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Abstract: We obtain an invariance principle for non-stationary vector-valued sto-

chastic processes. It is shown that, under mild conditions, the partial sums of

non-stationary processes can be approximated on a richer probability space by

sums of independent Gaussian random vectors with nearly optimal bounds. The

latter Gaussian approximation result has a wide range of applications in the study

of multiple non-stationary time series.
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1. Introduction

Let εi, i ∈ Z, be independent and identically distributed (i.i.d.) random
elements. Consider the d-dimensional random vector process

Xi = Hi(Fi) = (Xi1, . . . , Xid)T , (1.1)

where Fi = (. . . , εi−1, εi), Hi is a measurable function such that Xi is a well-
defined random vector, and T denotes matrix transpose. The primary goal of
the paper is to study approximations of partial sums Si of the Xi by Gaussian
processes. Generically speaking, such a Gaussian approximation scheme means
that, on a richer probability space, there exists a Gaussian process Ǧi and a
process Ši such that (Ši)i∈N and (Si)i∈N are identically distributed, denoted by
(Ši)i∈N

D= (Si)i∈N, and

max
1≤i≤n

|Ši − Ǧi| = O(rn). (1.2)

Here rn is the rate of the approximation and O(rn) in (1.2) can be OP(rn) or the
almost sure rate Oa.s.(rn). Results of this sort are traditionally called Hungarian
embedding and they have many applications in statistics. Roughly speaking,
with the approximation (1.2), if rn is sufficiently small, then statistics involv-
ing the partial sum process (Si)n

i=1 can be approximated by functionals of the
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Gaussian process (Ǧi)n
i=1; these are generally easier to deal with since Gaus-

sian processes have many nice properties. For a recent application, Wu and
Zhao (2007) considered nonparametric inference of trends in time series by using
Gaussian applications of type (1.2).

The problem of Gaussian approximation has a substantial history. For
i.i.d. random variables with d = 1, see Komlós, Major, and Tusnády (1975,
1976) and Csörgő and Révész (1981). For independent but not identically dis-
tributed random variables, see Shao (1995) and Sakhanenko (1984), among oth-
ers. There is an extensive literature on strong approximations under dependence;
see Philipp and Stout (1975), Berkes and Philipp (1979), Bradley (1983), Shao
(1993), Rio (1995), Lin and Lu (1996), Volný (1999), Dedecker and Prieur (2004),
and Wu (2007). A challenging problem is to generalize the Gaussian approxima-
tion results to vector-valued processes. Such results are very useful in statistical
inference of multiple time series. Eberlein (1986) obtained a Gaussian approxi-
mation result for dependent random vectors with approximation error O(n1/2−κ),
for some κ > 0. The latter approximation rate can be substantially improved if
one assumes that the random vectors are independent. Einmahl (1987a,b, 1989)
and Zaitsev (2001, 2002a,b) obtained deep results on Gaussian approximations
for independent random vectors with optimal and nearly optimal rates. For sta-
tionary multiple time series, Liu and Lin (2009) obtained an important result on
strong invariance principles with optimal bounds. Here we focus on the Gaussian
approximation problem for non-stationary multiple time series.

We introduce some notation. Denote by Idd the d-dimensional identity ma-
trix, and by N(µ,Σ) the multivariate Gaussian distribution with mean vector µ

and covariance matrix Σ. For a matrix A = (aij)i≤I,j≤J , let |A| = (
∑

i,j a2
ij)

1/2,
so |A|2 = trace(AAT ). If A is a d×d symmetric nonnegative definite matrix with
eigen-decomposition A = QΛQT , where Q is an orthonormal matrix satisfying
QQT = Idd and Λ = diag(λ1, . . . , λd) is a diagonal matrix with λ1 ≥ · · · ≥ λd ≥ 0,
we define its root A1/2 = QΛ1/2QT , where Λ1/2 = diag(λ1/2

1 , . . . , λ
1/2
d ). For a ran-

dom vector Y , write Y ∈ Lp, p > 0, if ‖Y ‖p := [E(|Y |p)]1/p < ∞. For L2 norm
write ‖ · ‖ = ‖ · ‖2. Define the projection operator Pi by

PiY = E(Y |Fi) − E(Y |Fi−1), Y ∈ L1. (1.3)

Define the floor function buc = max{k ∈ Z : k ≤ u}, u ∈ R. Throughout the
paper Cp denotes a constant whose value depends only on p.

The rest of the paper is structured as follows. Main results are presented in
Section 2 and proved in Section 3. Section 2 also presents examples of linear and
nonlinear non-stationary multiple time series for which our results are applicable.
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2. Main Results

Our main results assert that the partial sum process Si =
∑i

j=1 Xj can be
“regularized” by a Gaussian process. Namely, under suitable weak dependence
conditions on the process (Xi), expressed in terms of δi,p (cf (2.1)), the par-
tial sum process Si =

∑i
j=1 Xj can be approximated by a Gaussian process Gi

with independent but not necessarily identically distributed increments, and the
bound of the approximation error can be explicitly given. If the dependence is
sufficiently weak, then the approximation error is optimal within a multiplicative
logarithmic factor. Such Gaussian approximation results substantially general-
ize the classical Central Limit Theorem which states that sums of independent
random variables that are not necessarily Gaussian, under proper normalization
converge to Gaussian distributions.

