E-optimal designs, we need to find the value of c∗ that minimizes
Max{(β2

3Φ(c))−1, β2
3(c2Φ(c))−1}. Interestingly, c∗ takes two values only. For the

logistic model, c∗ = β2
3 when β3 ≤ 1.549, and is 2.3994 otherwise. For the probit

model, c∗ = β2
3 when β3 ≤ 1.255, and is 1.575 otherwise.

3.2 Optimal designs for θ1

We first need Iξ(θ1), the information matrix for θ1. Rewrite Iξ(θ) in (3.1)

as
(

I11 I12

I ′12 I22

)
, where I11 is a scalar, I12 is 1 × m vector, I22 is m × m matrix, so

Iξ(θ1) = I22 − I ′12I
−
11I12. Clearly, Iξ(θ1) ≤ I22 with equality when I ′12I

−
11I12 = 0.

A special case of the latter occurs if Iξ(θ) is a diagonal matrix. Applying the
same argument to I22 as that used on Iξ(θ) in Theorem 2, we have the following.

Theorem 3. Under Model (1.1), for the logistic or probit model, ξ∗ is a D-,
A-, or E-optimal design for parameter θ1 if ξ∗ = {(C∗

l1, 1/2m)&(C∗
l2, 1/2m), l =

1, . . . , 2m−1}, where (C∗
l1)

T = (1, al,1, . . . , al,m−1, c
∗) and (C∗

l2)
T = (1, al,1, . . .,

al,m−1,−c∗), al,j is defined in (2.3), and c∗ minimizes f1(c) with

f1(c) =



c−2(Ψ(c))−m, D-optimality;

β2
m(c2Ψ(c))−1 + 1

β2
m

(∑m−1
j=1

4
(Vj−Uj)2

)
(Ψ(c))−1, A-optimality;

max{
(

1
4β2

m(V1 − U1)2Ψ(c)
)−1

, . . . ,(
1
4β2

m(Vm−1 − Um−1)2Ψ(c)
)−1

,
(

1
β2

m
c2Ψ(c)

)−1
}, E-optimality.

(3.8)

Using the same reasoning, the conclusion in Theorem 3 can be extended to
other subsets of θ with suitable f1(c). Since θ1 is a one-to-one transformation of
(β1, . . . , βm), the invariance of the D-optimality criterion yields the following.

Corollary 2. Under Model (1.1), for the logistic and probit link functions,
ξ∗ is a D-optimal design for parameter (β1, . . . , βm). Here, ξ∗ = {(C∗

l1, 1/2m)
and (C∗

l2, 1/2m), l = 1, . . . , 2m−1}, where (C∗
l1)

T = (1, al,1, . . . , al,m−1, c
∗) and

(C∗
l2)

T = (1, al,1, . . . , al,m−1,−c∗), al,j is defined in (2.3), and c∗ maximizes
c2(Ψ(c))m.

Titterington (1978) proved Corollary 2 for linear regression models. This
result was extended by Martin-Martin, Torsney, and Lopez-Fidalgo (2007) with
respect to marginally and conditionally restricted designs.
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Notice that c∗ in Corollary 1 maximizes c2(Ψ(c))m+1, thus the value of c∗ in
Corollary 2 is the same as the value of c∗ in Corollary 1 for m− 1. For example,
when m = 3, c∗ is the same as the c∗ in Corollary 1 when m = 2, as given in
Table 1. When m = 2, c∗ is 1.5434 and 1.1381 for the logistic and probit link
functions, respectively.

Corollary 2 gives D-optimal designs for (β1, . . . , βm) excluding the intercept
parameter β0. This is particularly useful in some practical situations where the
main interest is in the coefficients of covariates; it applies as well to the situation
where the main interest is in estimating some of the coefficients, excluding the
constant term.

For A- and E-optimal designs, the value of c∗ depends on the parameters
and the restricted regions. Given these values, it is straightforward to compute
c∗. Notice that the information matrices of the optimal designs in Theorem 3
are diagonal. Thus all estimators are uncorrelated and the optimal designs are
orthogonal.

