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Abstract: In this paper, we develop the asymptotic theory for hypotheses testing

in high-dimensional analysis of variance (HANOVA) when the distributions are

completely unspecified. Most results in the literature have been restricted to obser-

vations of no more than two-way designs for continuous data. Here we formulate the

local alternatives in terms of departures from the null distribution so that the re-

sponses can be either continuous or categorical. The asymptotic theory is presented

for testing of main factor and interaction effects of up to order three in unbalanced

designs with heteroscedastic variances and arbitrary number of factors. The test

statistics are based on quadratic forms whose asymptotic theory is derived under

non-classical settings where the number of variables is large while the number of

replications may be limited. Simulation results show that the present test statistics

perform well in both continuous and discrete HANOVA in type I error accuracy,

power performance, and computing time. The proposed test is illustrated with a

gene expression data analysis of Arabidopsis thaiana in response to multiple abiotic

stresses.
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1. Introduction

As data gathering technology in various fields advances, large amount of
data become increasingly available. A typical example arises in the significance
analysis of genes using expression data. Numerous experiments were done us-
ing a model plant Arabidopsis thaliana under different conditions, and the gene
expression data are available from various websites. With all these data pro-
duced, effective statistical methods are essential for biologists to identify genes
involved in many biological processes. Due to the high cost in array experi-
ments and the large number of experimental conditions (such as many biotic,
abiotic stresses, and pathogen infections), the number of replicates is typically
very small. A particular example we analyze concerns 18 abiotic stress condi-
tions using leaf or root tissue at multiple time points (see Section 3.4). Only
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two replications are available and the gene expression data are highly skewed
and heteroscedastic. To properly analyze such data, we develop a nonparametric
version of high-dimensional analysis of variance (HANOVA) that allows a large
number of factors or factor levels with small replications.

The terminology HANOVA was introduced by Fan and Lin (1998) to com-
pare multiple sets of curves. To develop general HANOVA test procedures re-
quires asymptotic techniques under non-classical settings in which the number
of variables, p, approaches infinity. In high-dimensional designs, the p variables
correspond to the factor-level combinations (also called groups or cells). The
challenges posed to non-classical asymptotic settings have been addressed in the
literature (cf., Neymann and Scott (1948), Portnoy (1988), Fan (1996) Sarandasa
and Altan (1998), Johnstone (2001), Li, Lindsay, and Waterman (2003), Inglota
and Ledwina (2005)).

In spite of the considerable amount of research that has been done, inference
in many settings with high-dimensional designs is still not adequately developed.
The discrete case deserves special attention as results for designs with high-
dimensional discrete data are very limited. Generalized linear models (GLM)
are the well-accepted methods for discrete data. The response is related to a
linear combination of the predictors through a link function. GLM relies heavily
on the asymptotic properties of the MLE as the sample size approaches infinity
while the number of factor levels remains fixed. For log-linear models of Poisson
or multinomial count data, the asymptotic properties of MLE and chi-square
statistics from GLM still hold when both the sample size and the number of cells
are large (Haberman (1977)). Parametric inferences on other discrete data under
the nonclassical settings are not available.

Recently, a few authors have considered asymptotically distribution-free pro-
cedures for factorial designs with a large number of factor levels. Boos and
Brownie (1995), Akritas and Arnold (2000), Bathke (2002), and Bathke (2004)
are mainly focused on showing that the ANOVA F-statistics can still be used
under homoscedastic or a special form of heteroscedastic variances when there
are a large number of treatments for balanced design. Akritas and Papadatos
(2004) considered heteroscedastic one-way layout; Wang and Akritas (2006) gave
results for heteroscedastic two-way designs; Wang and Akritas (2004) and Bathke
and Harrar (2008) considered methods based on ranks. None of the references
above allow a combination of unbalanced design with arbitrary number of fac-
tors in the presence of arbitrary heteroscedastic variances. In addition, none of
these references provide testing procedures for the main effects or interactions
of factors that contain only a small number of levels while other factors have a
large number of levels.
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Though the results and methods in the aforementioned references are distri-
bution-free under the null hypotheses, they do not provide inference for dis-
crete data under local alternatives under the non-classical setting. For ex-
ample, Akritas and Papadatos (2004) and Wang and Akritas (2006) used a
representation of the observations under the local alternatives as the observa-
tions under the null plus an integral of a continuous function. Specifically,
both references considered local alternatives of the form Yij = Xij + αi(a),
where Xij is a sequence of random variables satisfying the null hypothesis and
αi(a) = a3/4n(a)−1/2

∫ i/a
(i−1)/a g(t)dt, with g(t) being a continuous function on

[0, 1]. Such a formulation is not applicable to discrete random variables, such as
Bernoulli where data for both Xijk and Yijk take values 0 or 1.

In this paper, we consider the nonparametric theory of hypothesis testing
for general HANOVA allowing unbalanced and heteroscedastic independent data.
Since the results under the null hypothesis follow from those under local alter-
natives, we state our theory for local alternatives directly. We formulate the
local alternatives through departures from the distributions under the null. Such
formulation of local alternatives is more flexible and general than location al-
ternatives. It pertains, for the first time, to both continuous and discrete data.
Moreover, the alternative and null distributions need not belong to the same
family of distributions. See Section 2.2 for further discussion. A comprehensive
set of asymptotically distribution-free procedures for testing of both main effects
and interactions of up to order three is developed.

The asymptotic theory in the current setting is substantially different from
the classical one. For example, for testing the hypothesis about a parameter
θ of dimension d > 1 against unrestricted alternatives, an asymptotically uni-
formly most powerful invariant test (AUMPI) under a group of nonsingular linear
transformations of the whole vector can be constructed for Pitman’s moving al-
ternatives. The parameters under the alternatives approach those under the null
hypothesis at a rate related to the sample size increases while the dimension
stays fixed. However, the invariance methodology does not extend to hypotheses
about an infinite-dimensional parameter of interest, since by considering every
finite-dimensional projection of local departures, the only test that satisfies the
invariance requirement is the trivial test or its asymptotic equivalents (Choi,
Hall, and Schick (1996)). In addition, the methods developed for the traditional
setting, in which neither the number of parameters of interest nor the number
of nuisance parameters is large, tend to have low power in the current setting.
See Fan and Lin (1998) for an illustration of the power loss for likelihood ratio
test with Gaussian data. For data from the Gamma distribution as given in our
simulation study, the test in Brunner, Dette, and Munk (1997) showed accurate
type I error at level 0.01 but only about half the power of the proposed test,
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even though their test demonstrated comparable power to the Wald-type test for
most of their small sample sizes simulations in the classical setting.

The rest of the paper is organized as follows. Section 2 gives the data repre-
sentation, the hypotheses, the test statistics, and their asymptotic results. Nu-
merical results, including simulations and an application in stress response gene
expression data, are presented in Section 3. Finally the proofs are given in Sec-
tion 4. Throughout the paper, we use replication, group sample size, or cell
sample size interchangeably.

2. Test Statistics and Their Asymptotic Distributions

2.1. Construction of test statistics

We consider testing for no main effects, and no two- and three-way inter-
actions with the possible presence of additional factors. The treatment of these
testing problems captures all ideas and techniques that would be required for
developing test procedures for still higher-way interactions. In order to achieve
as concise a formulation as possible we combine all factors that do not contribute
parameters to the testing problem. Thus, for testing of no main effects, it suffices
to consider a surrogate two-way design where the second factor encompasses the
levels of all other factors. Similarly, for a general testing theory of no two-way
interaction effects, it is sufficient to consider a surrogate three-way design where
the additional factor encompasses the levels of all other factors. Since we con-
sider testing of no more than three-way interactions, we employ no more than
five indices to describe the observations (one index for each of the factors of the
surrogate design and one index for the replications).

Score statistics derived from estimating equations are commonly used with
both discrete and continuous data. However, the inferences based on score statis-
tics rely heavily on the specified relationship between the mean and variance
function. When the specified relationship holds and the model has only a small
number of fixed effects, score statistics are efficient. However, when the number
of fixed effects increases to infinity, as is the case in this paper, the number of
estimating equations approaches infinity. With only a small number of replica-
tions, the estimated parameters from these large number of estimating equations
are not consistent.

Another class of statistics, rank statistics, have certain advantage such as
robustness to outliers. In the present context, however, this advantage comes at
the expense of efficiency. For example, when only a small proportion (such as
5%) of observations come from distributions with higher mean values and the rest
of the observations have common mean, the simulations in Section 3.1 suggest
that the rank statistics have low power.

In this paper we propose two different types of statistics based on the orig-
inal observations: a Wald-type statistic, applicable to hypotheses regarding a
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small number of parameters, and an F -type statistic, applicable to hypotheses
regarding a large number of parameters.

The proposed F -type statistics differ from the classical statistics in two ways.

• Use of unweighted means instead of weighted ones. For example, in an
ANOVA with three factors, we observe Xijkm, i = 1, . . . , a, j = 1, . . . , b,
k = 1, . . . , c, m = 1, . . . , nijk. The unweighted mean for each i is X̃i... =
(bc)−1

∑
j,k X ijk., while the weighted mean is Xi... = (

∑
j,k nijk)−1

∑
j,k

∑nijk

m=1

Xijkm. Similarly, the overall unweighted mean is X̃.... = (abc)−1
∑

i,j,k X ijk.,
while the overall weighted mean is X .... = (

∑
i,j,k nijk )−1

∑
i,j,k,m Xijkm. The

idea of using unweighted means is related to the statistics used by Yates
(1934) for unbalanced homoscedastic two-way designs; see also (Sahai and
Ageel (2000, pp.220-222)).

• Summation over the replications is not included in our quadratic forms for the
numerators of F , and the denominators are adjusted so that the numerator
and denominator have the same expectation under corresponding null hypoth-
esis. For example, in the classical three-way ANOVA, the numerator of F for
testing of no main row effect is MST = (a − 1)−1

∑
i,j,k nijk(X i... − X ....)2.

Here we use MSTA = (a − 1)−1
∑

i,j,k(X̃i... − X̃....)2.

Analogous versions of the above notation for means is also used when there
are two or four factors in the model. Moreover, similar notation applies when X

is replaced by e.

2.2. Testing of no main effects

As mentioned earlier, the data representation for a general theory of testing
for no main effects of factor A can use a surrogate design with two factors, where
factor B encompasses the level combinations of all other factors. Thus, let Xijk,
k = 1, . . . , nij , be independent observations from some unknown distribution Fij ,
i = 1, . . . , a, j = 1, . . . , b. Consider the decomposition E(Xijk) = µij = µ + αi +
βj + (αβ)ij , where

∑a
i=1 αi =

∑b
j=1 βj =

∑a
i=1(αβ)ij =

∑b
j=1(αβ)ij = 0. We

want to test the hypothesis H0(A) : αi = 0, for all i. Note that the decomposition
of the expected values is equivalent to generalized linear models using dummy
variables for factors. The difference is that generalized linear models also need to
specify the distribution and variance function beyond the model for the expected
values. The variance and distribution of data are here left unspecified as long as
certain moment conditions, which are specified in the theorems, are satisfied.