To develop Gaussian approximations, we need to introduce dependence mea-
sures on the underlying process (Xi). To this end, we use the idea of coupling.
Let (ε′i)i∈Z be an independent copy of (εi)i∈Z. Assume that Xj has mean 0 and
Xj ∈ Lp, p > 0. For j ≥ 0, define the physical dependence measure

δj,p = sup
i

‖Xi − Xi,{i−j}‖p = sup
i

‖Hi(Fi) − Hi(Fi,{i−j})‖p, (2.1)

where Fi,{k} is a coupled version of Fi with εk in Fi replaced by an i.i.d. copy ε′k,

Fi,{k} = (. . . , εk−1, ε
′
k, εk+1, . . . , εi−1, εi). (2.2)

Note that Fi,{k} = Fi if k > i. Wu (2005) introduced a physical dependence
measure for stationary processes in which the function Hi(·) does not depend on
i. Following Wu (2005), ‖Hi(Fi) − Hi(Fi,{i−j})‖p measures the dependence of
Xi on εi−j . Hence δj,p can be interpreted as the uniform lag j dependence mea-
sure in the setting of non-stationary processes in which the underlying physical
mechanism Hi is time-varying. Assume throughout the paper that

Θm,p :=
∞∑

i=m

δi,p < ∞. (2.3)

The preceding condition implies short-range dependence in the sense that the
cumulative dependence of (Xj)j≥k on εk is finite.

Theorem 1 deals with multiple non-stationary nonlinear time series. Earlier,
Wu (2007) and Liu and Lin (2009) considered stationary one-dimensional and
higher-dimensional processes, respectively.

Theorem 1. Let 2 < p ≤ 4. Assume that for all i, E(Xi) = 0 and that, for
some c0 < ∞, supi ‖Xi‖p ≤ c0. Further assume Θm,p = O(m−γ), γ > 0. Then
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Di :=
∑∞

j=i PiXj ∈ Lp and supi ‖Di‖p < ∞. Let Σi = E(DiD
T
i ) and assume

there exists ν0 > 0 such that Σi − ν0Idd is positive definite. Then on a richer
probability space, there exists a centered Gaussian process Ǧi with independent
increments and a process Ši such that [Š1, . . . , Šn] D= [S1, . . . , Sn] and

max
1≤i≤n

|Ši − Ǧi| = OP(τn),

where τn = n(1/2−1/p+γ/p)/(1/2−1/p+γ)(log n)(γ+γ/p)/(1/2−1/p+γ). (2.4)

Additionally, on a richer probability space, there exists another Gaussian pro-
cess Ĝi and i.i.d. d-dimensional standard Gaussian random vectors Y1, . . . , Yn ∼
N(0, Idd) such that [Ĝ1, . . . , Ĝn] D= [Ǧ1, . . . , Ǧn] and

max
1≤i≤n

|Ĝi − Gi| = OP(τn), where Gi =
i∑

j=1

Σ1/2
j Yj . (2.5)

Larger γ implies weaker dependence. If γ → ∞, then the exponent (1/2 −
1/p + γ/p)/(1/2 − 1/p + γ) in (2.4) converges to 1/p. In the context of sta-
tionary multiple time series, Liu and Lin (2009) obtained the almost sure bound
Oa.s.(n1/p) when γ ≥ (p−2)/(8−2p)+θ for some θ > 0 and some other conditions
hold.

Corollary 1. Let 2 < p ≤ 4. Assume that for all i, E(Xi) = 0 and that,
for some c0 < ∞, supi ‖Xi‖p ≤ c0. Further assume δm,p = O(ρm) for some
ρ ∈ (0, 1). Let Di =

∑∞
j=i PiXj ∈ Lp, and assume there exists ν0 > 0 such that

Σi − ν0Idd is positive definite. Then on a richer probability space, there exists a
centered Gaussian process Ǧi with independent increments and a process Ši such
that [Š1, . . . , Šn] D= [S1, . . . , Sn] and

max
1≤i≤n

|Ši − Ǧi| = OP[n1/p(log n)3/2]. (2.6)

The condition δm,p = O(ρm) in Corollary 1 is called the geometric moment
contraction (GMC) condition. It is satisfied for many nonlinear stationary time
series (Shao and Wu (2007)). In the examples below, we show that GMC holds
for a wide class of non-stationary nonlinear time series.

