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A STRUCTURAL MODEL ON A HYPERCUBE

REPRESENTED BY OPTIMAL TRANSPORT

Tomonari Sei

Keio University

Abstract: We propose a flexible statistical model for high-dimensional quantitative
data on a hypercube. Our model, the structural gradient model (SGM), is based
on a one-to-one map on the hypercube that is a solution to an optimal transport
problem. As we show with many examples, SGM can describe various dependence
structures including correlation and heteroscedasticity. The likelihood function
is explicitly expressed without any normalizing constant. Simulation of SGM is
achieved through a direct extension of the inverse function method. The maximum
likelihood estimation of SGM is reduced to the determinant-maximization known as
a convex optimization problem. In particular, a lasso-type estimation is available by
adding constraints. SGM is compared with graphical Gaussian models and mixture
models.

Key words and phrases: Determinant maximization, Fourier series, graphical model,
lasso, optimal transport, structural gradient model.

1. Introduction

In recent years, it has become important to treat high-dimensional quantita-
tive data, especially in biostatistics and spatial-temporal statistics. The graphical
Gaussian model is an important one. However, the Gaussian model represents
only second-order interactions without heteroscedasticity. In this paper, we in-
troduce the structural gradient model (SGM) that represents both higher-order
and heteroscedastic interactions of data. The model is defined by a transport
map that pushes the target probability density forward to the uniform density.
The data structure is described by the parameters in the transport map. This
model is a practical specification of the gradient model defined in Sei (2009).

We consider probability density functions on the hypercube [0, 1]m written
as

p(x) = det(D2ψ(x)), x ∈ [0, 1]m, (1.1)

where ψ is a convex function and D2ψ(x) is the Hessian matrix of ψ at x. The
function p is a probability density function if the gradient map Dψ is a bijection
on [0, 1]m. In fact, by changing the variable from x to y = Dψ(x), we obtain∫

[0,1]m
det(D2ψ(x))dx =

∫
[0,1]m

det
(

∂y

∂x

)
dx =

∫
[0,1]m

dy = 1.
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It is known that any probability density function on [0, 1]m can be written as
(1.1). This fact is deeply connected to the theory of optimal transport (see e.g.
Villani (2003)). A precise statement is the following.

Theorem 1.(Brenier (1991), McCann (1995)) Let p and q be any two probability
densities with respect to the Lebesgue measure on Rm. Then there exists a convex
function ψ satisfying p(x) = q(Dψ(x)) det(D2ψ(x)). The function ψ is p-a.s.
unique up to an arbitrary additive constant.

For any density p(x) on [0, 1]m, the representation (1.1) is obtained if the
density q(x) in Theorem 1 is set to the uniform density on [0, 1]m. The bijective
gradient map T := Dψ is the optimal-transport plan that minimizes the cost
functional E[‖X −T (X)‖2] subject to the density of X and T (X) being p and q,
respectively (e.g., Villani (2003)). A sample X from the density (1.1) is obtained
by an extension of the inverse function method:

X = (Dψ)−1(Y ) = argmin
x∈[0,1]m

{ψ(x) − x>Y },

where Y is a sample drawn from the uniform density on [0, 1]m (see also Sei
(2009)).

In this paper we call ψ the potential function. As explained in Section 2, most
density functions on [0, 1]m are characterized by the Fourier series of ψ. When
ψ is represented by the Fourier series, we call the model (1.1) the structural
gradient model and refer to it as SGM. Unknown parameters are the Fourier
coefficients of ψ. SGM can describe not only two-dimensional correlations but
also the three-dimensional interactions and heteroscedastic structures, unlike the
graphical Gaussian model. We examine this flexibility through simulation and
data analysis.

The maximum likelihood estimation of SGM is reduced to a determinant
maximization problem with a robust convex feasible region. In practice, this
region is not directly used because it is described by infinitely many constraints.
To overcome this, we give a L1-conservative region that enables us to calculate
the estimator by the determinant maximization algorithm (Vandenberghe, Boyd,
and Wu (1998)). As a by-product of the approach we have a lasso-type estimator
for SGM. A related estimator is the lasso-type estimator for graphical Gaussian
models (Meinshausen and Bühlmann (2006), Yuan and Lin (2007), Bunea, Tsy-
bakov, and Wegkamp (2007), Banerjee, Ghaoui, and d’Aspremont (2008)).