When a is small we only consider the case that b is large since, if b also small,
the asymptotic theory requires a large number of replications in each cell and
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belongs to the well-studied classical framework. In the small a and large b case,
the test statistic is

QX(A) = NW′C′
A(CAV̂C′

A)−1CAW, (2.1)

where W = (X̃1.., . . . , X̃a..)′, CA = (1a−1| − Ia−1), V̂ = diag(η̂1, . . . , η̂a), and

η̂i =
N

b2

b∑
j=1

S2
ij,X

nij
with S2

ij,X = (nij − 1)−1

nij∑
k=1

(Xijk − X ij.)2.

When a is large, regardless of whether b is small or large, the statistic is
FX(A), where

FX(A)=
MSTA

MSE
, MSTA =

1
a − 1

a∑
i=1

b∑
j=1

(
X̃i..−X̃...

)2
, MSE =

1
ab

a∑
i=1

b∑
j=1

S2
ij,X

nij
.

(2.2)
The next theorem is derived under a sequence of local alternatives of the

form

FR,ij(x) = F0,ij(x) + R(a, b,N)Ai(x), (2.3)

where the means µ0,ij of F0,ij(x) satisfy the null hypothesis and the Ai(x) are the
deviations, at the distribution level, from the null hypothesis. This formulation
implies local alternatives of the form of µR,ij = µ0,ij+R(a, b,N)

∫
xdAi(x), where

integration is in the Lebesgue-Stieltjes sense. We assume that the
∫

xdAi(x) are
uniformly bounded for all i. With this formulation, the distribution and variances
under the alternatives can be different from those under the null, as is necessary
in some cases. For example, when the data are from Gamma distribution with
shape parameter α and scale parameter β, the mean of the distribution is αβ
and the variance is αβ2. It is often impractical to consider location alternatives
alone since the variance also changes with α and β. Similarly, under the Bino-
mial, Poisson, or negative binomial distributions, the variance is a function of the
mean and thus a shift in the mean entails a change in the variance. The alter-
natives described in (2.3) allow changes in the variance, or other aspects of the
distribution, as the mean shifts from the null hypothesis, whereas the traditional
location alternatives do not.

Theorem 2.1.
(a) Let QX(A) be given in (2.1). Consider the local alternatives (2.3) with

R(a, b,N) = N−1/2, and let σ2
R,ij be the variance of FR,ij(x). Assume that

for all i, 1
b

b∑
j=1

σ2
R,ij

nij

−2

1
b

√√√√1
b

b∑
j=1

1
n6

ij

→ 0,
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and

lim sup
b→∞

b−1
b∑

j=1

E2(Xijm − E(Xijm))4 < ∞. (2.4)

If a remains bounded then, regardless of whether the nij ≥ 2 stay bounded or
tend to ∞,

QX(A)
p→ χ2

a−1(δ11) as b → ∞,

where δ11 = limb→∞ g′C′
A(CAV̂C′

A)−1CAg with g = (
∫

xdA1(x), . . .,∫
xdAa(x))′.

(b) Let FX(A) be the statistic given in (2.2), and consider the local alternative
in (2.3) with R(a, b,N) = a−1/4b−1/2. Further, let

τA =
2

ab2

a∑
i=1

( b∑
j=1

σ2
R,ij

nij

)2

,

σ2
A =

1
ab

a∑
i=1

b∑
j=1

σ2
R,ij

nij
,

φA =
2

ab2

a∑
i=1

b∑
j=1

σ4
R,ij

n2
ij(nij − 1)

,

δ12 = (a − 1)−1
a∑

i=1

[∫
xdAi(x) −

∫
xdA·(x)

]2

.

Assume that lim sup(ab)−1
∑a

i=1

∑b
j=1 n−1

ij E[Xijm − E(Xijm)]4 < ∞. Then
as a → ∞,

√
a (FX(A) − 1) d→ N

(
lim

a→∞

δ12

σ2
A

, lim
a→∞

τA + φA

σ4
A

)
regardless of whether b and the nij ≥ 2 stay bounded or tend to infinity,
provided minij{nij} and maxij{nij} are of the same order.

Remark 2.1. If the fourth moments of the Xijk are uniformly bounded, the
first part of condition (2.4) becomes1

b

b∑
j=1

σ2
R,ij

nij

−2

1
b2

b∑
j=1

1
n3

ij

→ 0.
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2.3. Testing of no two-way interaction effects

Let A, B denote the two factors whose interactions are of interest. According
to the discussion in Section 2.1, a general testing theory for this testing problem
can be given in the context of a three-factor design where the third factor, C, en-
compasses the level combinations of all other factors. Let Xijkm, m = 1, . . . , nijk,
be independent observations from Fijk, i = 1, . . . , a, j = 1, . . . , b, k = 1, . . . , c.
Consider the decomposition

E(Xijkm) = µijk = µ + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk,

where
∑a

i=1 αi =
∑b

j=1 βj =
∑c

k=1 γk =
∑a

i=1(αβ)ij =
∑a

i=1(αγ)ik = 0,
∑b

j=1

(αβ)ij =
∑b

j=1(βγ)jk =
∑c

k=1(αγ)ik =
∑c

k=1(βγ)jk = 0, and
∑a

i=1(αβγ)ijk =∑b
j=1(αβγ)ijk =

∑c
k=1(αβγ)ijk = 0. We want to test the hypothesis H0(AB) :

(αβ)ij = 0, for all i, j.
When a, b are small and c is large, the test statistic is

QX(AB) = NW′C′
AB

(
CABV̂C′

AB

)−1
CABW, (2.5)

where W = (X̃11.., . . . , X̃1a.., . . . , X̃a1.., . . . , X̃ab..)′, CAB = Ma ⊗ Mb, where
Mb = (1b−1| − Ib−1), and V̂ = diag{η̂11, . . . , η̂1b, . . . , η̂b1, . . . , η̂ab} with η̂ij =

(N/c2)
c∑

k=1

S2
ijk,X/nijk.

When at least one of a, b are large, regardless of whether or not c is large,
the test statistic is based on FX(AB), where

FX(AB) =
MSTAB

MSE
, MSTAB = c

∑
i,j

(X̃ij.. − X̃i... − X̃.j.. + X̃....)2

(a − 1)(b − 1)
,

MSE =
1

abc

∑
i,j,k

S2
ijk,X

nijk
. (2.6)

We consider a sequence of local alternatives of the form

FR,ijk(x) = F0,ijk(x) + R(a, b, c,N)(AB)ij(x), (2.7)

where the means of the F0,ijk satisfy H0(AB) and (AB)ij are the deviations, at
the distribution level, from the null hypothesis. Assume that the

∫
xd (AB)ij(x)

are bounded uniformly for all i, j.
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Theorem 2.2.
(a) Let QX(AB) be given at (2.5), and consider the alternatives given at (2.7)

with R(a, b, c,N) = N−1/2. Let σ2
R,ijk be the variance of FR,ijk, and assume

that ∀i, j,(
1
c

c∑
k=1

σ2
R,ijk

nijk

)−2
1
c

√√√√1
c

c∑
k=1

1
n6

ijk

→0, lim sup
c→∞

c−1
c∑

k=1

E2[(Xijkm−E(Xijkm))4]<∞.

(2.8)
Then as c → ∞, if a, b stay bounded, regardless of whether the nijk ≥ 2 are
large or small,

QX(AB) d→χ2
(a−1)×(b−1)(δ21), where δ21 = lim

c→∞
G′C′

AB

(
CABV̂C′

AB

)−1
CABG,

and G =
(∫

xd (AB)11(x), . . . ,
∫

xd (AB)ab(x)
)′.

(b) Let FX(AB) be given at (2.6), and consider the local alternative given at (2.7)
with R(a, b, c,N) = (ab)−1/4c−1/2. Assume lim sup(abc)−1

∑
i,j,k n−1

ijkE[Xijkm−
E(Xijkm)]4 < ∞. Let τAB = (τ2

1 + τ2
2 + τ2

3 )1/2/σ2
AB, where

τ2
1 =

2
b2c2a

a∑
i=1

b∑
j=1

c∑
k=1

σ4
R,ijk

n2
ijk(nijk − 1)

,

(2.9)

τ2
2 =

2(b − 2)
ab(b − 1)2c2

a∑
i=1

b∑
j=1

( c∑
k=1

σ2
R,ijk

nijk

)2
,

τ2
3 =

2
ab2(b − 1)2c2

a∑
i=1

( b∑
j=1

c∑
k=1

σ2
R,ijk

nijk

)2
,

(2.10)

σ2
AB =

1
abc

a∑
i=1

b∑
j=1

c∑
k=1

σ2
R,ijk

nijk
.

Then, regardless of whether nijk ≥ 2 and c are large or small provided that
minijk{nijk} and maxijk{nijk} are of the same order,

√
ab(FX(AB)−1) d→N

(
lim

max{a,b}→∞

δ22

σ2
AB

, lim
max{a,b}→∞

bτ2
AB

)
, as max{a, b}→∞,

where

δ22 =
1

(a−1)(b−1)

∑
i,j

[ ∫
xd(AB)ij(x)−

∫
xd(AB)i·(x)

−
∫

xd(AB)·j(x)+
∫

xd(AB)··(x)
]2

.
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Remark 2.4. Consistent estimators of τ2
i , i = 1, 2, 3, and σ2

AB can be obtained
by replacing σ2

R,ijk with the sample variances, and replacing σ4
R,ijk by an unbiased

estimator σ̂4
R,ijk. In cases that at least four replications are available, σ̂4

R,ijk =
[4P 4

nij
]−1

∑
k1 6=k2 6=k3 6=k4

(Xijk1 − Xijk2)
2(Xijk3 − Xijk4)

2 can be used, where P 4
nij

is the number of permutations of size 4 from nij distinct objects. The proof
can be achieved by showing that the variance of the estimator of τ2

i converges
to 0 and the expectation converges to τ2

i . This is straightforward by noticing
that the sample variances and σ̂4

R,ijk are unbiased estimators of σ2
R,ijk and σ4

R,ijk,
respectively (see the proof of Lemma A.4 for similar arguments). When some
replications are less than four but at least two, unbiased estimation of σ4

R,ijk can
be achieved by exploiting patterns of heteroscedasticity, e.g., σR,ijk = σR,jk, for
all i. In absence of such patterns, we recommend a bias correction technique
such as the bootstrap or jackknife. When replications are at least four, the
performance with both unbiased estimators and bias correction procedures are
evaluated in simulation studies that yield very close results. It should be noted
that the computation using bias corrected estimators of the σ4

R,ijk is much faster
than that using unbiased estimators.

2.4. Testing of no three-way interaction effects

Let A, B and C denote the three factors whose interactions are of interest.
According to the discussion in Section 2.1, a general testing theory for this testing
problem can be given in the context of a four-factor surrogate design where the
fourth factor, D, encompasses the level combinations of all other factors. Let
Xijklm, m = 1, . . . , nijkl, be independent observations from Fijkl, i = 1, . . . , a,
j = 1, . . . , b, k = 1, . . . , c, l = 1, . . . , d. Consider the decomposition

E(Xijklm) = µijkl = µ+αi+βj+γk+δl+(αβ)ij+(αγ)ik+(αδ)il+(βγ)jk+(βδ)jl

+(γδ)kl + (αβγ)ijk + (αβδ)ijl + (βγδ)jkl + (αγδ)ikl + (αβγδ)ijkl,

where
∑a

i=1 αi =
∑b

j=1 βj =
∑c

k=1 γk =
∑d

l=1 δl = 0;
∑a

i=1(αβ)ij =
∑b

j=1(αβ)ij

= 0, and similar constraints for all the other two-way interaction effects;∑a
i=1(αβγ)ijk =

∑b
j=1(αβγ)ijk =

∑c
k=1(αβγ)ijk = 0, and similar constraints for

all the other three-way interaction effects; and
∑a

i=1(αβγδ)ijkl =
∑b

j=1(αβγδ)ijkl

=
∑c

k=1(αβγδ)ijkl =
∑d

l=1(αβγδ)ijkl = 0. We want to test the hypothesis
H0(ABC) : (αβγ)ijk = 0 for all i, j, k.