Example 1. Let εi be i.id. random elements; let Xi be recursively defined by

Xi = Fi(Xi−1, εi), (2.7)

where Fi satisfies (i) for some x0, supi ‖Fi(x0, ε1)‖p < ∞ and (ii),

sup
i

E(|Li|p) < 1, where Li = sup
x 6=x′

|Fi(x, εi) − Fi(x′, εi)|
|x − x′|

. (2.8)
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Under condition (2.8), iterations of (2.7) ensure that Xi has representation (1.1)
and, additionally, we have the GMC δm,p = O(ρm) with ρ = supi ‖Li‖p. The
latter claim can be proved by using the method in Wu and Shao (2004). Details
are omitted.

Example 2. (Time-Varying GARCH) Consider the time-varying generalized
autoregressive conditional heteroskedasticity (GARCH(1,1)) process

Yt = εtV
1/2
t , Vt = ct + αtY

2
t−1 + βtVt−1,

where εt are i.i.d. and ct, αt, βt are nonnegative parameters. If ct, αt, βt do not
depend on t, then the model becomes Bollerslev’s (1986) GARCH(1, 1) process
with constant parameters. Time-varying ARCH models have received some at-
tention recently; see Fryzlewicz, Sapatinas, and Subba Rao (2008) and Dahlhaus
and Subba Rao (2006). In the latter two papers the parametrization αt = α(t/n)
is used, where α(·) is a continuous function.

Let Xt = (Yt, Vt)T −E(Yt, Vt)T . Here we give conditions for which Corollary
1 is applicable. Let Wt = (Y 2

t , Vt)T . As in Bougerol and Picard (1992), we can
write

Wt = MtWt−1 + ct

(
ε2
t

1

)
, where Mt =

(
αtε

2
t βtε

2
t

αt βt

)
.

Then Mt has two eigenvalues: 0 and αtε
2
t + βt. Assume E(εt) = 0, E(ε2

t ) = 1,
εt ∈ L2p, 2 < p ≤ 4, supt ct < ∞, and supt ‖αtε

2
t + βt‖p < 1. Then (2.8) holds

for (Wt) and (Wt) has the GMC property. By Lemma 1 in Wu and Shao (2004),
the process (V 1/2

t ) also satisfies GMC. So (Xt) has the GMC property as well.
We now compute Di =

∑∞
t=i PiXt. Without loss of generality let i = 0. Let

dt = αt + βt and gt = αt+1
∑∞

j=0

∏j
l=1 dt+l. Note that Vi is Fi−1-measurable.

If t ≥ 2, then P0Vt = dtP0Vt−1, since P0Y
2
t−1 = P0(ε2

t−1Vt−1) = P0Vt−1 and
E(ε2

t−1) = 1. Since P0V1 = α1P0(ε2
0V0) = α1(ε2

0 − 1)V0, D0 = (Y0, g0(ε2
0 − 1)V0)T .

Let Σ0 = E(D0D
T
0 ) have entries σ11 = E(Y 2

0 ) = EV0, σ22 = E(g2
0(ε

2
0 − 1)2V 2

0 ),
and σ12 = E(Y0g0(ε2

0 − 1)V0) = g0E(V 3/2
0 )E(ε3

0 − ε0). By Schwarz’s inequality,

σ2
12

σ11σ22
=

(E(V 3/2
0 ))2(E(ε3

0 − ε0))2

(EV0)(E(ε2
0 − 1)2)(E(V 2

0 ))
≤ τ, where τ =

(E(ε3
0 − ε0))2

E(ε2
0)E(ε2

0 − 1)2
≤ 1.

Assume τ < 1. Then the smaller eigenvalue of Σ0 is

σ11 + σ22 −
√

(σ11 − σ22)2 + 4σ2
12

2
≥ σ11σ22 − σ2

12

σ11 + σ22
≥ 1 − τ

σ−1
11 + σ−1

22

.
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Note that vt = EVt satisfies the recursion vt = ct+dtvt−1. Then vt = ct+dtct−1+
dtdt−1ct−2 + . . .. Assume v∗ := inft vt > 0 and g∗ := inft gt > 0. So Σ0 − ν0Id2 is
positive definite for any ν0 > 0 for which ν0 < (1−τ)/(1/v∗+1/(g2

∗v
2
∗E(ε2

0−1)2))).

Theorem 1 and Corollary 1 concern nonlinear multiple time series. It turns
out that, for the special case of linear multiple time series, we can obtain a better
bound.