We consider only the case in which the sample space is a hypercube. This
is not a strong assumption since we can transform any real-valued data into
[0, 1]-valued data with a fixed sigmoid function. Another approach to deal with
unbounded data within the framework of gradient maps is given in Sei (2007),
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Sei (2009), where optimal transport between the standard normal density and
other densities is considered. Here we use the uniform density instead of the
normal density because the former is analytically simpler.

A tractable statistical model on the hypercube [0, 1]m is the copula model
(see e.g. Nelsen (2006)), in which every marginal density is uniform on [0, 1].
The copula model is a useful tool to see dependency of multivariate data inde-
pendently of the marginal density. Unfortunately, as is shown in Section 2, SGM
is not a copula model because the one-dimensional marginal density functions of
SGM are not uniform except for special cases. In other words, SGM adjusts the
marginal densities simultaneously with dependency.

The paper is organized as follows. In Section 2, we define SGM and give var-
ious examples of it. In Section 3, we investigate maximum likelihood estimation
and propose a lasso-type estimator. In Section 4, we compare SGM with graph-
ical Gaussian models and mixture models using numerical experiments. Finally
we give some discussion in Section 5. All proofs are given in the Appendix.

2. The Structural Gradient Model (SGM)

In this section, we first give the formal definition and some theoretical prop-
erties of SGM. Then various examples follow.

2.1. Definition and basic facts

Let m be a fixed positive integer. Denote the gradient operator on [0, 1]m

by D = (∂/∂xi)m
i=1 and the Hessian operator by D2 = (∂2/∂xi∂xj)m

i,j=1. The
determinant of a matrix A is denoted by detA. The notation A Â B (resp.
A º B) means that A − B is positive definite (resp. positive semi-definite). Let
Z≥0 be the set of all non-negative integers and let (Zm

≥0)
+ = Zm

≥0 \ {0} be the set
of non-zero vectors with non-negative integer components.

Definition 1.([SGM]) Let U be a finite subset of (Zm
≥0)

+. The structural gradient
model (abbreviated as SGM) is given by (1.1) with the potential function

ψ(x|θ) =
1
2
x>x −

∑
u∈U

θu

π2

m∏
j=1

cos(πujxj), (2.1)

where x = (xj) ∈ [0, 1]m and θ = (θu) ∈ RU . We call U the frequency set. The
parameter space of SGM is

Θ =
{
θ ∈ RU | D2ψ(x|θ) º 0 for all x ∈ [0, 1]m

}
. (2.2)

A vector θ ∈ RU is called feasible if θ ∈ Θ, the feasible region.
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The following lemma is fundamental.

Lemma 1. If θ is feasible, then p(x|θ) is a probability density function on [0, 1]m.

SGM has sufficient flexibility for multivariate modeling because of a theorem
of Caffarelli (2000). To state the theorem, we need some notation. Denote the 2m

faces of [0, 1]m by F b
j = {x ∈ [0, 1]m | xj = b} for j ∈ {1, . . . ,m} and b ∈ {0, 1}.

For a smooth function ψ on [0, 1]m, consider the Neumann condition

∂ψ(x)
∂xj

= b for any x ∈ F b
j . (2.3)

It is easily confirmed that ψ at (2.1) satisfies (2.3). Conversely, if ψ(x) satisfies
(2.3), then it can be expanded by an infinite cosine series in L2 sense (see e.g.
page 300 of Zygmund (2002)). In other words, the function (2.1) approximates
any potential function satisfying (2.3) if we make the frequency set U large. Now
we give Caffarelli’s theorem, but with slightly stronger assumption.

Theorem 2.(Caffarelli (2000)) Let p(x) be a strictly positive and continuously
differentiable function on [0, 1]m. Assume that p(x) satisfies ∂p(x)/∂xj = 0 for
any x ∈ F b

j . Then there exists a twice-differentiable convex function ψ(x) such
that (1.1) and (2.3) hold.