When a, b, c are small and d is large, the test statistic is

QX(ABC) = NW′C′
ABC

(
CABCV̂C′

ABC

)−1
CABCW, (2.11)

where W = (X̃111.., . . . , X̃11c.., X̃121.., . . . , X̃12c.., . . . , X̃ab1.., . . . , X̃abc..)′, CABC =
Ma ⊗Mb ⊗Mc with Ma = (1a−1| − Ia−1), and V̂ = diag{η̂111, . . . , η̂11c, η̂121, . . .,
η̂12c, . . . , η̂ab1, . . . , η̂abc} with η̂ijk = (N/d2)

∑d
l=1(S

2
ijkl,X/nijkl).
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When at least one of a, b, c is large, and regardless of whether d is small
(including zero, as is the case in a three-way design) or large, the test statistic is
FX(ABC) = MSTABC/MSE, where

MSTABC =
∑
i,j,k,l

(
X̃ijk.. − X̃ij... − X̃i.k.. − X̃.jk.. + X̃i.... + X̃.j... + X̃..k.. − X̃.....

)2

(a − 1)(b − 1)(c − 1)
,

MSE =
1

abcd

∑
i,j,k,l

S2
ijkl,X

nijkl
.

We consider a sequence of local alternatives of the form

FR,ijkl(x) = Fijkl(x) + R(a, b, c, d,N)(ABC)ijk(x), (2.12)

where the means of the F0,ijkl satisfy H0(ABC) and (ABC)ijk are the devi-
ations, at the distribution level, from the null hypothesis. Assume that the∫

xd (ABC)ijk(x) are uniformly bounded for all i, j, k.

Theorem 2.3.
(a) Let QX(ABC) be the statistic given at (2.11), and consider the alternative

given at (2.12) with R(a, b, c, d,N) = N−1/2. Let σ2
R,ijkl be the variance of

FR,ijkl, and assume that ∀i, j, k,(
1
d

d∑
l=1

σ2
R,ijkl

nijkl

)−2
1
d

√√√√1
d

d∑
l=1

1
n6

ijkl

→ 0,

(2.13)

lim sup
d→∞

1
d

d∑
l=1

E2[(Xijklm − E(Xijklm))4] < ∞,

Then as d → ∞, if a, b, c stay bounded, regardless of whether the nijk ≥ 2
are large or small,

QX(ABC) d→ χ2
(a−1)×(b−1)×(c−1)(δ31),

where δ31 = lim
d→∞

U′C′
ABC

(
CABCV̂C′

ABC

)−1
CABCU,

with U =
(∫

xdC111(x), . . . ,
∫

xdCabc(x)
)′

.

(b) Consider the local alternative given at (2.12) with R(a, b, c, d,N) = (abc)−1/4d−1/2.
Assume lim sup(abcd)−1

∑
i,j,k,l n

−1
ijklE[Xijklm−E(Xijklm)]4 < ∞. Let τABC1 =

(τ4 + τ5 + τ6 + τ7 + τ8)1/2/σ2
ABC , where

τ4 =
2

ac2b2d2

∑
i,j,k,l

σ4
R,ijkl

n2
ijkl(nijkl − 1)

, τ5 =
2(b − 2)

ac2d2b(b − 1)2
∑
i,j,k

(
d∑

l=1

σ2
R,ijkl

nijkl

)2

,
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τ6 =
2

ac2b2d2(b − 1)2
∑
i,k

∑
j,l

σ2
R,ijkl

nijkl

2

, σ2
ABC =

1
abcd

∑
i,j,k,l

σ2
R,ijkl

nijkl
,

τ7 =
2n2(a, b, c, d)

ac2d2(b − 1)2(c − 1)2
∑
i,j

c∑
k 6=k′

∑
l,l′

σ2
R,ijkl

nijkl

σ2
R,ijk′l′

nijk′l′
,

τ8 =
2n2(a, b, c, d)

ab2c2d2(b − 1)2(c − 1)2

a∑
i=1

∑
j,j′

c∑
k 6=k′

∑
l,l′

σ2
R,ijkl

nijkl

σ2
R,ij′k′l′

nij′k′l′
.

Then as max{a, b, c} → ∞, regardless of whether the nijkl(≥ 2), and d are
small or large provided that minijkl{nijkl} and maxijkl{nijkl} are of the same
order,
√

abc(FX(ABC) − 1) d→ N

(
lim

max{a,b,c}→∞

δ32

σ2
ABC

, lim
max{a,b,c}→∞

bcτ2
ABC1

)
,

where

δ32 =
1

(a − 1)(b − 1)(c − 1)

∑
i,j,k

[ ∫
xd(ABC)ijk(x) −

∫
xd(ABC)ij·(x)

−
∫

xd(ABC)·jk(x) −
∫

xd(ABC)i·k(x) +
∫

xd(ABC)i··(x)

+
∫

xd(ABC)·j·(x) +
∫

xd(ABC)··k(x) −
∫

xd(ABC)···(x)
]2

.

2.5. Analytical comparison of the proposed FX(·) statistics with the
ANOVA F-test

In this subsection, we clarify the relationship of the proposed FX(·) statis-
tics with the ANOVA F-test for balanced homoscedastic normal data. In this
case, all our FX(·) type statistics are equivalent to the ANOVA F-statistics for
corresponding hypotheses. The only difference in them lies in that the ANOVA
F -test uses percentiles from the F distribution, while the proposed procedure
uses percentiles from the normal distribution based on Theorems 2.1−2.3. To
illustrate the connection between the two procedures, consider Gaussian data
from a balanced design with constant variance σ2. Let U1 and U2 be the
sums of squares for the hypotheses and error, respectively, divided by σ2 un-
der the local alternatives. Then U1 ∼ χdfh

(δ), U2 ∼ χdfe , where dfh and dfe are
the degrees of freedom for the hypotheses and error respectively, and δ is the
noncentrality parameter calculated from corresponding local alternatives. Then
F = {U1/dfh}/{U2/dfe} ∼ Fdfh,dfe(δ). The power of the F-test at level α is

P (F > Cα) = P

(√
dfh(U1/dfh − U2/dfe)

U2/dfe
>

√
dfh(Cα − 1)

)
,
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where Cα is the 1−α percentile from the central Fdfh,dfe distribution. Note that
as dfe ≥ dfh → ∞, U2/dfe converges in probability to 1 and Y =

√
dfh(U1/dfh −

U2/dfe) has the approximate distribution N(δ/
√

dfh, 2 + 4δ/dfh + 2dfh/dfe). So

P (F > Cα) ≈ P (Y >
√

dfh(Cα − 1)). (2.14)

When the data are generated under the null hypothesis, the approximate distri-
bution is centered at 0 with variance 2 + 2dfh/dfe.

For power calculations under the local alternatives, with the uniformly bounded
condition for the elements in g in Theorem 2.1, G in Theorem 2.2, and U in The-
orem 2.3, we have δ/dfh = o(1). The power of the proposed tests based on FX(·)
statistics is equivalent to that from Z ∼ N(δ/

√
dfh, 2 + 2dfh/dfe). Thus the

asymptotic level and power of the two procedures coincide. For any finite dfh,
however, the term δ/dfh may not be negligible. As a consequence, the power
for the proposed procedure calculated from the asymptotic distribution may be
higher than the actual power of the ANOVA F-tests. The discussions in this
subsection only apply to homoscedastic balanced Gaussian data.

2.6. Techniques for obtaining the asymptotic distributions

As a tool for developing asymptotics in non-classical situations, Akritas and
Papadatos (2004) suggested a bold use of Hájek’s projection method applied to
the difference between the mean squares for treatment and the mean squares for
error, MST −MSE. Wang and Akritas (2006) followed Akritas and Papadatos
(2004) and extended the results to two-way designs. However application of this
technique, which involves writing MST −MSE in matrix form, becomes almost
intractable in the present multi-way setting.

Our approach partly adopts the projection idea in the sense that we decom-
pose only MST under the null hypothesis into an asymptotically negligible term
and one whose form is more amenable to asymptotic derivations. MSE is never
decomposed. As an illustration, consider MSTA given at (2.2). Under the null
hypothesis, we write MSTA = PA(e) + T ∗

A(e), where

PA(e) =
b

a

a∑
i=1

ẽ2
i.., T ∗

A(e) = − b

a(a − 1)

a∑
i6=i′

ẽi..ẽi′.., and eijk = Xijk−E(Xijk).

The term T ∗
A(e) can be ignored for the purposes of obtaining the asymptotic

distribution of FX(A) − 1 = (MSTA − MSE)/MSE in Theorem 2.1, since√
amin1≤i≤a,1≤j≤b{nij}T ∗

A(e) → 0 in probability. Note that the need to scale also
by min1≤i≤a,1≤j≤b{nij} stems from the fact that, if min1≤i≤a,1≤j≤b{nij} → ∞
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then MSE → 0 (see (2.2)). The results of these decompositions are given as
propositions in Section 4.1.

3. Numerical Results

Throughout the simulation studies in this section we use NP to denote the
proposed test procedures. Thus, NP denotes the QX(·) statistic when evaluating
the performance of the proposed procedure for testing of no main factor B effect,
and the FX(·) statistics when evaluating the performance of the proposed proce-
dures for the rest of the effects. In addition to the reported power simulations, we
also report the theoretical power calculated based on the asymptotic distribution
under local alternatives.

3.1. Simulation results for binomial and count data

In this subsection, we compare the proposed test with the deviance test and
the rank tests in Brunner and Puri (2001) for binomial and count data. Upon the
request of the reviewers, we also include ANOVA F-test in some of the simulation
settings. We consider designs with three factors, A, B and C, having 20, 2, and
20 levels respectively. The group sizes are n4,2,k = n8,2,k = n10,2,k = n13,1,k =
n15,2,k = n20,1,k = 5, n6,2,k = n9,1,k = n10,1,k = 6, for all k, and are 4 for
the rest of the groups. Since the deviance test from generalized linear models
is computationally very intense in this data setting (see Section 3.3), we used
1,000 simulation runs when the deviance test was included in the comparisons.
Otherwise the comparisons were based on 3,600 runs.

For the exponential family, the deviance of a model is equal to the likelihood
ratio statistic (for comparing the model under consideration with the saturated
model) multiplied by a dispersion parameter. The deviance test compares the
deviance from a model with the effect under consideration to that from the model
without the effect. The difference between the two deviances has approximately
a chi-square distribution with degrees of freedom equal to the difference in the
number of parameters estimated if the sample sizes are large. The deviance test
in our simulation is conducted in R by first fitting a generalized linear model with
command glm containing all main and interaction effects and then applying the
drop1 command with the specification of test=“Chisq” to do single term deletion
and obtain p-values based on chi-square distributions.