Theorem 2. Let εi, i ∈ Z, be i.i.d. d-dimensional random vectors with mean 0,
covariance matrix Idd, and εi ∈ Lp, p > 2. Let Ai,j be d × d matrices satisfying∑∞

j=m supl≥j |Al,j | = O(m−γ), γ > 0. Let Bi =
∑∞

l=i Al,l−i and

Xi =
∞∑

j=0

Ai,jεi−j . (2.9)

Assume that there exists ν0 > 0 such that BiB
T
i − ν0Idd, is positive definite

for all i. Then on a richer probability space, there exists i.id. d-dimensional
standard Gaussian random vectors Y1, . . . , Yn ∼ N(0, Idd) and a process Ši such
that [Š1, . . . , Šn] D= [S1, . . . , Sn] and

max
1≤i≤n

|Ši − Gi| = OP[n1/2−γ + n1/p(log n)1−2/p], where Gi =
i∑

j=1

BjYj . (2.10)

An important class of non-stationary processes is the so-called locally station-
ary processes (Dahlhaus (1997); Draghicescu, Guillas, and Wu (2009)). Consider
the process

Xi = H(
i

n
;Fi), 1 ≤ i ≤ n, (2.11)

where H(·;Fi) is stochastic continuous in the sense that, for any t0 ∈ [0, 1],

lim
t→t0

‖H(t;Fi) − H(t0;Fi)‖ = 0. (2.12)

Additionally, we say that H(·;Fi) is stochastic Lipschitz continuous if there exists
a constant LH < ∞ such that

sup
0≤t<t′≤1

‖H(t;Fi) − H(t′;Fi)‖
|t − t′|

≤ LH . (2.13)

For the process (2.11), the physical mechanism H(·; ·) generating Xi is time-
varying and the stochastic continuity condition (2.12) or (2.13) suggests locally
stationarity, namely the underlying physical mechanism is changing smoothly.
Such processes appear frequently in practice (Mallat, Papanicolaou, and Zhang
(1998)).



GAUSSIAN APPROXIMATIONS FOR NON-STATIONARY MULTIPLE TIME SERIES 1403

Corollary 2. Let 2 < p ≤ 4. Assume (2.13), that for all i, E(Xi) = 0, and that
for some c0 < ∞, supi ‖Xi‖p ≤ c0. Suppsoe Θm,p = O(m−γ), γ > 0, and let

Di(t) =
∞∑
j=i

PiH(t;Fj), 0 ≤ t ≤ 1. (2.14)

If Σ(t) = E[Di(t)DT
i (t)] is positive definite for all t ∈ [0, 1], then (2.4) and (2.5)

of Theorem 1 hold, and

max
1≤i≤n

|Ḡi − Gi| = OP(n1/2−γ/(2+γ)), where Ḡi =
i∑

j=1

Σ1/2(
j

n
)Yj . (2.15)

Remark 1. In our Gaussian approximations (2.4) and (2.10), we obtain in
probability bounds OP(·), while the classical strong invariance principle usually
asserts almost sure bounds. Using the argument in Liu and Lin (2009), it is
possible to derive almost sure bounds. We decide not to pursue this direction
of research since the derivation is very tedious and since the bounds OP(·) are
typically powerful enough for one to obtain asymptotic distributions of statistics
involving partial sum processes. Additionally, the strong approximation scheme
does not seem to be suitable for processes of type (2.11) which have a triangular
array form.

Example 3. Functional linear models. Consider the functional linear re-
gression model

yi = xT
i βi + εi, i = 1, 2, . . . , n, (2.16)

where xi ∈ Rp are regressors, E(εi|xi) = 0, and the regression parameter βi =
β(i/n) is a smooth function. The functional linear model (2.16) has many appli-
cations in climatology, finance, econometrics, and other areas. With the regres-
sion parameter β(·) being time-varying, one is able to explore the dynamic or
time-varying associations between the response series {yi} and the explanatory
series {xi}; see Robinson (1989, 1991), Orbe, Ferreira, and Rodriguez-Poo (2005,
2006), and Cai (2007).

A fundamental problem in the inference of functional linear models is to test
whether β(·) is of a certain parametric form. To this end, one needs to construct
simultaneous confidence regions (SCR) (Fan and Zhang (2008)). The construc-
tion of SCR with asymptotically correct coverage probabilities requires (i) an
extreme value theory of Gaussian processes, and (ii) a Gaussian approximation
result for the partial sum process. Wu, Chiang, and Hoover (1998) mention that
the fundamental difficulty is (ii), a lack of development of Gaussian approxi-
mations in the presence of dependence. With Corollary 2, (ii) is solved. With
the latter result, Zhou and Wu (2010) applied Lindgren’s (1980) extreme value
theory for Gaussian processes and constructed SCR for β(·).
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3. Proofs

The proof of Theorem 1 is quite complicated. For stationary processes with
d = 1, Wu (2007) established strong invariance principles by first approximating
Sn by martingales, and then used Strassen’s embedding results and approximated
martingales by Brownian motions. For multiple time series with d ≥ 2, the
martingale approximation technique alone does not work well since, generally
speaking, vector-valued martingales cannot be embedded into a Gaussian process
(Monrad and Philipp (1991)). Here we apply the martingale approximation and
approximate Xi by m-dependent processes. The latter technique has been applied
in Liu and Lin (2009). Section 3.1 presents a proof of Theorem 1. It uses results in
Section 3.4 concerning tail probabilities of martingales and bounds for martingale
approximations.