Since the conditions for p(x) here are differentiability and a boundary condi-
tion, we can construct sufficiently many statistical models by SGM. In the next
subsection, we give various examples. In Section 5, we discuss removal of the
boundary condition for p(x) by removing the twice-differentiability condition for
ψ(x).

For the one-dimensional case (m = 1), SGM becomes a mixture model as
will be explained in the next subsection. For the multi-dimensional case (m > 1),
SGM is not a mixture model except for essentially one-dimensional cases.

Lemma 2. SGM is not a mixture model with respect to θ unless there exists some
i ∈ {1, . . . ,m} such that U ⊂ Zi, where Zi = {u ∈ (Zm

≥0)
+ | uj = 0 if j 6= i}.

We use the following mixture model as a reference.

Definition 2.(MixM) Let U be a finite subset of (Zm
≥0)

+. A structural mixture
model (referred to as MixM) has the form

p̃(x|θ) = 1 +
∑
u∈U

θu‖u‖2
m∏

j=1

cos(πujxj), (2.4)

where x = (xj) ∈ [0, 1]m, θ = (θu) ∈ RU and ‖u‖2 =
∑m

j=1 u2
j . The feasible

region is Θ̃ = {θ ∈ RU | p̃(x|θ) ≥ 0 for all x ∈ [0, 1]m}.
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Lemma 3. The score vector at θ = 0 of both SGM and MixM is (‖u‖2
∏m

j=1

cos(πujxj))u∈U . The Fisher information matrix J = (Juv)u,v∈U at θ = 0 of both
the models is Juv = ‖u‖42−|σ(u)|1{u=v}, where σ(u) = {j ∈ {1, . . . ,m} | uj > 0}
and |σ(u)| denotes the cardinality of σ(u). In particular, Juv is diagonal.

The Fisher information matrix J at the origin is useful if we deal with testing
θ = 0. Under this hypothesis, the maximum likelihood estimator θ̂ is approx-
imated by a Gaussian random vector with mean 0 and variance (nJ)−1. In
Section 4, we use the scaled maximum likelihood estimator J1/2θ̂ to detect sig-
nificant components of θ̂. A method of computation for the maximum likelihood
estimator is given in Section 3. In general, it seems difficult to calculate the
Fisher information at points θ 6= 0. Exceptional cases are in the next subsection.

We describe a relation between SGM and copula models. A probability
density p(x) on [0, 1]m is a copula density if every one-dimensional marginal
density of p(x) is uniform on [0, 1]. A copula model is a statistical model that
consists of copula densities; Nelsen (2006) for a comprehensive review. A referee
has pointed out that densities of SGM cannot be copula densities except for
special cases. A precise statement follows.

Lemma 4. Let U ⊂ (Zm
≥0)

+ be non-empty and Θ be the feasible region of SGM.
Then for almost all θ ∈ Θ, the density p(x|θ) is not a copula density.

An example of the exceptional subset of Θ is given in Example 8. We also
remark that MixM becomes a copula model if |σ(u)| ≥ 2 for all u ∈ U , where
σ(u) = {j | uj > 0}.

2.2. Examples

We give examples of SGM. We mainly compare SGM with MixM of Defi-
nition 2. For SGM, a sufficient condition for feasibility of θ is useful in dealing
with examples. Theorem 3 has it that θ is feasible if

1 −
∑
u∈U

|θu|u2
j ≥ 0 (2.5)

for any j = 1, . . . ,m. This condition is also necessary if, for example, U is a
one-element set (see Theorem 3 for details).

Example 1.(1-dimensional case) If m = 1, the probability density of SGM is
given by the Fourier series p(x1|θ) = 1 +

∑
u∈U θuu2 cos(πux1). This coincides

with MixM. The model is considered as a particular case of the circular model
proposed by Fernández-Durán (2004). If U = {u} with some u ∈ Z>0, then the
Fisher information Juu(θ) is, for any feasible θ = θu,

Juu(θ) =
1 −

√
1 − θ2u4

θ2
√

1 − θ2u4
. (2.6)
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The proof is given in the Appendix.