For count data, we generated observations from Poisson distributions with
means µijk equal to 1 with probability 1 − p/100, and given by the following
values with probability p/100:

(P1) µijk = 1 + iτ/a, under the alternatives of no main factor A effect;

(P2) µijk = 1 + jτ/b under the alternatives of no main factor B effect.



ASYMPTOTIC DISTRIBUTION THEORY 1355

Table 1. Rejection rates and power at level 0.05 for count data. The un-
derlined numbers without parentheses are the empirical power under the al-
ternative and those with parentheses are the asymptotic theoretical power.
‘NP’ refers to the QX(·) type statistic for the effect of factor B, and the FX(·)
type statistics for the rest of the hypotheses. ‘BP’ refers to the Brunner and
Puri (2001) test based on quadratic forms.

Xijkm effect GLM BP NP GLM BP NP GLM BP NP
τ = 0 τ = 0.2 τ = 0.4

Poisson A 0.099 0.046 0.070 0.069 0.372 0.469 0.096 0.965 0.990
(0.517) (0.999)

with B 0.076 0.046 0.038 0.077 0.045 0.048 0.068 0.052 0.055
mean AC 0.238 0.038 0.059 0.210 0.036 0.068 0.161 0.034 0.067
1 + iτ

a AB 0.098 0.049 0.072 0.096 0.049 0.068 0.082 0.051 0.078
ABC 0.402 0.035 0.065 0.334 0.039 0.063 0.262 0.037 0.068

A 0.099 0.046 0.070 0.076 0.051 0.046 0.077 0.046 0.067
Poisson B 0.076 0.046 0.038 0.087 0.750 0.779 0.077 0.998 1.000

(0.775) (0.999)
with AC 0.238 0.038 0.059 0.213 0.038 0.061 0.162 0.032 0.053
mean AB 0.098 0.049 0.072 0.084 0.052 0.052 0.081 0.049 0.078
1 + jτ

b ABC 0.402 0.035 0.065 0.320 0.041 0.069 0.245 0.034 0.054

The results are reported for p = 100 with τ = 0, 0.2, 0.4, and p = 5 with τ =
3, 6, 9, 12. The data with p = 5 refers to the case that the majority of the samples
are from a pure distribution and 5% of the samples are contaminated.

For binomial data, we considered two settings. In the first setting, we gen-
erated Bernoulli observations with success probabilities πijk given by

(B1) πijk = 0.2 + 0.8iτ/a, for τ = 0, 0.2, 0.4, 0.6;

(B2) πijk = 0.2 + 0.8jτ/b, for τ = 0.1, 0.15, 0.2.

In the second setting, we generated observations from a mixture of two binomial
distributions with 5 trials. For p% of the samples, the success probability took
value πijk = 0.2+0.72i/a for the alternative hypothesis of no main factor A effect
and πijk = 0.2+0.72j/b for the alternative hypothesis of no main factor B effect.
For the rest of the samples, the success probability was 0.2. We let p ranges from
5% to 10% so that only a small percentage of the samples was contaminated.

Tables 1 and 2 give the rejection rates at level α = 0.05 for testing the
hypotheses of no main effect of factor A, B, and no A-B, A-C, and A-B-C in-
teraction effect when the data were Poisson under settings (P1) and (P2) with
contamination proportion p = 100 and p = 5, respectively. Table 3 presents the
rejection rates at level α = 0.05 for Bernoulli distributions (B1), (B2). The un-
derlined numbers in Tables 1 and 3 are power estimates under the alternatives,
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Figure 1. Power Comparison for no main factor A and no main factor B
effects at level 0.05 for the proposed tests (NP.A and NP.B, respectively)
and Brunner and Puri (2001) tests (BP.A and BP.B, respectively) based on
3,600 runs. For the test of no main factor B effect, the data Yijkm were
generated from Binomial distribution with 5 trials and success probability
πij , where πij take value 0.2 + 0.72j/b with probability p/100, and 0.2 with
probability 1 − p/100. For the test of no main factor A effect, the data
Yijkm were generated from Binomial distribution with 5 trials and success
probability πij , where πij take value 0.2 + 0.72i/a with probability p/100,
and 0.2 with probability 1 − p/100. The value of p ranges from 0 to 10%.
Value p = 0 corresponds to the null hypotheses. The listed values and plots
present the rejection rates. The proposed tests demonstrate much better
power than Brunner and Puri (2001) to detect the contaminations in the
sample.

while the rest of the values in these two tables are type I error estimates. Figure
1 gives the power estimate under the mixture of two binomial distributions.

For the Poisson count data, the deviance tests tend to be very liberal for
smaller values of τ , especially for hypotheses involving a high-dimensional pa-
rameter. Specifically, for τ values range from 0 to 0.4 in Table 1, the deviance
test had type I errors at level 0.05 ranging from 0.245 to 0.402 for no A-B-C
three-way interaction effect; from 0.161 to 0.238 for no A-C interaction effect;
from 0.081 to 0.098 for no A-B interaction effect; from 0.077 to 0.099 for no
main factor A effect; from 0.068 to 0.077 for no factor B effect. On the contrary,
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Table 2. Rejection rates at level 0.05 for the proposed tests (NP), Brunner
and Puri (2001) tests (BP), and ANOVA F-tests when data were generated
under Poisson mixture based on 3,600 runs. The data Yijkm in the top panel
labeled with mA were generated from Poisson distribution with mean λij ,
where λij take value 1 + iτ/a with probability 0.05, and 1 with probability
0.95. For the bottom panel labeled with mB , the data Yijkm were generated
from Poisson distribution with mean λij , where λij take value 1+ jτ/b with
probability 0.05, and 1 with probability 0.95. Hence, the data in the top
and bottom panels are under the alternative hypotheses for main effect of
A and B respectively. The row with τ = 0 are type I error estimates. The
underlined values are power estimates. The proposed tests have good power
while the Brunner and Puri tests or ANOVA F-tests show no power to detect
the alternatives.

τ NP BP ANOVA F-tests
A B AC AB ABC A B AC AB ABC A B AC

0 0.070 0.038 0.059 0.072 0.065 0.046 0.046 0.038 0.049 0.035 0.060 0.054 0.058
3 0.237 0.043 0.064 0.070 0.065 0.077 0.045 0.036 0.051 0.040 0.084 0.028 0.077

mA 6 0.614 0.041 0.059 0.066 0.067 0.088 0.044 0.037 0.048 0.039 0.119 0.009 0.118
9 0.839 0.056 0.048 0.071 0.069 0.087 0.058 0.036 0.049 0.036 0.151 0.002 0.138

12 0.910 0.051 0.052 0.071 0.067 0.075 0.043 0.037 0.046 0.035 0.164 0.000 0.157

3 0.068 0.454 0.066 0.069 0.066 0.046 0.115 0.041 0.054 0.040 0.025 0.053 0.001
mB 6 0.067 0.827 0.058 0.068 0.062 0.049 0.073 0.038 0.049 0.039 0.012 0.060 0.000

9 0.063 0.935 0.051 0.072 0.055 0.047 0.058 0.031 0.052 0.043 0.008 0.071 0.000
12 0.063 0.963 0.051 0.070 0.052 0.046 0.050 0.038 0.047 0.036 0.004 0.081 0.000

the proposed test had type I errors ranging from 0.054 to 0.068 for no A-B-C
interaction effect; from 0.052 to 0.078 for no A-B interaction effect; from 0.053
to 0.068 for no A-C interaction effect; 0.046 to 0.07 for no factor A effect; 0.038
to 0.055 for no factor B effect. The Brunner and Puri (2001) tests tended to
be conservative, especially when testing for no A-C or A-B-C interaction effects
where the achieved type I error rate ranged between 0.032 and 0.041 for Poisson
count data and between 0.025 and 0.041 for binomial data. A possible explana-
tion for this lies in the fact that these two hypotheses involve a high-dimensional
parameter while the Brunner and Puri (2001) tests are developed for models with
low-dimensional parameters.

Except for the test of no main factor B effect, the type I error estimates for
the deviance test in binary data were much worse in that some error estimates
were close to 1. Under the null hypotheses, the deviance test had type I error
ranging from 0.925 to 0.998 for no A-B-C interaction effect; 0.885 to 0.941 for
no A-C interaction; 0.127 to 0.263 for no A-B interaction; 0.111 to 0.140 for no
factor A effect; and from 0.019 to 0.036 for no factor B effect. The proposed tests
had type I error estimates close to the true level in nearly all data generation
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Table 3. Rejection rates and power at level 0.05 for binary data. The data
for the top panel labeled with 1 were generated from Bernoulli distribution
with success probability 0.2+0.8iτ/a, and those for the bottom panel labeled
with 2 were generated from Bernoulli distribution with success probability
0.2+0.8jτ/b. The underlined numbers without parentheses are the empirical
power under the alternative and those with parentheses are the asymptotic
theoretical power. The table legend is same as those in Table 1.

effect GLM BP NP GLM BP NP GLM BP NP BP NP BP NP

τ = 0 τ = 0.1 τ = 0.12 τ = 0.15 τ = 0.2

A 0.111 0.049 0.072 0.129 0.399 0.462 0.142 0.554 0.628 0.801 0.842 0.980 0.989

(0.494) (0.998)

B 0.019 0.042 0.047 0.029 0.049 0.049 0.030 0.047 0.047 0.052 0.052 0.042 0.050

1 AC 0.911 0.025 0.072 0.923 0.025 0.054 0.927 0.031 0.060 0.032 0.058 0.041 0.052

AB 0.127 0.051 0.065 0.190 0.047 0.066 0.210 0.054 0.074 0.052 0.070 0.049 0.079

ABC 0.925 0.030 0.061 0.988 0.024 0.055 0.991 0.025 0.047 0.029 0.054 0.032 0.052

τ = 0 τ = 0.075 τ = 0.1 τ = 0.15 τ = 0.2

A 0.111 0.049 0.072 0.118 0.038 0.063 0.120 0.046 0.060 0.049 0.075 0.047 0.087

B 0.019 0.042 0.047 0.038 0.538 0.538 0.039 0.767 0.757 0.977 0.967 0.999 0.999

(0.529) (0.757) (0.971) (0.999)

2 AC 0.911 0.025 0.072 0.928 0.028 0.052 0.941 0.033 0.068 0.035 0.070 0.039 0.057

AB 0.127 0.051 0.065 0.198 0.035 0.058 0.227 0.052 0.065 0.047 0.080 0.048 0.080

ABC 0.925 0.030 0.061 0.991 0.029 0.061 0.992 0.032 0.063 0.037 0.063 0.040 0.070

schemes.
Table 2, Figure 1 and the underlined values in Tables 1 and 3 are the power

estimates under the alternatives for the test of no main factor A and factor
B effects. The GLM deviance tests are not included in Table 2 or Figure 1
since they failed to maintain reasonable type I error, as discussed in previous
two paragraphs, and had consistently low power with both the binomial and
count data (see the underlined values in Tables 1 and 3). The proposed
tests and Brunner and Puri (2001) tests have similar power in Tables 1 and 3.
However, for the mixture alternatives of Table 2 and Figure 1, where only a
small percentage of the observations are generated under non-null mean values,
the Brunner and Puri (2001) rank tests have very low power. This is reasonable
since rank procedures are relatively less sensitive to small percentage of large
values. On the contrary, the proposed tests exhibited good power to detect these
mixture-type alternatives.