The proof of Theorem 2 is relatively easy, due to the special linearity struc-
ture of Xi in (2.9). In this case the approximating martingale is a sum of inde-
pendent random vectors that can be further approximated by Gaussian processes
by applying results in Zaitsev (2001). A detailed derivation is given in Section
3.2.

3.1. Proof of Theorem 1

By Theorem 1 in Wu (2005), ‖PiXj‖p ≤ δj−i,p. So ‖Di‖p ≤ Θ0,p.
Let ` = b(n log−3 n)1/(1+4γ)c and

S̃i =
i∑

j=1

X̃j , where X̃j = E(Xj |εj , . . . , εj−`). (3.1)

By Lemma A1 in Liu and Lin (2009) (see also Theorem 1(ii) in Wu (2007)), we
have ∥∥∥∥ max

1≤i≤n
|S̃i − Si|

∥∥∥∥
p

≤ Cp

√
nΘ`,p = O(

√
n`−γ) (3.2)

for a constant Cp depending only on p. (The proofs in Lemma A1 in Liu and
Lin (2009) and Theorem 1(ii) in Wu (2007) are for stationary processes. It is
easily seen that their arguments are also valid for nonstationary processes of form
(1.1).)

Next we approximate S̃i by the martingale

M̃i =
i∑

j=1

D̃j , where D̃j =
∞∑

k=j

PjX̃k =
j+∑̀
k=j

PjX̃k. (3.3)
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Note that PjX̃k = 0 if k > j + `. Let δ̃j,p be the physical dependence measure
for (X̃k)k∈Z. Observe that δ̃j,p = 0 if j > `. Let R̃n = S̃n − M̃n and Θ̃i,p =∑∞

j=i δ̃j,p =
∑`

j=i δ̃j,p. By Lemma 2, we have

‖R̃h‖2
p ≤ Cp

h∑
i=1

Θ̃2
i,p = Cp

`∧h∑
i=1

Θ̃2
i,p =

{
O[log(` ∧ h)] if γ = 1

2 ,

O[1 + (` ∧ h)1−2γ ] if γ 6= 1
2 .

(3.4)

Let g ∈ N satisfy 2g−1 < n ≤ 2g. If γ < 1/2, by Proposition 1(i) in Wu (2007),
(3.4) implies ∥∥∥∥max

i≤2g
|R̃i|

∥∥∥∥
p

≤
g∑

r=0

[ 2g−r∑
k=1

‖R̃2rk − R̃2r(k−1)‖p
p

]1/p

≤
g∑

r=0

[2g−r(` ∧ 2r)(1−2γ)p/2]1/p. (3.5)

Observe that the above bound is O(2g/p), O(2g/pg), and O(2g/p`1/2−γ−1/p), for
1/p > 1/2 − γ, 1/p = 1/2 − γ, and 1/p < 1/2 − γ, respectively. Since ` = o(n),
we have ∥∥∥∥max

i≤2g
|R̃i|

∥∥∥∥
p

= O(n1/p + n1/2`−γ). (3.6)

Elementary manipulations show that (3.6) also holds for γ ≥ 1/2 by using (3.4)
and (3.5).

Let m = b`1+2γc, B1 = {1, . . . ,m}, A1 = {m + 1, . . . ,m + 3l} and, for j ≥ 2,

Bj = {i + (j − 1)(m + 3`), i ∈ B1}, Aj = {i + (j − 1)(m + 3`), i ∈ A1}.

Further let bj = min{k : k ∈ Bj}, bj = max{k : k ∈ Bj}, A = ∪∞
j=1Aj , B =

∪∞
j=1Bj , Ũj =

∑
i∈Aj

D̃i, and Ṽj =
∑

i∈Bj
D̃i. Then Ũ1, Ũ2, . . . are independent

and Ṽ1, Ṽ2, . . . are also independent. Let M̃i,A =
∑i

j=1 D̃j1j∈A and M̃i,B =∑i
j=1 D̃j1j∈B. Observe that A ∩ B = ∅, A ∪ B = N, and M̃i = M̃i,A + M̃i,B.

Since D̃j1j∈A, j = 1, 2, . . ., are martingale differences and p/2 > 1, by Doob’s
martingale inequality (cf Chow and Teicher (1988)) and Theorem 2.1 in Rio
(2009), ∥∥∥∥max

j≤n
|M̃j,A|

∥∥∥∥2

p

≤ Cp‖M̃n,A‖2
p

≤ Cp(p − 1)
n∑

j=1

‖D̃j1j∈A‖2
p = O(`

n

m
). (3.7)
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Let fi = max{bk : bk ≤ i}, ki = max{k : bk ≤ i}, and Hi = M̃i,B − M̃fi,B, i ∈ N;
let qn > 0 satisfy qn → ∞ and λn = n1/p`1/2−1/p(log n)1/p + (m log n)1/2. We
now apply Lemma 1 with u = λnqn. Choose d ∈ N such that 2d−1 < m ≤ 2d. Let
Li = D̃1 + · · · + D̃i and ∆r = max1≤j≤2d−r |L2rj − L2r(j−1)|, 0 ≤ r ≤ d. By the
argument in the proof of Proposition 1(i) in Wu (2007), we have maxi≤m |Li| ≤∑d

r=0 ∆r. Hence, by Lemma 1,

P
(

max
j≤m

|Lj | > 2du

)
≤

d∑
r=0

P(∆r > u) ≤
d∑

r=0

2d−r O[min(2rp/2, 2r`p/2−1)]
up

. (3.8)