Example 2.(Independence) Let m = 2 and U = {(u1, 0) | u1 ∈ U1} ∪ {(0, u2) |
u2 ∈ U2}, where Ui (i = 1, 2) is a finite subset of Z≥0. Then SGM becomes an
independent model

p(x1, x2|θ) =

1 +
∑

u1∈U1

θ(u1,0)u
2
1 cos(πu1x1)

 1 +
∑

u2∈U2

θ(0,u2)u
2
2 cos(πu2x2)

 .

Independence of higher-dimensional variables is similarly described. On the other
hand if we consider MixM,

p̃(x1, x2|θ) = 1 +
∑

u1∈U1

θ(u1,0)u
2
1 cos(πu1x1) +

∑
u2∈U2

θ(0,u2)u
2
2 cos(πu2x2),

then x1 and x2 are not independent except for trivial cases.

Example 3.(Correlation) Let m = 2 and U = {(1, 1)}. Then a pair (X1, X2)
drawn from p(x1, x2|θ) has positive or negative correlation if θ(1,1) > 0 or < 0,
respectively (see Figure 1). We confirm this observation by explicit calculation.
Let θ = θ(1,1), c(ξ) = cos(πξ), and s(ξ) = sin(πξ) for simplicity. The density is

p(x1, x2|θ) = det
(

1 + θc(x1)c(x2) −θs(x1)s(x2)
−θs(x1)s(x2) 1 + θc(x1)c(x2)

)
= 1 + 2θc(x1)c(x2) +

θ2

2
(c(2x1) + c(2x2)).

By (2.5), the feasible region for θ is [−1, 1]. The marginal density of Xi (i = 1, 2)
is p(xi|θ) = 1 + θ2

2 c(2xi). The mean and variance of Xi (i = 1, 2) are 1/2 and
(1/12) + θ2/(4π2), respectively. The correlation coefficient is

Cov[X1, X2]√
V[X1]V[X2]

=
8θ/π4

(1/12) + θ2/(4π2)
=

96θ/π4

1 + 3θ2/π2
.

The maximum correlation over θ ∈ [−1, 1] is 96/(π4 +3π2) ' 0.7558 at θ = 1. In
contrast, if we consider MixM, p̃(x1, x2|θ) = 1 + 2θc(x1)c(x2), then the feasible
region is |θ| ≤ 1/2. The correlation is 96θ/π4 and its maximum value is 48/π4 '
0.4928 at θ = 1/2. Thus SGM can describe a distribution with higher correlation
than MixM. The Fisher information Juu(θ) of SGM is, for any feasible θ and
u = (1, 1),

Juu(θ) =
2(1 −

√
1 − θ2)

θ2
√

1 − θ2
. (2.7)

The proof is given in the Appendix.
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Figure 1. The probability density p(x|θ) for U = {(1, 1)} and θ = θ(1,1) =
±0.5. The correlation coefficient is about ±0.458 for θ = ±0.5, respectively.

Figure 2. The probability density for U = {(1, 2)} and θ = 0.2. The condi-
tional density p(x2|x1) is unimodal if x1 is close to 1, and bimodal if x1 is
close to 0.

Example 4.(Heteroscedasticity) Let m = 2 and U = {(1, 2)}. Then a pair
(X1, X2) drawn from p(x1, x2|θ) has the following property: the conditional mean
of X2 given X1 does not depend on X1 but the conditional variance does (see Fig-
ure 2). In other words, X2 has heteroscedasticity in terms of regression analysis.
We confirm this fact. The joint density is

p(x1, x2|θ) = det
(

1 + θc(x1)c(2x2) −2θs(x1)s(2x2)
−2θs(x1)s(2x2) 1 + 4θc(x1)c(2x2),

)
= 1 + 5θc(x1)c(2x2) + 2θ2c(2x1) + 2θ2c(4x2),

where we put c(ξ) = cos(πξ), s(ξ) = sin(πξ), and θ = θ(1,2). The marginal
density of X1 is p(x1) = 1 + 2θ2c(2x1). The conditional density of X2 given X1

is

p(x2|x1, θ) = 1 +
5θc(x1)c(2x2) + 2θ2c(4x2)