Upon the request of the reviewers, we also included the ANOVA F -tests in
power comparison for the same data generated from binomial or Poisson mixture
models (Table 2 and Figure 1). The performance of the F -tests was similar for
the binomial and Poisson models and we only summarize the patterns under the
Poisson mixtures. When the data were under the alternatives with main factor
A effects, all the F -tests on effects not related to factor A (such as the test of
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no main B effect in Table 2) had very conservative type I error estimates, while
those tests of effects related to factor A had rejection rates range between 0.077
and 0.164. Similarly, when the data were under the alternatives with main B
effects, the F -tests of no main A or A-C interaction effects had conservative type
I errors and almost no power for the test of no main B effects. The F -tests of
no A-B and A-B-C interaction effects had similar rejection rates as the column
for the A-C interaction effect in the mA data setting and as the column for
main B effect in the mB data setting. We omitted them from the table. For the
binomial data, the type I error for the F -tests of no main factor A or B effects and
their power estimates when 10% of the data were generated from corresponding
mixture alternatives are given in Figure 1. It is clearly seen that the F -tests had
almost no power to detect these alternatives.

In summary, the proposed tests constitute a useful addition to the testing
methodology, especially for detecting mixture-type alternatives having a small
percentage of non-null signals. Such alternatives arise in applications such as
monitoring disease outbreaks.

3.2. Simulation results for continuous data

We first compare the performance of the proposed tests and the ANOVA F -
test in designs with three factors and continuous data. Factor A has a = 20, 30,
or 50 levels, while factors B and C have b = 2 and c = 20 levels, respectively. The
results are summarized in Tables 4 and 5. With the exception of the right panel
of Table 5, the designs in both tables are unbalanced, though the unbalancedness
in Table 5 is mild. The cell sample sizes are given in the captions. All simulation
results in this section were based on 2,000 runs.

Table 4 gives the achieved type I error rates, at nominal level of significance
α = 0.05, with heteroscedastic data. The ANOVA F -test was surprisingly liberal
for all the hypotheses and all three values of a considered. The average (over
the three values of a) type I error rates for H0(AC) and H0(ABC) was over
0.4, while that for H0(B) was nearly 1. In contrast, the proposed nonparametric
tests had reliable type I error estimates for all cases when a = 30 or 50. For
the smaller value of a = 20, the proposed test had slightly elevated type I error
for H0(A) and H0(AC). Both the unbalancedness and heteroscedastic variances
contributed to the poor performance of the ANOVA F -test. Due to the failure of
the ANOVA F -test to achieve a reasonably accurate type I error rate, no power
comparisons were performed under the setting of Table 4.

Table 5 reports the rejection rates, both under the null and alternatives,
for testing H0(A), H0(AC), and H0(B) for the proposed tests and the ANOVA
F -tests when a = 20, b = 2 and c = 20. The cell sizes are given in the caption
of the table. The theoretical power for the proposed test using the asymptotic
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Table 4. Type I error estimate at level α = 0.05, b=2, c=20, Xijkm ∼
N(0, (4jk/bc)2). The cell sizes used are as follows: When a = 20, ni1k = 12
for i = 1, . . . , 10, and all k = 1, . . . , 20; ni1k = 10 for i = 11, and k =
1, . . . , 20; and ni1k = 5 for i = 12, . . . , 20; ni2k = 4, for all i, k. When
a = 30, ni1k = 12 for i = 1, . . . , 10, and all k = 1, . . . , 20; ni1k = 10 for
i = 11, and k = 1, . . . , 20; and ni1k = 5 for i = 12, . . . , 30; ni2k = 4, for
all i, k. When a = 50, ni1k = 12 for i = 1, . . . , 10, and all k = 1, . . . , 20;
ni1k = 10 for i = 11, and k = 1, . . . , 20; and ni1k = 5 for i = 12, . . . , 50;
ni2k = 4, for all i, k. ‘NP’ refers to the QX(·) type statistic for H0(B), and
the FX(·) type statistics for the rest of the hypotheses.

H0 a = 20 a = 30 a = 50
ANOVA NP ANOVA NP ANOVA NP

H0(A) 0.097 0.070 0.099 0.066 0.107 0.066
H0(AB) 0.130 0.050 0.122 0.059 0.093 0.049
H0(AC) 0.491 0.079 0.469 0.061 0.475 0.067
H0((ABC) 0.381 0.069 0.432 0.065 0.429 0.059
H0(B) 0.999 0.066 0.999 0.063 0.999 0.058

Table 5. Empirical and asymptotic theoretical power at level α = 0.05.
a=20, b=2, c=20. For the left panel, n4,2,k = n8,2,k = n10,2,k = n13,1,k =
n15,2,k = n20,1,k = 5, n6,2,k = n9,1,k = n10,1,k = 6, for all k. The rest of
the cell sizes are 4. NP.alt is theoretical power using asymptotic distribution
under the alternatives. For the right panel, the cell sizes are 4. ANOVA.alt
and NP.alt are the theoretical power of the ANOVA F-test and the proposed
test, respectively, calculated using the true variance.

H0(A) H0(B) H0(AC)
Normal

(
iτ
2a , (4jk)2

(bc)2

)
Normal

(
jτ
4b , (4jk)2

(bc)2

)
Normal

(
ikτ
ac , 1

)
τ ANOVA FX (A) NP.alt ANOVA QX (B) NP.alt τ ANOVA ANOVA.alt FX (AC) NP.alt

0 0.048 0.064 0.050 0.060 0.062 0.050 0 0.045 0.05 0.056 0.050
0.5 0.180 0.223 0.204 0.165 0.164 0.161 0.5 0.076 0.074 0.096 0.074
1 0.763 0.811 0.945 0.490 0.485 0.485 1 0.176 0.188 0.206 0.195
1.5 0.993 0.995 1.000 0.823 0.820 0.822 1.5 0.500 0.499 0.548 0.548

2 0.860 0.871 0.891 0.932
3 1.000 1.000 1.000 1.000
4

distribution under corresponding alternatives is given in columns with heading
NP.alt. The corresponding theoretical powers of the F -test is reported only in the
homoscedastic setting. The left panel of Table 5 corresponds to heteroscedastic
case for hypothesis H0(A) with data generated from N(iτ/(2a), [4jk/(bc)]2), and
for H0(B) with data generated from N(jτ/(4b), [4jk/(bc)]2. The proposed test
had comparable power to the F -test for the considered alternatives to H0(B), and
slightly better power than the F -test for the considered alternatives to H0(A).
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In the homoscedastic setting of testing for H0(AC) (right panel of Table 5),
the ANOVA F-test is the UMPI test for any given values of a and c. In this
setting, however, the proposed FX() statistic is equivalent to the ANOVA F -test
(see Section 2.5). The slight difference in the empirical powers of the two tests is
due to the fact that the NP test uses the limiting normal distribution while the
ANOVA F -test uses its exact F-distribution (see Section 2.5). Specifically, the
ANOVA F -statistic has noncentrality parameter

δ(τ) =
τ2nb

a2c2

∑
i,k

[
ik − i(c + 1)

2
− k(a + 1)

2
+

(a + 1)(c + 1)
4

]2

= O(acτ2). (3.1)

Thus, the power of the ANOVA F-test is equivalent to that calculated from
N(δ(τ)/

√
ac, 4δ(τ)/(ac) + 2 + 1/(n − 1)). On the other hand, the asymptotic

power of the proposed test is calculated from N(δ(τ)/
√

ac, 2+1/(n−1)). Because
δ(τ)/(ac) = o(1) under the uniformly bounded condition for large a and c, the
asymptotic distributions, and thus the power functions, of the two tests coincide.
For the values of a, c of Table 5, the differences in the variances are 0.061,
0.245, 0.551, 0.980, and 2.205, for τ = 0.5, 1.0, 1.5, 2.0, 3.0 respectively. This
explains the difference between the empirical and asymptotic power observed for
the proposed test.

Next, we compare the test by Brunner, Dette, and Munk (1997) (BDM)
with the proposed Chi-square test on data generated from Gamma distribution
as follows (the τ values range from 0 to 1.7):

Yijkm = Xijkm − (a + 1)j + τj/b, where Xijkm ∼ Gamma(ij, 2),

for i = 1, . . . , a = 20; j = 1, 2, 3, 4; k = 1, . . . , 20; and nijk = 6 − j.

Value τ = 0 corresponds to the null hypothesis of no main factor B effect. This
is a highly heteroscedastic case as the cell variances 4ij range from 4 to 160.
The estimated power at level 0.01 based on 2,000 runs is presented in Figure 2
with numerical values given inside of the plot. Both tests had accurate type I
error estimates. As τ increases, the proposed test clearly had much better power
than the BDM test. In fact, the power of the BDM test was only about half of
that for the proposed test. The loss of power for BDM test was also noticed in
some cases by Brunner, Dette, and Munk (1997) in their simulations. However,
it was only marginal there because the number of cells was not large and they
used Normal data. Since the derivation of the BDM test is based on the normal
approximation of the cell means, the approximate F−distribution of the final
test statistic could be far from the true distribution when the data are highly
skewed and only very few observations per cell are available. This discrepancy is
amplified as the number of cells increases.
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Figure 2. Comparison of the estimated power at level 0.01 from 2,000 runs
for the test of no main factor B effect when the data were generated from
Yijkm = Xijkm − j(a + 1) + τj/b, where Xijkm ∼ Gamma(ij, 2). The null
hypothesis corresponds to τ = 0. The 2nd and 3rd columns of the numerical
values in the plot are the rejection rates for each τ value for the BDM
test (Brunner, Dette and Munk 1997) and the proposed test (NP). The last
column is the average power calculated based on the asymptotic distribution
under the local alternatives in part (a) of Theorem 2.1. The power of BDM
test is only about half of that for NP.

Remark 5.1. The simulation results reported for NP used the unbiased esti-
mator for σ4

ijk as suggested in Remark 3.4 when nijk ≥ 4, and the Jackknife
bias-corrected estimator of σ4

ijk when 2 ≤ nijk < 4.

3.3. Comparison of computational time

All simulations in this manuscript were carried out in R 2.7.1. Commands
lm and glm were used for fitting the ANOVA models and generalized linear
models, respectively, and command drop1 was used to obtain the deviance test
from the fitted generalized linear models. The BDM test and proposed tests are
programmed in R.

When applied to the traditional ANOVA designs (i.e., small number of factor
levels) the needed computational time for the usual tests is almost negligible,
even with large cell sample sizes. For example, in a three-way design with a = 4,
b = 2, c = 5, and balanced sample size n = 140 (total 5,600 response values),
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the average computing time (in seconds, with standard error in parenthesis) for
one single test based on 1, 000 runs was 0.026 (2.7 × 10−4) for the BDM test of
no main factor B effect, 0.136 (4.7 × 10−4) for the ANOVA F-test (for all main
effects and their interactions), and 1.357 (2.4 × 10−3) for the generalized linear
models using the deviance test (for all effects, among which 0.180 second was for
the glm model fit and 1.176 second was for the deviance test). This performance
was observed using a PC with Intel Pentium(R) M processor 1.86 GHz, 1.00GB
of RAM.