Since kn ∼ n/(m + 3`) ∼ n/m and m = b`1+2γc, by elementary calculations,
(3.8) implies

P
(

max
i≤n

|Hi| > 2du

)
≤

kn∑
k=1

P
(

max
l∈Bk

|D̃bk
+ · · · + D̃l| > 2du

)

≤ O(kn)
d∑

r=0

2d−r O[min(2rp/2, 2r`p/2−1)]
up

= o(1). (3.9)

Since in u = λnqn the speed of qn → ∞ can be arbitrarily slow, by (3.9), we have

max
i≤n

|Hi| = max
i≤n

|M̃i,B − M̃fi,B| = OP(λnd) = OP(λn log n). (3.10)

Observe that M̃fi,B =
∑ki

j=1 Ṽj = Iki
+ Jki

, where

Ik =
k∑

j=1

Ṽj1|Ṽj |<Qλn
− E(Ṽj1|Ṽj |<Qλn

)
√

m
,

Jk =
k∑

j=1

Ṽj1|Ṽj |≥Qλn
− E(Ṽj1|Ṽj |≥Qλn

)
√

m
.

Since summands of Ik are independent and bounded by Qλn/
√

m, by Thereom
1.2 in Zaitsev (2001) there exists i.i.d. standard d-dimensional Gaussian random
vectors Z1, . . . ,∼ N(0, Idd) such that

max
i≤n

∣∣∣Iki
−

ki∑
j=1

FjZj

∣∣∣ = max
k≤kn

∣∣∣Ik −
k∑

j=1

FjZj

∣∣∣ = OP

[(Qλn√
m

)
log n

]
, (3.11)

where Fi = m−1/2[E(W̃iW̃
T
i )]1/2, and W̃i = Ṽi1|Ṽi|<Qλn

− E(Ṽi1|Ṽi|<Qλn
).

By Lemma 1, for sufficiently large Q > 0,

E(|Vk|1|Vk|≥Qλn
) =

∫ ∞

Qλn

P(|Vk| ≥ u)du =
∫ ∞

Qλn

O(m`p/2−1)
up

du. (3.12)
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Hence E(|Vk|1|Vk|≥Qλn
) = O(m`p/2−1λ1−p

n ), and by the definition of λn,

E
[
max
i≤n

|Jki
|
]

= E
[
max
k≤kn

|Jk|
]
≤

kn∑
k=1

2E(|Vk|1|Vk|≥Qλn
)

√
m

=
O(λn)√

m
. (3.13)

To conclude the proof, we write

Si = (Si − S̃i) + R̃i + M̃i,A + Hi +
√

mJki
+

√
mIki

. (3.14)

By (3.2), (3.6), (3.7), (3.10), (3.11), and (3.13), after some elementary manip-
ulations, we have (2.4) by letting Ǧi =

∑ki
j=1 FjZj

√
m, and the approximation

error is

OP(
√

n`−γ)+OP(n1/p + n1/2`−γ)+OP[(
`n

m
)1/2]+OP(λn log n)=OP(τn). (3.15)

Clearly Ǧi has independent increments.
We now prove (2.5). By (3.2), (3.6), and Lemma 2, we have

‖Mn − M̃n‖ ≤ ‖S̃n − Sn‖ + ‖S̃n − M̃n‖ + ‖Mn − Sn‖

= O(
√

nΘ`,p) + O(1)
[ ∑̀

i=1

Θ̃2
i,p

]1/2
+ O(1)

[ n∑
i=1

Θ2
i,p

]1/2

= O(
√

n`−γ) +
[ n∑

i=1

O(i−2γ)
]1/2

= O(φn), (3.16)

where φn =
√

n`−γ +(
∑n

i=1 i−2γ)1/2. Recall Ṽj =
∑

i∈Bj
D̃i. Let Vj =

∑
i∈Bj

Di.
By (3.16) and the orthogonality of martingale differences,

kn∑
j=1

‖Ṽj − Vj‖2 = O(φ2
n). (3.17)

Since Σi − ν0Idd is positive definite, m−1E(ViV
T
i ) − ν0Idd = m−1

∑
i∈Bj

Σi −
ν0Idd is also positive definite. Let Ψi = (W̃i − Vi)/

√
m. Elementary matrix

manipulations show that

|m−1/2[E(ViV
T
i )]1/2 − {E[(

Vi√
m

+ Ψi)(
V T

i√
m

+ ΨT
i )]}1/2| = O(‖Ψi‖). (3.18)