1 + 2θ2c(2x1)
.
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The conditional mean of X2 given X1 is 1/2, and therefore the correlation coeffi-
cient between X1 and X2 is zero. However, the conditional variance of X2 given
X1 is ∫ 1

0
(x2 −

1
2
)2p(x2|x1, θ)dx2 =

1
12

+
10θc(x1) + θ2

4π2{1 + 2θ2c(2x1)}
.

In order to measure the dependency of X1, consider

β122(θ) =
E[(X1 − 1/2)(X2 − 1/2)2]

{V[X1]}1/2V[X2]
.

=
−5θ/π4

{(1/12) + θ2/π2}1/2{(1/12) + θ2/(4π2)}
.

The maximum value of β122(θ) over the feasible region θ ∈ [−1/4, 1/4] is
β122(−1/4) ' 0.5047. In contrast, for MixM, p̃(x1, x2|θ) = 1 + 5θc(x1)c(2x2),
the maximum of β122(θ) over the feasible region θ ∈ [−1/5, 1/5] is about 0.4267
at θ = −1/5. Thus SGM can describe more heteroscedastic distributions than
MixM. The heteroscedasticity appears in regression analysis, where explanatory
and response variables are a priori selected.

Example 5.(three-dimensional interaction) Let m = 3 and U = {(1, 1, 1)}.
Then the triplet (X1, X2, X3) has three-dimensional interaction although the
marginal two-dimensional correlation for any pair vanishes. We confirm this.
The joint probability density is

p(x1, x2, x3|θ) = 1 + 3θc1c2c3 + 3θ2c2
1c

2
2c

2
3 + θ3c3

1c
3
2c

3
3

−2θ3c1s
2
1c2s

2
2c3s

2
3 − (1 + θc1c2c3)θ2(c2

1s
2
2s

2
3 + s2

1c
2
2s

2
3 + s2

1s
2
2c

2
3),

where ci = cos(πxi) and si = sin(πxi) for i = 1, 2, 3. The density is symmetric
with respect to permutation of axes. The feasible region is |θ| ≤ 1 by (2.5).
The 2-dimensional and 1-dimensional marginal densities are p(x1, x2|θ) = 1 +
θ2(4c2

1c
2
2 − 1)/2 and p(x1|θ) = 1 + θ2(2c2

1 − 1)/2, respectively. In particular, the
mean of Xi is 1/2 and the correlation of Xi and Xj (i 6= j) is zero. However,
there exists three-dimensional interaction between (X1, X2, X3):

β123(θ) =
E[(X1 − EX1)(X2 − EX2)(X3 − EX3)]√

V[X1]V[X2]V[X3]

=
−24θ/π6 − 1944θ3/729π6

(1/12 + θ2/(4π2))3/2
.

The maximum value of β123(θ) over the feasible region |θ| ≤ 1 is β123(−1) '
0.7743. In contrast, for MixM, p̃(x1, x2, x3|θ) = 1 + 3θc1c2c3, we have β123(θ) =
−288

√
12θ/π6 with a maximum value over the feasible region |θ| ≤ 1/3 of about

0.3459 at θ = −1/3.
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Example 6.(Approximate conditional independence) Let m = 3 and (X1, X2, X3)
be drawn from a probability density p(x1, x2, x3). In general, conditional indepen-
dence of X1 and X2 given X3 is described by p(x1, x2, x3) = p(x3)p(x1|x3)p(x2|x3)
or, equivalently, the conditional mutual information

I12|3 =
∫

p(x1, x2, x3) log
p(x1, x2|x3)

p(x1|x3)p(x2|x3)
dx1dx2dx3

vanishes. A log-linear model exp(f(x1, x3) + g(x2, x3)) satisfies this condition.
Although SGM does not represent any conditional-independence model, we can
construct an approximate conditional-independence model. Let m = 3 and U =
{(1, 0, 1), (0, 1, 1)}. Then, putting ci = cos(πxi), si = sin(πxi), θ = θ(1,0,1), and
φ = θ(0,1,1), we have

p(x1, x2, x3|θ, φ)