The computational time to carry out a test in HANOVA increased dramat-
ically as the number of factor levels increased. Consider 5,600 response values
as above, but with a = 20, b = 4, c = 20, and nijk = 6 − j, where i = 1, . . . , a,
j = 1, 2, 3, 4, k = 1, . . . , c. Using exactly the same R-code and the same com-
puter, the average computing time (in seconds) for one single test based on 100
runs was 18.74 (0.01) for the BDM test of no main factor B effect, 82.03 (0.181)
for the ANOVA F-test, and 2,687.74 (2.997) for the deviance test with generalized
linear models (among which 411.17 seconds was used for fitting the generalized
linear models and 2,276.57 seconds for the deviance test). The average compu-
tational time for the proposed NP in this data setting was 0.085 (0.001) for no
main factor B effect, and 9.555(0.045) for the tests of all main and interaction
effects reported.

Thus, when applied to HANOVA designs, the tests developed under the
traditional settings took much more computational time, in addition to their
reported disadvantages in the form of inaccurate type I error rate and low power.
In contrast, the proposed tests were computationally more efficient, in addition
to achieving fairly accurate type I error rates and good power.

3.4. Analysis of stress response gene expression data

In this subsection, we apply our tests on gene expression data to study Ara-
bidopsis thaliana responses to abiotic stresses. The expression data for shoot and
root tissue under nine stresses (cold/freezing, osmotic, salt, drought, genotoxic,
oxidative, UV-B, wounding, heat) and their corresponding controls were down-
loaded from the Bio-Array Resource (Toufighi et al. (2005)). The experiment
under each stress was conducted at six time points ( 0.5h, 1 h, 3h, 6h, 12h, and
24h) with two replications per time point. Due to the small plant size, multiple
plants were often used to produce enough material for the microarray chip of
one sample. So the observations at different time points are independent. We
focus our discussion on the analysis of gene PLDα3 (At5g25370), a gene that
potentially catalyzes lipid reactions in response to stress.

The median expression levels over all stress categories at different time points
are given in the left panel of Table 6. It can be seen that the expression level of
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Table 6. Left panel: tissue time interaction; Right panel: interaction of
tissue with stress vs control contrast.

Time Root Shoot Stress Root Shoot
0.5 h 14.41 3.82 Cold -2.73 1.63
1.0 h 12.70 1.85 Drought -1.50 2.25
3.0 h 13.12 2.25 Genotoxic -2.08 2.13
4.0 h 13.32 2.97 Heat -0.82 0.76
6.0 h 15.41 1.87 Osmotic -0.80 3.81
12.0 h 10.98 5.05 Oxidative -1.99 1.27
24.0 h 14.97 3.00 Salt -2.13 2.32

UV-B -2.72 0.53
Wounding -2.42 3.84

Figure 3. Stress and tissue interactions.

this gene in the root tissue continued to increase from one to six hours following
the start of the experiment, then dropped to a low at twelve hours. On the other
hand, it reached a high in the shoot tissue 12 hours after the experiment started.
This suggests an interaction effect between tissue and time. The right panel of
Table 6 gives the contrast of the median expression levels for each stress with
its control for root and shoot tissues separately. It is clear that all the median
expressions of the stresses are higher than their control in the root tissue, but,
completely opposite for the shoot tissue. This suggests a strong tissue effect.
The plot beside Table 6 is the median expression of the contrast between control
and stress for each tissue type with the tissue effect removed. The plot indicate a
stress-tissue interaction effect. We applied part (a) of Theorem 2.1 for the main
effect of tissue and time, part (b) of Theorem 2.1 of Theorem 2.2 (b) of Theorem
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Table 7. p−values for all effects for gene PLDα3.

Effect ANOVA NP
stress 0.552 0.888
tissue 0.000 0.000
time 0.011 1.47×10−9

stress-tissue 0.869 0.095
stress-time 0.322 0.959
time-tissue 0.132 0.000

time-tissue-stress 0.988 0.971

2.2 for the stress-tissue and stress-time interaction, and Part (b) of Theorem 2.3
for the time-tissue-stress interaction effects. The p−values along with those from
the ANOVA type III sum of squares are reported in Table 7.

Both ANOVA and NP detected a highly significant tissue effect. The NP
found significant tissue-time interaction effect but the ANOVA failed to detect
it. The NP also identified a highly significant time effect (the median expression
levels at the six time points are 10.73, 7.98, 8.10, 8.06, 8.46, 7.48, and 9.43
respectively). The ANOVA test of no main time effect was not significant at the
0.01 level. Although the p−value of stress-tissue interaction effect from the NP
is small, it is not significant. For all other effects, NP and ANOVA gave similar
results.

3.5. Other potential applications

In the previous subsection, we gave an example of the analysis of stress
response gene expression data for Arabidopsis under many different experimen-
tal conditions over multiple time points. This is a typical example of mod-
ern data collection technology. Beyond Arabidopsis, gene expression data from
many other organisms such as drosophila melanogaster, yeast, Hessian fly from
many genotypes under many experimental conditions are available to be com-
pared for novel gene discovery or identification of important genes related to
certain metabolism. Such data can be downloaded from public databases such
as the Stanford Microarray Database (http://smd.stanford.edu/) and NCBI
database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed). Due to
the large number of experimental conditions and a small number of replications,
traditional methods have inaccurate type I error rates and low power for these
data. This paper offers a set of tools for effectively analyzing such data.

Another potential application of the proposed tests is in bio-surveillance
for the early detection of disease outbreaks. For example, electronic syndromic
surveillance units provide daily electronic syndromic information throughout the
United States and many other countries (see Mnatsakanyan et al. (2008) and the

http://smd.stanford.edu/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed
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references therein) with the goal of early detection of public health events. These
systems use data such as the count of positive lab tests from multiple categories of
illnesses (for example, influenza, adenovirus, rhinovirus, etc.) to identify respira-
tory viral pathogen surveillance, or percentages of visits for severe influenza-like
illness (ILI) reported by medical providers to detect upcoming epidemics. While
they have been useful for the quick identification of potentially large outbreaks,
all such systems continue to have high false-positive rates and most systems also
face a sensitivity problem, in that an anomalous event may remain undetected
if there are only a few cases (Reis, Pagano, and Mandl (2003), Marsden-Haug N
(2005), Bravata et al. (2004)).

As illustrated in the simulation studies in Section 3.1, the proposed tests have
best power when the data under the alternatives are from mixture distributions
with only a small proportion of observations (5% to 10%) having expected values
different from those under the null. This can be used to improve the sensitivity of
bio-surveillance early event detection when applied in appropriate settings. The
large number of factor levels might be different age groups, geographical areas,
or number of weeks being monitored. Our results offer a potentially useful set of
tools for these types of applications.

4. Summary and Discussion

In this paper we develop hypothesis testing theory for testing the main and
interaction effects of up to the third order for general HANOVA with arbitrary
number of factors in the presence of heteroscedastic variances and unbalanced
sample sizes. Our models allow the response variable to be continuous or discrete,
and leave the distribution of the data completely unspecified. The asymptotic
results of the test statistics were obtained under nonclassical asymptotic settings
in which the cell sample sizes can be very small. Two types of test statistics are
constructed. One has a limiting χ2 distribution and is applicable for testing hy-
potheses where the parameter of interest is of low dimension while the nuisance
parameters are in a high-dimensional space. The other has a limiting normal dis-
tribution and is applicable for testing hypotheses where the parameter of interest
is high dimensional. Extensive empirical studies were conducted. In addition to
exhibiting reliable type I error rate and high power compared to competing test
procedures, the proposed tests also showed significant computational advantage
over the traditional methods in HANOVA settings.
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Appendix: Proofs

A.1. Propositions and lemmas for projection and weak convergence

The following propositions give the decompositions and validate the projec-
tions of the the MST terms. They make it possible to simplify the test statistics
before derivation of the asymptotic distribution. The proof of Proposition A.1
is given in supplementary material. The other propositions follow similar argu-
ments and are thus omitted. Please see Wang (2004) for details of the omitted
proofs.

Proposition A.1. Let n(a, b, c, d) = min
i,j,k,l

{nijkl}, eijklm = Xijklm − E(Xijklm),

and set

P1,ABC(e) = d(abc)−1
∑
i,k

 b∑
j=1

ẽ2
ijk.. − (b − 1)−1

∑
j 6=j′

ẽijk..ẽij′k..

 ,

P2,ABC(e)

= P1,ABC(e) +
bd

(c − 1)ac

a∑
i=1

c∑
k 6=k′

ẽi.k..ẽi.k′.. −
d

(b − 1)(c − 1)ac

∑
i,j

c∑
k 6=k′

ẽijk..ẽijk′..,

P3,ABC(e) = d
∑

i,j,k ẽ2
ijk../(abc). Then under the settings and assumptions of

part (b) of Theorem 2.3, under H0(ABC),

(1) as a, c → ∞, b remains bounded,
T ∗

1 (e) = n(a, b, c, d)
√

ac(MSTABC − P1,ABC(e))
p→ 0;

(2) as a → ∞, b, c remain bounded,
T ∗

2 (e) = n(a, b, c, d)
√

a(MSTABC − P2,ABC(e))
p→ 0 ;

(3) as a, b, c → ∞, T ∗
3 (e) = n(a, b, c, d)

√
abc(MSTABC − P3,ABC(e))

p→ 0.

Proof of Proposition A.1. Under H0(ABC), MSTABC can be expressed in
terms of the eijklm’s and we have

T ∗
1 (e) = D4(e) + D5(e) + D6(e) − D1(e)

b − 1
− D2(e)

b − 1
− D3(e)

b − 1
,

T ∗
2 (e) =

D5(e)√
c

+
D6(e)√

c
− D2(e) + D3(e)

(b − 1)
√

c
, T ∗

3 (e) =
√

bT ∗
1 (e) + D7(e),

where

D1(e) = −bd n(a, b, c, d)
(c − 1)

√
ac

a∑
i=1

c∑
k 6=k′

ẽi.k..ẽi.k′..,



1368 HAIYAN WANG AND MICHAEL G. AKRITAS

D2(e) = −bd n(a, b, c, d)
(a − 1)

√
ac

a∑
i6=i′

c∑
k=1

ẽi.k..ẽi′.k..,

D3(e) =
bd n(a, b, c, d)

(a − 1)(c − 1)
√

ac

a∑
i 6=i′

c∑
k 6=k′

ẽi.k..ẽi′.k′..,

D4(e) = − dn(a, b, c, d)
(b − 1)(c − 1)

√
ac

∑
i,j

c∑
k 6=k′

ẽijk..ẽijk′..,

D5(e) =
dn(a, b, c, d)

(a − 1)(b − 1)(c − 1)
√

ac

a∑
i6=i′

b∑
j=1

c∑
k 6=k′

ẽijk..ẽi′jk′..,

D6(e) = − dn(a, b, c, d)
(a − 1)(b − 1)

√
ac

a∑
i6=i′

∑
j,k

ẽijk..ẽi′jk..,

D7(e) =
dn(a, b, c, d)
(b − 1)

√
abc

∑
i,k

b∑
j 6=j′

ẽijk..ẽij′k...

For all three cases, it suffices to show Dt(e) = op(1) for t = 1, 2, 3, 7, and√
bDs(e) = op(1) for s = 4, 5, 6. The proofs of D7(e) = op(1),

√
bD4(e) = op(1),

and
√

bD6(e) = op(1) are similar; the proofs of D2(e) = op(1) and D1(e) = op(1)
are similar; and the proofs of D3(e) = op(1) and

√
bD5(e) = op(1) are similar.