3.3. Optimal designs based on a subset of 2m points

Although Theorems 2 and 3 give explicit formulas for optimal designs for θ

and θ1, the number of support points grows quickly as m increases. For example
when m is 8, one needs 256 support points. Sitter and Torsney (1995b), however,
note that a D-optimal design can be based on a subset of 2m design points. Their
idea utilizes a nice property of Hadamard matrices and they provide a D-optimal
design based on 16 points for m = 8.

Applying this idea, the optimal designs given in Theorems 2 and 3 can also
be based on less than 2m points. The procedure can be described as follows: (i)
generate a k × (m + 1) (k ≥ m + 1) matrix by selecting any m + 1 columns of
a k × k Hadamard matrix including the column with all 1’s; (ii) (a) leave the
column of all 1’s unchanged; (b) in each of the m − 1 columns that corresponds
to one covariate xi,j , re-label the upper bound Vj as 1 and the lower bound Uj

as -1; (c) in the remaining column that corresponds to the induced covariate
ci, re-label “1” as c∗ and “-1” as −c∗. Then the derived design can be based
on k support points, each row of the resulting matrix being a support point
(1, xi1, . . . , xi,m−1, ci) with weight 1/k. It can be verified that the derived design
has the same information matrix as the design ξ∗ given in Theorems 2 and 3 and
thus is optimal. A k × k Hadamard matrix exists as long as k = 4k1 for any
positive integer k1 less than 100. We illustrate the procedure for m = 7 by giving
a D-optimal design for θ1 under Model (1.1) with Logisitc link function. Notice
that each point has weight 1/8.
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design point i 1 xi,1 xi,2 xi,3 xi,4 xi,5 xi,6 ci

1 1 V1 V2 V3 V4 V5 V6 0.7744
2 1 V1 V2 U3 U4 U5 V6 -0.7744
3 1 V1 U2 V3 U4 U5 U6 0.7744
4 1 V1 U2 U3 V4 V5 U6 -0.7744
5 1 U1 V2 V3 V4 U5 U6 -0.7744
6 1 U1 V2 U3 U4 V5 U6 0.7744
7 1 U1 U2 V3 U4 V5 V6 -0.7744
8 1 U1 U2 U3 V4 U5 V6 0.7744

4. Discussion

Although multi-factor GLMs are widely applied in practice, the research on
optimal designs is very limited. This paper provides a step in the search for
optimal designs for GLMs with multiple covariates.

To our knowledge, there are few optimality results available for a subset of
parameters; we are only aware of the c-optimality result in Sitter and Torsney
(1995a). There are no optimality results available for multi-fator GLMs under
A- or E-optimality. This paper provides explicit solutions for these questions.

An interesting question concerns optimal designs when there are interactions
among the covariates under Model (1.1). Both Woods et al. (2006) and Dror and
Steinberg (2006) considered this situation but is not clear whether there exists
a general structure for this type of optimal design. Because of the interaction
terms, it seems that a strategy similar to that of Theorem 1 cannot be applied.
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Appendix

Lemma 1. For any design point (Ci, ωi), there exist weights ωl
i, l = 1, . . . , 2m−1,

such that

ωiCiΨ(ci)(Ci)T ≤
2m−1∑
l=1

ωl
iC

l
iΨ(ci)(C l

i)
T . (A.1)

Here
(
C l

i

)T = (1, al,1, . . . , al,m−1, ci) and
∑2m−1

l=1 ωl
i = ωi.
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Proof. Let rj = (Vj − xi,j)/(Vj − Uj), j = 1, . . . ,m− 1. Then it is easy to show
that

rjUj + (1 − rj)Vj = xi,j ,

rjU
2
j + (1 − rj)V 2

j ≥ x2
i,j .

(A.2)

Now we consider two points Ci,1 = (1, U1, xi,2, . . . , xi,m−1, ci)′ and Ci,2 = (1, V1,
xi,2, . . . , xi,m−1, ci)′ with corresponding weights ωi,1 = r1ωi and ωi,2 = (1 −
r1)ωi, respectively. The matrices ωi,1Ci,1Ψ(ci)(Ci,1)T + ωi,2Ci,2Ψ(ci)(Ci,2)T and
ωiCiΨ(ci)(Ci)T have the same elements except for their second diagonal elements;
the former is greater than the latter according to (A.2). Thus we have

ωi,1Ci,1Ψ(ci)(Ci,1)T + ωi,2Ci,2Ψ(ci)(Ci,2)T ≥ ωiCiΨ(ci)(Ci)T .