Similarly as (3.12), by Lemma 1, for sufficiently large Q,

‖W̃i − Ṽi‖2 = ‖Ṽi1|Ṽi|≥Qλn
− E(Ṽi1|Ṽi|≥Qλn

)‖2 ≤ ‖Ṽi1|Ṽi|≥Qλn
‖2

= 2
∫ ∞

Qλn

uP(|Ṽi| ≥ u)du = O(m`p/2−1λ2−p
n ).
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Let θn = knm`p/2−1λ2−p
n + φ2

n. Hence by (3.17),

kn∑
j=1

|m−1/2[E(ViV
T
i )]1/2 − Fi|2 =

kn∑
j=1

O(‖Ψi‖2) = O(m−1)θn. (3.19)

Let Y1, Y2, . . . ,∼ N(0, Idd) be i.i.d. d-dimensional standard Gaussian random
vectors and G◦

i =
∑ki

j=1

∑
l∈Bj

Σ1/2
l Yl and Gi =

∑i
j=1 Σ1/2

j Yj ; let

Ĝi =
ki∑

j=1

√
mFj

( ∑
l∈Bj

Σl

)−1/2 ∑
l∈Bj

Σ1/2
l Yl.

Since Yi are i.i.d. standard Gaussian random vectors, (
∑

l∈Bj
Σl)−1/2

∑
l∈Bj

Σ1/2
l Yl,

j = 1, 2, . . . , are also i.i.d. standard Gaussian random vectors. Hence by (3.19),

max
i≤n

|G◦
i − Ĝi| = OP(θ1/2

n ).

Observe that [Ĝ1, . . . , Ĝn] D= [Ǧ1, . . . , Ǧn] and, as in (3.7),

max
i≤n

|G◦
i − Gi| = max

i≤n

∣∣∣ i∑
j=1

Σ1/2
j Yj1j∈A

∣∣∣ = OP

(√
`n

m

)
.

By elementary manipulations, θn = O(τ2
n), and also `n/m = O(τ2

n). So (2.5)
follows.

Proof of Corollary 1. In the proof of Theorem 1, we let m = b`1/2n1/2

(log n)−3/2c and ` = bc log nc, where c > 0 is a sufficiently large constant. Then
by the same argument of Theorem 1, we have (2.6) in view of (3.15).

Remark 2. In Theorem 1, we call the condition that Σi − ν0Idd is positive
definite for all i the uniform positive definiteness condition. A careful check of
the proof of Theorem 1 reveals that the uniform positive definiteness condition
can be replaced by the following slightly weaker version: there exists m0 ∈ N
such that

∑i+m0
j=i Σj − ν0Idd is positive definite for all i.

3.2. Proof of Theorem 2

Observe that δj,p = supl≥j |Al,j |‖ε0 − ε′0‖p. Let Rh = Sh − Mh, where
Mh =

∑h
i=1 Di and Di = Biεi are independent random vectors. By Lemma 2,

since Θi,p = O(i−γ),

‖Rh‖2
p =

h∑
i=1

O(i−2γ) =

{
O(log h) if γ = 1

2 ,

O(1 + h1−2γ) if γ 6= 1
2 .

(3.20)
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As in (3.4) and (3.5), for g ∈ N satisfying 2g−1 < n ≤ 2g, we have∥∥∥∥max
i≤2g

|Ri|
∥∥∥∥

p

≤
g∑

r=0

[ 2g−r∑
k=1

‖R2rk − R2r(k−1)‖p
p

]1/p

= O{max[2g/p, 2g(1/2−γ)]} + O(g2g/p11/p=1/2−γ) (3.21)

by considering the cases 1/p > 1/2 − γ, 1/p = 1/2 − γ, and 1/p < 1/2 − γ,
respectively. To establish (2.10), as in the proof of Theorem 1, we use a truncation
argument. Let λ′

n = n1/p(log n)−2/p, qn → ∞, and

M¦
h =

h∑
i=1

Biηi, where ηi = εi1|εi|≤qnλ′
n
− E(εi1|εi|≤qnλ′

n
). (3.22)

Let Υn = [E(ηiη
T
i )]1/2. As in (3.11), since summands of M¦

h are independent and
bounded by 2|Bi|qnλ′

n, by Theorem 1.2 in Zaitsev (2001) there exists i.i.d. stan-
dard d-dimensional Gaussian random vectors Z1, . . . ,∼ N(0, Idd) such that

max
h≤n

|M¦
h − G¦

h| = OP(qnλ′
n log n), where G¦

h =
h∑

i=1

BiΥnZi. (3.23)

On the other hand, by Doob’s inequality,∥∥∥∥max
h≤n

|Mh − M¦
h |

∥∥∥∥2

=
n∑

i=1

O(1)‖Bi[εi1|εi|>qnλ′
n
− E(εi1|εi|>qnλ′

n
)]‖2

=
n∑

i=1

O(1)(qnλ′
n)2−pE(|εi|p) = o[n(λ′

n)2−p]. (3.24)