So it is enough to prove D7(e) = op(1), D2(e) = op(1) and D3(e) = op(1). Using
(A.5), we have

E[D7(e)]2 =
2n2(a, b, c, d)
(b − 1)2d2abc

∑
i,k

b∑
j 6=j′

(
d∑

l=1

σ2
ijkl

nijkl

)(
d∑

l′=1

σ2
ij′kl′

nij′kl′

)

≤ 2n2(a, b, c, d)
(b − 1)2d2abc

∑
i,k

∑
j,l

σ2
ijkl

nijkl

2

≤ 2n2(a, b, c, d)
(b − 1)2dac

∑
i,j,k,l

σ4
ijkl

n2
ijkl

= O(b−1),

E[D2(e)]2 =
2n2(a, b, c, d)

(a − 1)2b2d2ac

a∑
i6=i′

c∑
k=1

∑
j,l

σ2
ijkl

nijkl

∑
j′,l′

σ2
i′j′kl′

ni′j′kl′


≤ 2n2(a, b, c, d)

(a − 1)2b2d2ac

c∑
k=1

∑
i,j,l

σ2
ijkl

nijkl

2
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≤ 2n2(a, b, c, d)
(a − 1)2bdc

∑
i,j,k,l

σ4
ijkl

n2
ijkl

= O(a−1),

E[D3(e)]2 =
4n2(a, b, c, d)

(a − 1)2(c − 1)2b2d2ac

a∑
i 6=i′

c∑
k 6=k′

∑
j,l

σ2
ijkl

nijkl

∑
j′,l′

σ2
i′j′kl′

ni′j′k′l′


≤ 4n2(a, b, c, d)

(a − 1)2(c − 1)2b2d2ac

 ∑
i,j,k,l

σ2
ijkl

nijkl

2

≤ 2n2(a, b, c, d)
(a − 1)2bd

∑
i,j,k,l

σ4
ijkl

n2
ijkl

= O(a−1).

So D7(e) = op(1) , D2(e)
p→ 0 and D3(e)

p→ 0, and the proof is complete.

Proposition A.2. Set n(a, b, c)=mini,j,k{nijk}, P1,AB(e)= [c/(ab)]
∑a

i=1

∑b
j=1

ẽ2
ij.., where eijkm = Xijkm −E(Xijkm), and P2,AB(e) = P1,AB(e)− [c/[ab(b − 1)]]∑a

i=1

∑b
j 6=j′ ẽij..ẽij′... Then under H0(AB) and the settings and assumptions of

part (b) of Theorem 2.2, we have

(1) T ∗
1AB(e) = n(a, b, c)

√
ab(MSTAB − P1,AB(e))

p→ 0, as a, b → ∞;

(2) T ∗
2AB(e) = n(a, b, c)

√
a(MSTAB−P2,AB(e))

p→ 0, as a → ∞, b remains fixed.

Proposition A.3. Let PA(e) = (b/a)
∑a

i=1 ẽ2
i.., where eijk = Xijk − E(Xijk).

Assume the settings and assumptions of part (b) of Theorem 2.1 are satisfied.
Then under H0(A), we have T ∗

A(e) = n(a, b)
√

a(MSTA − PA(e))
p→ 0, as a, b →

∞, regardless of whether the nij remain fixed or go to ∞.

The following lemmas give weak consistency of the MSE terms. The proof
of Lemma A.4 is given while the other two proofs are omitted.

Lemma A.4. Under the settings and assumptions of part (b) of Theorem 2.1,
we have n(a, b)(MSE − σ2

A)
p→ 0.

Proof of Lemma A.4. Note that

E(MSE) = E

[
1
ab

a∑
i=1

b∑
j=1

S2
ij,X

nij

]
=

1
ab

a∑
i=1

b∑
j=1

σ2
ij

nij
= σ2

A,

and
(ab)2Var (MSE)

=
a∑

i=1

b∑
j=1

1
n2

ij(nij − 1)2
Var

(
nij − 1

nij

nij∑
m=1

e2
ijm − 1

nij

nij∑
m6=m′

eijmeijm′

)
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=
a∑

i=1

b∑
j=1

1
n4

ij

[ nij∑
m=1

E(e4
ijm) − nij(nij − 3)

nij − 1
σ4

ij

]
.

So Var (n(a, b)MSE) ≤ 1/(ab)2
∑a

i=1

∑b
j=1 n2(a, b)/n4

ij

∑nij

m=1 E(e4
ijm) → 0 as

a → ∞, b → ∞. Therefore, n(a, b)[MSE − σ2
A]

p→ 0.

Lemma A.5. Under the settings and assumptions of part (b) of Theorem 2.2,
n(a, b, c)(MSE − σ2

AB)
p→ 0.

Lemma A.6. Under the settings and assumptions of part (b) of Theorem 2.3,
n(a, b, c, d)(MSE − σ2

ABC)
p→ 0.

A.2. Proofs of the Theorems

Proof of Theorem 2.1. We first show the asymptotic results under the null
hypothesis and then apply them in the proofs under the alternatives. Let σij =
Var (Xijk) under the null hypothesis.
(a). Under H0(A), CAE(W) = 0, so we have CAW = CA(W − E(W)).
Thus the result follows by showing

√
N(W − E(W)) d→ Na(0,V), where V =

diag{η1, . . . , ηa}, and using the Continuous Mapping and Slutsky’s Theorems,
since the η̂i are consistent estimators of ηi, i = 1, . . . , a. By the independence of
the X̃i.., and since a is finite, the asymptotic normality of W follows from that
of each X̃i... Write

√
N(X̃i.. − E(X̃i..)) =

√
Nẽi.., where eijk = Xijk − E(Xijk).

By Lyapounov’s Theorem,
√

Nẽi../ηi,N → N(0, 1), where ηi,N = Var (
√

Nẽi..) =
N

∑b
j=1 Var (eij.)/b2 = N

∑b
j=1 σ2

ij/(nijb
2), because

L(b) =
1

η2
i,N

b∑
j=1

nij∑
k=1

E

∣∣∣∣∣
√

N

bnij
eijk

∣∣∣∣∣
4

=

 b∑
j=1

σ2
ij

nij

−2
b∑

j=1

(
1

n3
ij

E|e4
ijk|

)
→ 0,

as a result of assumption (2.4) and Hölder’s inequality.
Under the alternative given by (2.3), Xijk ∼ FN,ij(x) = Fij(x)+N−1/2Ai(x),

so E(Xijk) =
∫

xdFij(x) + N−1/2
∫

xdAi(x), and
√

NCAW =
√

NCA[W − E(W)] +
√

NCAE(W) =
√

NCA[W − E(W)] + CAg.

From above proof under the null, we have
√

N(W − E(W)) d→ Na(0,V). So√
NCAW d→ Na(CA g, CAVC′

A). Thus premultiplication by the inverse of the

symmetric square root of the covariance matrix yields [CAVC′
A]−1/2

√
NCAW d→
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Na

(
[CAVC′

A]−1/2CA g, Ia

)
. Then the asymptotic noncentral Chi-square dis-

tribution of NW′C′
A(CAV̂C′

A)−1CAW follows directly from Slutsky’s Theorem
and the definition of noncentral Chi-square distribution.

(b). We give only the proof for the case when both a and b go to ∞. The
case that a → ∞ while b stays bounded can be shown similarly. By Lemma
A.4 and Proposition A.3, we only need to consider the asymptotic distribution of
n(a, b)

√
a(PA(e)−MSE) under H0(A), where n(a, b) = mini,j{nij}, and PA(e) =

b

a

a∑
i=1

ẽ2
i... Write

n(a, b)
√

a(PA(e) − MSE) = T1A(e) + T3A(e), (A.1)

where

T1A(e) =
n(a, b)
b
√

a

a∑
i=1

b∑
j 6=j′

eij.eij′., T3A(e) =
n(a, b)
b
√

a

a∑
i=1

b∑
j=1

nij∑
m6=m′

eijmeijm′

nij(nij − 1)
.

It is easy to see that E(T1A(e)) = E(T3A(e)) = 0 and, as a, b → ∞,

Var (T3A(e)) =
2n2(a, b)

ab2

a∑
i=1

b∑
j=1

σ4
ij

nij(nij−1)
≤ 4

ab2

a∑
i=1

b∑
j=1

(n(a, b)
nij

σ2
ij

)2
→0, (A.2)

Var (T1A(e)) =
2n2(a, b)

b2a

a∑
i=1

b∑
j 6=j′

(
σ2

ij

nij

)(
σ2

ij′

nij′

)
= n2(a, b)τA + o(1). (A.3)

By (A.1), (A.2), and (A.3) it suffices to find the asymptotic distribution of T1A(e).
We use Lyapounov’s Theorem. Since (A.3) is bounded, Lyapounov’s condition

is satisfied if L(a, b) =
∑a

i=1 E
∣∣∣(ab2)−1/2

∑b
j 6=j′ n(a, b)eij.eij′.

∣∣∣4 → 0. We have

L(a, b) =
a∑

i=1

b∑
j 6=j′

b∑
j1 6=j′1

b∑
j2 6=j′2

b∑
j3 6=j′3

n4(a, b)
a2b4

E(eij.eij′.eij1.eij′1.eij2.eij′2.eij3.eij′3.)

= O

( a∑
i=1

b∑
j 6=j′ 6=j1 6=j′1

n4(a, b)
a2b4

E(eij.)2E(eij′.)2E(eij1.)2E(eij′1.)
2

)

= O

(
1

a2b4

a∑
i=1

( b∑
j=1

n(a, b)
nij

σ2
ij

)4
)

= O(a−1), (A.4)

where the second equality follows from the fact that, when the number of different
elements among {j, j′, j1, j

′
1, j2, j

′
2, j3, j

′
3} is five or more, the expectation on the
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right hand side of (A.4) is zero, and the fourth equality is due to the inequality∣∣∣∣∣
m∑

i=1

zi

∣∣∣∣∣
p

≤ mp−1
m∑

i=1

|zi|p, m ≥ 1, p ≥ 1, (A.5)

which for p > 1 follows from Hölder’s inequality. This completes the proof under
the null.

When the observations are from the alternative given by (2.3) with R(a, b,N)
= a−1/4b−1/2, Xijk ∼ FN,ij(x) = Fij(x) + a−1/4b−1/2Ai(x), and E(Xijk) =∫

xdFij(x) + a−1/4b−1/2
∫

xdAi(x). Denote the error as eijk = Xijk − E(Xijk).
We can write MSTA as

MSTA =
∑
i,j

(ẽi·· − ẽ···)2

a − 1
+

a∑
i=1

[∫
xdAi(x) −

∫
xdA·(x)

]2

√
a(a − 1)

+2
a∑

i=1

(ẽi·· − ẽ···)
a1/4(a − 1)

[∫
xdAi(x) −

∫
xdA·(x)

]
=

a∑
i=1

b∑
j=1

(ẽi·· − ẽ···)2

a − 1
+

δ12√
a

+ Op(a−3/4).

Therefore

√
a(FX(A)−1)=

√
a

(
1

a − 1

a∑
i=1

b∑
j=1

(ẽi··−ẽ···)2−MSE

)
1

MSE
+

δ12

MSE
+op(1).