= det

1 + θc1c3 0 −θs1s3

0 1 + φc2c3 −φs2s3

−θs1s3 −φs2s3 1 + θc1c3 + φc2c3


= 1 + 2θc1c3 + 2φc2c3 + 3θφc1c2c

2
3 + θ2(c2

1c
2
3 − s2

1s
2
3) + φ2(c2

2c
2
3 − s2

2s
2
3)

+θ2φ(c2
1c

2
3 − s2

1s
2
3)c2c3 + θφ2(c2

2c
2
3 − s2

2s
2
3)c1c3.

Now assume that ε = max(|θ|, |φ|) is close to zero. Then the conditional mu-
tual information is I12|3 = (3/16)θ2φ2 + O(ε5). On the other hand MixM,
p̃(x1, x2, x3|θ, φ) = 1 + 2θc1c3 + 2φc2c3, has the conditional mutual informa-
tion I12|3 = (3/4)θ2φ2 + O(ε5). The leading term is four times larger than that
of SGM.

Example 7. We can construct more complicated densities by combining the
preceding ones. For example, let m = 3, U = {(1, 2, 0), (0, 1, 1), (1, 1, 1)}, and
θ = (0.1, 0.3, 0.2). The vector θ is feasible since (2.5) is satisfied. The marginal
and conditional 2-dimensional densities are illustrated in Figure 3.

Example 8. From Lemma 4, it is impossible to let every one-dimensional
marginal density of p(x|θ) for any θ ∈ Θ be uniform. Here we construct an
example of subsets Θ0 ⊂ Θ such that p(x|θ) is a copula for any θ ∈ Θ0. Let
m = 2 and U = {(2, 0), (1, 1), (0, 2)}. Let

Θ0 = {(θ(2,0), θ(1,1), θ(0,2)) ∈ Θ | θ(1,1) = γ, θ(2,0) = θ(0,2) = −γ2

8
for some γ ∈ R}.
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(a) p(x1, x2) (b) p(x1, x3) (c) p(x2, x3)

(d) p(x1, x3|x2 = 3/4) (e) p(x1, x3|x2 = 1/4)

Figure 3. The marginal and conditional densities for U = {(1, 2, 0), (0, 1, 1),
(1, 1, 1)}. Figures (a), (b), and (c) are the marginal density p(xi, xj) for each
pair (i, j). Figures (d) and (e) are the conditional density p(x1, x3|x2) for
specific values of x2.

Put c(ξ) = cos(πξ) and s(ξ) = sin(πξ). Then for any θ = (−γ2/8, γ, −γ2/8) ∈
Θ0, we have

p(x1, x2|θ)

= det

(
1 + γc(x1)c(x2) + (−γ2

2 )c(2x1) −γs(x1)s(x2)
−γs(x1)s(x2) 1 + γc(x1)c(x2) + (−γ2

2 )c(2x2)

)

= 1 + 2γc(x1)c(x2) −
γ3

2
{c(2x1)c(x1)c(x2) + c(x1)c(2x2)c(x2))}

+
γ4

4
c(2x1)c(2x2).

One can confirm that the marginal densities p(x1|θ) and p(x2|θ) are uniform.

We summarize the examples in Table 1.

3. Maximum Likelihood Estimation of SGM

In this section, we consider the maximum likelihood estimation of SGM. We
first formulate it as a robust convex optimization problem.
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Table 1. Summary of the examples. For each example, the characteristics
of SGM and MixM are compared.