For the point Ci,1, using the same argument for xi,2 as used for xi,1 with Ci,
we can improve the information matrix by replacing Ci,1 with two new points
Ci,1,1 and Ci,1,2, that are the same as Ci,1 except that xi,2 is replaced by U2

and V2, respectively. Similarly we generate two new points Ci,2,1 and Ci,2,2 from
Ci,2. Then (A.1) can be established by repeating this procedure until xi,m−1 is
replaced by Um−1 or Vm−1.

Lemma 2. For any k points {(ci, ωi), i = 1, . . . , k}, k ≥ 2, there exist a point c∗

and 0 ≤ ω∗ ≤
∑k

i=1 ωi such that

k∑
i=1

ωi

(
Ψ(ci) ciΨ(ci)

ciΨ(ci) c2
i Ψ(ci)

)

≤ ω∗
(

Ψ(c∗) c∗Ψ(c∗)
Ψ(c∗) (c∗)2Ψ(c∗)

)
+(

k∑
i=1

ωi−ω∗)
(

Ψ(−c∗) −c∗Ψ(−c∗)
−c∗Ψ(−c∗) (−c∗)2Ψ(−c∗)

)
. (A.3)

Here, Ψ(x) = [P ′(x)]2/[P (x)(1−P (x))], and P (x) is the cumulative distribution
function for the logistic or the probit model.

Proof. This is an immediate consequence of Theorem 1 of Yang and Stufken
(2009).

Lemma 3.Let A be an m × m positive matrix and µi, i = 1, . . . ,m, be the
eigenvalues of A. Then

m∏
i=1

µi ≤
m∏

i=1

Aii, (A.4)

m∑
i=1

µ−p
i ≥

m∑
i=1

A−p
ii , p > 0, (A.5)

min{µ1, . . . , µm} ≤ min{A11, . . . , Amm}, (A.6)
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where, Aii, i = 1, . . . ,m, are the diagonal elements of the matrix A. If A is a
diagonal matrix, then (A.4), (A.5), and (A.6) are equalities.

Proof. There exists an orthogonal matrix P such that A=Pdiag(µ1, . . . , µm)P T

and PP T = I. Thus, Aii =
∑m

j=1 P 2
ijµj , i = 1, . . . ,m, and

∑m
j=1 P 2

ij = 1.
Immediately we have (A.6). On the other hand, for any convex function f(x),
we have

m∑
i=1

f(Aii) =
m∑

i=1

f(
m∑

j=1

P 2
ijµj) ≤

m∑
i=1

m∑
j=1

P 2
ijf(µj)

=
m∑

j=1

f(µj)

(
m∑

i=1

P 2
ij

)
=

m∑
j=1

f(µj). (A.7)

(A.4) and (A.5) follows from (A.7) by taking f(x) = − log(x) and x−p, p > 0,
respectively. It is easy to see that the three equality signs hold when A is a
diagonal matrix.

Lemma 4. For any k points {(ci, ωi), i = 1, . . . , k}, where ci ≥ 0, ωi ≥ 0, and∑k
i ωi = 1, there exists c̃ such that

k∑
i=1

ωiΨ(ci) = Ψ(c̃),

k∑
i=1

ωic
2
i Ψ(ci) ≤ c̃2Ψ(c̃),

(A.8)

where Ψ(x) = [P ′(x)]2/[P (x)(1−P (x))], and P (x) is the cumulative distribution
function for the logistic or the probit model.

Proof. Let Ψ1(x) = Ψ(x) and Ψ3(x) = x2Ψ(x), then check that Ψ1(x) and
Ψ3(x) satisfy the condition of Proposition A.2. of Yang and Stufken (2009). The
conclusion follows an application of that proposition.
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