Note that the first term resembles the test statistic under the null hypothesis
though the variances may be different from that under the null. Apply the result
under the null with the variance given under the alternative to complete the
proof.

Proof of Theorem 2.2. Part (a) can be shown similarly as part (a) of Theorem
2.1, and is omitted.
(b) When the observations are from the alternative given by (2.7) with R(a, b, c,
N) = (ab)−1/4c−1/2, Xijkm ∼ FN,ijk(x) = Fijk(x) + (ab)−1/4c−1/2(AB)ij(x), and
E(Xijkm) =

∫
xdFijk(x) + (ab)−1/4c−1/2

∫
xd(AB)ij(x). Then MSTAB can be

written as

MSTAB = c
∑
i,j

(ε̃ij.. − ε̃i... − ε̃.j.. + ε̃....)
2

(a − 1)(b − 1)
+

δ22√
ab

+ c
∑
i,j

(ε̃ij.. − ε̃i... −ε̃.j.. + ε̃....)√
b(a − 1)(b − 1)

×
[∫

xd(AB)ij(x)−
∫

xd(AB)i·(x)−
∫

xd(AB)·j(x)+
∫

xd(AB)··(x)
]
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= c
∑
i,j

(ε̃ij.. − ε̃i... − ε̃.j.. + ε̃....)
2

(a − 1)(b − 1)
+

δ22√
ab

+ Op(a−1/2b−1).

Note that the first term is equivalent to MSTAB calculated under the null hy-
pothesis, but with error terms having variance given under the alternatives, so if
we can prove the result under the null hypothesis, the rest of the proof follows
from Lemma A.5 with an application of Slutsky’s Theorem.

In the rest of the proof, we consider the test statistics under the null hypoth-
esis. Let σijk = Var (Xijkm) under the null. By Proposition A.2 and Lemma A.5,
we only need to consider the asymptotic distribution of n(a, b, c)

√
ab(P2,AB(e)−

MSE) under H0(AB), where eijk = Xijkm − E(Xijkm). Write n(a, b, c)
√

ab

(P2,AB(e) − MSE) = a−1/2
∑a

i=1 Wi,AB, where the

Wi,AB =
n(a, b, c)

bc

[
− c2

b − 1

b∑
j 6=j′

ẽij..ẽij′.. +
b∑

j=1

c∑
k 6=k′

ẽijk.ẽijk′.

+
b∑

j=1

c∑
k=1

nijk∑
m6=m′

eijkmeijkm′

nijk(nijk − 1)

]
are independent with zero mean. We use Lyapounov’s Theorem. Some algebra
shows that

Var
(
n(a, b, c)

√
ab(P2,AB(e) − MSE)

)
=

2n2(a, b, c)
bc2a

a∑
i=1

[
1

(b − 1)2

b∑
j 6=j′

( c∑
k=1

σ2
ijk

nijk

)( c∑
k′=1

σ2
ij′k′

nij′k′

)

+
b∑

j=1

c∑
k 6=k′

(σ2
ijk

nijk

)(σ2
ijk′

nijk′

)]
+

2n2(a, c)
bc2a

a∑
i=1

b∑
j=1

c∑
k=1

σ4
ijk

nijk(nijk − 1)

= n2(a, b, c)b[τ2
1 + τ2

2 + τ2
3 ],

where τ2
1 , τ2

2 , and τ2
3 are defined in the statement of the theorem, stays bounded

away from zero and ∞. Lyapounov’s condition is satisfied if
∑a

i=1 E|(1/
√

a)
Wi,AB|4 → 0. Using (A.5), we have

E(W 4
i,AB) ≤ n4(a, b, c)

b4c4
33

[
E

∣∣∣ c2

b − 1

b∑
j 6=j′

ẽij..ẽij′..

∣∣∣4 + E
∣∣∣ b∑

j=1

c∑
k 6=k′

eijk.eijk′.

∣∣∣4
+E

∣∣∣ b∑
j=1

c∑
k=1

nijk∑
m6=m′

eijkmeijkm′

nijk(nijk − 1)

∣∣∣4]. (A.6)
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For the rest of the proof, we need to separate the cases that b stays bounded
or goes to infinity. The techniques are similar so we only give the case that b is
bounded. When b is bounded, the second term above gives

n4(a, b, c)
a2c4

a∑
i=1

E
∣∣∣ b∑

j=1

c∑
k 6=k′

eijk.eijk′.

∣∣∣4
=

a∑
i=1

b∑
j,j1,j2,j3

c∑
k 6=k′

c∑
k1 6=k′

1

c∑
k2 6=k′

2

c∑
k3 6=k′

3

n4(a, b, c)
a2c4

E(eijk.eijk′.eij1k1.eij1k′
1.eij2k2.eij2k′

2.eij3k3.eij3k′
3.)

= O

( a∑
i=1

b∑
j,j1

c∑
k 6=k′ 6=k1 6=k′

1

n4(a, b, c)
a2c4

σ2
ijkσ

2
ijk′σ2

ij1k1
σ2

ij1k′
1

nijknijk′nij1k1nij1k′
1

)

= O

(
1

a2c4

a∑
i=1

( b∑
j=1

c∑
k=1

n(a, b, c)
nijk

σ2
ijk

)4
)

= O

(
b3c3

a2c4

a∑
i=1

b∑
j=1

c∑
k=1

σ8
ijk

)
= O(a−1), (A.7)

where the second equality is because the expectation under the summation is
zero when the number of different elements in {j, j1, j2, j3} is more than two,
or the number of different elements in {k, k′, k1, k

′
1, k2, k

′
2, k3, k

′
3} is more than

four, and the 5th equality is due to (A.5). Similarly, the first term in (A.6) gives

(n4(a, c)/a2c4)
∑a

i=1 E
∣∣∣ ∑b

j 6=j′ ẽij..ẽij′..

∣∣∣4 = O(a−1). Finally, the last term in (A.6)
gives

n4(a, b, c)
a2c4

a∑
i=1

E

∣∣∣∣ ∑
j,k

nijk∑
m6=m′

eijkmeijkm′

nijk(nijk − 1)

∣∣∣∣4
=

n4(a, b, c)
a2c4

a∑
i=1

b∑
j,j1,j2,j3

c∑
k,k1,k2,k3

nijk∑
m6=m′

nijk1∑
m1 6=m′

1

nijk2∑
m2 6=m′

2

nijk3∑
m3 6=m′

3

E(eijkmeijkm′eij1k1m1eij1k1m′
1
eij2k2m2eij2k2m′

2
eij3k3m3eij3k3m′

3
)

nijk(nijk − 1)nij1k1(nij1k1 − 1)nij2k2(nij2k2 − 1)nij3k3(nij3k3 − 1)

= O

(
n4(a, b, c)

a2c4

a∑
i=1

b∑
j,j1

c∑
k,k1

nijk∑
m6=m′

nij1k1∑
m1 6=m′

1

E(e2
ijkm)E(e2

ijkm′)E(e2
ij1k1m1

)E(e2
ij1k1m′

1
)

n2
ijk(nijk − 1)2n2

ij1k1
(nij1k1 − 1)2

)

= O

(
n4(a, b, c)

a2c4

a∑
i=1

( ∑
j,k

σ4
ijk

nijk(nijk − 1)

)2
)

= O
(
a−1c−2

)
. (A.8)



ASYMPTOTIC DISTRIBUTION THEORY 1375

Thus Lyapounov’s condition is satisfied and this completes the proof.

Proof of Theorem 2.3. Part (a) of the theorem can be similarly proved as
part (a) of Theorem 2.1. The proof for part (b) includes three cases regarding
whether b and c stay bounded, or go to infinity. These proofs follow similar
arguments so we give only that for part (b). Please refer to Wang (2004) for
detailed proof of the other parts.
(b). We only give the proof when both a, c are large and b is small. For
other cases, see Wang (2004). Similar to the proof of part (b) of Theorem
2.2, we only need to consider the asymptotic distribution under the null hy-
pothesis. The proof below assumes the null hypothesis is satisfied. By Slut-
sky’s Theorem, Proposition A.1, and Lemma A.6, it suffices to consider the
asymptotic distribution of n(a, b, c, d)

√
ac(P1,ABC(e) − MSE) under H0(ABC),

where eijklm = Xijklm − E(Xijklm). To apply Lyapounov’s Theorem, write
n(a, b, c, d)

√
ac(P1,ABC(e) − MSE) = (

√
ac)−1

∑a
i=1

∑c
k=1 Wik, where the

Wik =
n(a, b, c, d)

bd

[∑
j,l

∑
m6=m′

eijklmeijklm′

nijkl(nijkl − 1)
+

b∑
j=1

d∑
l 6=l′

eijkl.eijkl′.

+
d2

(b − 1)

b∑
j 6=j′

ẽijk..ẽij′k..

]
are independent with zero mean. Thus,

acb2d2Var
(√

ac(P1,ABC(e) − MSE)
)

= 2
∑
i,j,k,l

σ4
ijkl

nijkl(nijkl − 1)
+ 2

∑
i,j,k

d∑
l 6=l′

σ2
ijkl

nijkl

σ2
ijkl′

nijkl′

+
2

(b − 1)2
∑
i,k

b∑
j 6=j′

( d∑
l=1

σ2
ijkl

nijkl

)( d∑
l′=1

σ2
ij′kl′

nij′kl′

)

= 2
∑
i,k

[∑
j,l

σ4
ijkl

n2
ijkl(nijkl − 1)

+
b2 − 2b

(b − 1)2
∑

j

( d∑
l=1

σ2
ijkl

nijkl

)2
+

1
(b − 1)2

( ∑
j,l

σ2
ijkl

nijkl

)2
]

= ac2b2d2(τ4 + τ5 + τ6),

which is bounded away from zero and ∞. So, Lyapounov’s condition holds if
a∑

i=1

c∑
k=1

E

∣∣∣∣ 1√
ac

Wik

∣∣∣∣4 =
1

a2c2

a∑
i=1

c∑
k=1

E(W 4
ik) → 0. (A.9)

By inequality (A.5),

E|W 4
ik| ≤ 33 [n(a, b, c, d)]4

(bd)4

[
E

∣∣∣ ∑
j,l

∑
m6=m′

eijklmeijklm′

nijkl(nijkl − 1)

∣∣∣4+E
∣∣∣ b∑

j=1

d∑
l 6=l′

eijkl.eijkl′.

∣∣∣4
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+
[ 1
(b − 1)

]4
E

∣∣∣ b∑
j 6=j′

∑
l,l′

eijkl.eij′kl′.

∣∣∣4].

Similar to the proof of (A.7) and (A.8), we obtain that (A.9) is bounded by

33 n4(a, b, c, d)
a2c2b4d4

∑
i,k

{
E

∣∣∣ ∑
j,l

∑
m6=m′

eijklmeijklm′

nijkl(nijkl − 1)

∣∣∣4 + E
∣∣∣ b∑

j=1

d∑
l 6=l′

eijkl.eijkl′.

∣∣∣4
+

1
(b − 1)4

E
∣∣∣ b∑

j 6=j′

∑
l,l′

eijkl.eij′kl′.

∣∣∣4}
= O

(
a−1c−1b−2d−2

)
+ O

(
a−1c−1

)
+ O

(
a−1c−1(b − 1)−4

)
.

Thus Lyapounov’s condition is satisfied and the proof is complete.
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