# Model name m Characteristic SGM MixM
1 1-dim. 1 (SGM=MixM) — —
2 independence 2 ‘is independent’ TRUE FALSE
3 correlation 2 maximum correlation 0.7558 0.4928
4 heteroscedasticity 2 maximum β122 0.5047 0.4267
5 3-dim. interaction 3 maximum β123 0.7743 0.3459
6 conditional independence 3 leading coefficient of I12|3 3/16 3/4

Let x(1), . . . , x(n) be independent samples drawn from the true density p0(x)
whose support is [0, 1]m. From the definition of SGM, the maximum likelihood
estimation of SGM is formulated as a convex optimization problem:

maximize
n∑

t=1

log det
(
I +

∑
u∈U

θuHu(x(t))
)
,

subject to θ ∈ Θ =
{

θ ∈ RU
∣∣∣ I +

∑
u∈U

θuHu(ξ) º 0 for all ξ ∈ [0, 1]m
}

,

where Hu(x) = D2(−π−2
∏m

ρ=1 cos(πuρxρ)). Recall that D2 is the Hessian oper-
ator and U is a finite subset of (Zm

≥0)
+ = Zm

≥0 \ {0}.
It is hard to write Θ down explicitly; the difficulty follows from the “for any

ξ ∈ [0, 1]m” in its definition. In general, for a set of feasible regions Θα indexed by
α, the region ∩αΘα is called a robust feasible region (see Ben-tal and Nemirovski
(1998)). Hence our problem is a robust convex optimization problem.

In the next subsection, we give a tractable subset Θlit of Θ that consists
of only m constraints. The constrained maximum likelihood estimator over
Θlit is calculated via the determinant-maximization algorithm (Vandenberghe,
Boyd, and Wu (1998)). As a by-product of the approach, we obtain a lasso-type
estimator since Θlit is compatible with L1-constraints.

If m = 1, the feasible region Θ is the set of Fourier coefficients of non-negative
functions. To deal with the feasible region, Fernández-Durán (2004) used Fejér’s
characterization: the Fourier series of any non-negative function is written as the
square of a Fourier series. More specifically, for any r(x) =

∑∞
u=0 ru cos(πux), its

square r(x)2 is non-negative and a Fourier series with Fourier coefficients that are
quadratic polynomials in (ru)∞u=0. However, it is hard to use this representation
here since we assume θu = 0 for u /∈ U , and this restriction is not affine in ru.
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3.1. A conservative region and Lasso-type estimation

We give a sufficient condition that θ ∈ Θ. Define a set Θlit by

Θlit =
{

θ ∈ RU
∣∣∣ 1 −

∑
u∈U

|θu|u2
j ≥ 0 (for all j = 1, . . . ,m)

}
.

We call Θlit the little parameter space, it is an intersection of m constraints.
In the next theorem, we show that Θlit is a subset of the feasible region Θ.
In other words, Θlit is more conservative than Θ in the sense of robustness.
We say that a subset V of U is linearly independent modulo 2 if a linear map
` : {0, 1}V 7→ {0, 1}m defined by `(ε) =

∑
u∈V εuu (mod 2) has the kernel {0}.

For each V ⊂ U , the set of vectors that have only V-components is denoted by
RV = {θ ∈ RU | θu = 0 if u /∈ V}.

Theorem 3. For any U , Θlit ⊂ Θ. Furthermore, if a subset V of U is linearly
independent modulo 2, then we have Θlit∩RV = Θ∩RV . In particular, if U itself
is linearly independent modulo 2, then Θlit = Θ.

By letting V be a one-element set {u}, we have the relation Θlit ∩ R{u} =
Θ ∩ R{u}. This shows that Θlit contains at least 2|U| boundary points of Θ.

Example 9. Let m = 2. The little parameter space for U = {(1, 1), (2, 2)} is
indicated in Figure 4(a), here U is not linearly independent modulo 2. For this
case, we can write

Θ =
{
θ | |θ(1,1)| + 4|θ(2,2)| ≤ 1

}
∪

{
θ | (θ(1,1))

2 ≤ 16θ(2,2)(1 − 4θ(2,2))
}

.

The expression is the same as the feasible region of autocorrelation parameters
of the MA(2) model in time series analysis (see Box and Jenkins (1976), Section
3.4). We also illustrate the regions for another example U = {(1, 1), (3, 1)} in
Figure 4(b).