Since E(εiε
T
i ) = Idd and εi ∈ Lp, as in (3.18), we have by Markov’s inequality

that |Υn − Idd| = O(‖εi1|εi|>qnλ′
n
‖) = O[(qnλ′

n)1−p/2]. Hence

E
[
max
h≤n

|Gh − G¦
h|2

]
=

n∑
i=1

O{[(qnλ′
n)1−p/2]2} = O[q2−p

n n2/p(log n)2−4/p]. (3.25)

By (3.21), (3.23), (3.24), and (3.25), we conclude that (2.10) holds since qn → ∞
can be arbitrarily slow.

3.3. Proof of Corollary 2

Under the condition Θm,p = O(m−γ), γ > 0, we have Di =
∑∞

j=i PiXj ∈ Lp,
and also Di(t) ∈ Lp. Let ln = bn1/(2+γ)c. By (2.13), we have

‖Di(
i

n
) − Di‖ ≤

∞∑
j=i

‖Pi[H(
i

n
;Fj) − H(

j

n
;Fj)]‖
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≤
∞∑
j=i

min(
LH(j − i)

n
, 2δj−i,p)

≤
i+ln∑
j=i

LH(j − i)
n

+
∞∑

j=i+ln+1

2δj−i,p = O(n−γ/(2+γ)). (3.26)

Similarly, ‖Di(t) − Di(t0)‖ → 0 as t → t0. So Σ(t) is continuous in t. Since
Σ(t) = E[Di(t)DT

i (t)] is positive definite for all t ∈ [0, 1], there exists ν0 > 0 such
that Σ(t) − 2ν0Idd is positive definite for all t ∈ [0, 1]. By (3.26), the condition
that Σj − ν0Idd is positive definite in Theorem 1 is satisfied, and hence (2.4) and
(2.5) hold.

To prove (2.15), using the argument in (3.18) and (3.19), by (3.26), we have

n∑
i=1

|Σ1/2
i − Σ1/2(

j

n
)|2 = nO(n−γ/(2+γ))2.

Hence we have (2.15) since Y1, Y2, . . . , are i.i.d. standard Gaussian random vec-
tors.

3.4. Some useful results

Lemma 1. Let Di, i ≥ 1, be `-dependent martingale differences with respect to
the filter Gi; let Tm =

∑m
i=1 Di. Assume supi ‖Di‖p ≤ f0 < ∞, p > 2. Then

there exist constants C1,p and C2,p, depending only on p, such that

P(|Tm| ≥ u) ≤ C1,p
min(mp/2, m`p/2−1)

up
fp
0 if u ≥ C2,p(m log m)1/2f0. (3.27)

Proof. By Burkholder’s and Minkowski’s inequalities, ‖Tm‖p ≤ C3,pf0m
1/2.

Here and below C3,p, C4,p, . . . are constants only depending on p. So P(|Tm| ≥
u) ≤ Cp

3,pf
p
0 mp/2/up, which implies (3.27) if m ≤ 4`. If m > 4`, let Ak =∑2`k−`

i=1+2`(k−1) Di and Bk =
∑2`k

i=1−`+2`k Di, 1 ≤ k ≤ K, where K = bm/(2`)c. For

technical convenience we assume that m/(2`) is an integer. Let SA =
∑K

k=1 Ak

and SB =
∑K

k=1 Bk. Since ‖Ak‖p ≤ C3,pf0`
1/2,

∑K
k=1 ‖Ak‖p

p ≤ Cp
3,pf

p
0 m`p/2−1,

and ES2
A ≤ mf2

0 , by Corollary 1.8 in Nagaev (1979),

P(|SA| ≥
u

2
) ≤ C4,p

m`p/2−1

up
fp
0 + 2 exp

(
− C5,pu

2

mf2
0

)
. (3.28)

In (3.27) if we choose sufficient large C2,p, then by elementary calculations, the
second term in the right hand side of (3.28) will be smaller than mfp

0 /up. There-
fore (3.27) follows from (3.28) in view of |Tm| ≤ |SA| + |SB|.
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Lemma 2. Assume that (Xi) defined by (1.1) satisfies E(Xi) = 0, Xi ∈ Lp,
p > 1, and Θm,p < ∞. Then Di :=

∑∞
j=i PiXj ∈ Lp, supi ‖Di‖p < ∞, and for

Mn =
∑n

j=1 Dj we have

‖Sn − Mn‖p′
p ≤ Cp

n∑
i=1

Θp′

i,p, where p′ = min(2, p). (3.29)

Lemma 2 can be proved by using the argument in the proof of Theorem 1(ii)
in Wu (2007), where the latter paper considers rates of martingale approximations
for stationary processes. Details of the derivation of (3.29) are omitted since there
are no essential additional difficulties involved.
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