The constrained maximum likelihood estimator of θ over Θlit is computed
via the determinant maximization algorithm by introducing non-negative slack
variables θ+

u and θ−u such that θu = θ+
u −θ−u and |θu| = θ+

u +θ−u . The estimator is
usually sparse. This sparsity is closely related to the lasso estimator in Tibshirani
(1996), in that the regression method is executed with L1-constraints. Note that
Θlit is also represented by L1-constraints. Furthermore, we use an indexed set
Θlit

τ with a tuning parameter, τ ∈ [0, 1],

Θlit
τ =

{
θ ∈ RU

∣∣∣ τ −
∑
u∈U

|θu|u2
j ≥ 0 (for all j = 1, . . . ,m)

}
.
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(a) U = {(1, 1), (2, 2)}. (b) U = {(1, 1), (3, 1)}.

Figure 4. The contour of the parameter space Θ (solid line) and the little
parameter space Θlit (dashed line). Here Θ is calculated by a brute-force
method.

In particular, Θlit
0 = {0} and Θlit

1 = Θlit. We call the constrained maximum
likelihood estimator θ̂lit

τ over Θlit
τ the lasso-type estimator for SGM. The tuning

parameter τ can be selected by cross validation.
We remark that the feasible region for MixM has the conservative region

Θ̃lit =
{

θ ∈ RU
∣∣∣ 1 −

∑
u∈U

|θu|‖u‖2 ≥ 0
}

.

Furthermore, if a subset V of U is linearly independent modulo 2, then Θ̃lit∩RV =
Θ̃ ∩ RV . The proof is similar to that of Theorem 3 and is omitted here.

Recently, lasso-type estimators for graphical Gaussian models have been
proposed by several authors: Yuan and Lin (2007), Banerjee, Ghaoui, and
d’Aspremont (2008), and Friedmann, Hastie, and Tibshirani (2008). A sparse
density estimation (SPADES) for mixture models is considered in Bunea, Tsy-
bakov, and Wegkamp (2007). Our MixM is considered as a version of SPADES
although the estimation procedure is different. In Section 4, we compare SGM
with MixM and the graphical Gaussian model through numerical examples.

4. Numerical Examples

We give examples of simulations and datasets. We calculate the constrained
maximum likelihood estimator and study its predictive performance. We com-
pare SGM with the graphical Gaussian model (with lasso) and MixM.

We describe some notations and assumptions. We use the following frequency
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set for SGM throughout this section:

U =
{
u ∈ (Zm

≥0)
+ | ‖u‖∞ ≤ 2, ‖u‖1 ≤ 3

}
, (4.1)

where ‖u‖∞ = maxj |uj | and ‖u‖1 =
∑

j |uj |. The elements of U are (1, 0, . . . , 0),
(2, 0, . . . , 0), (1, 1, 0, . . . , 0), (2, 1, 0, . . . , 0), (1, 1, 1, 0, . . . , 0), and their permuta-
tions of the components. The cardinality of U is m(m + 1)(m + 5)/6. Let
θ̂lit
τ = (θ̂lit

τ,u)u∈U denote the lasso-type estimator of θ over the region Θlit
τ . The

notation on the estimators is used also for MixM.
The graphical Gaussian lasso estimator Ĉ = Ĉ(τ) of the concentration ma-

trix (Yuan and Lin (2007)) is formulated as

min. {log det(C) + tr(Σ̂C)} s.t.
∑
i<j

|Cij | ≤ τ
∑
i<j

|(Σ̂−1)ij |,

where Σ̂ is the sample correlation matrix and the tuning parameter τ ranges
over [0, 1]. If τ = 1, the graphical Gaussian lasso estimator coincides with the
maximum likelihood estimator (this is not the case for the lasso-type estimators
of SGM and MixM). The partial correlation coefficient of xi and xj is estimated

by ρ̂ij = −Ĉij/
√

ĈiiĈjj .
For data (Dti)1≤t≤n,1≤i≤m valued in Rn×m, we preprocess it before estima-

tion. For Gaussian models, we use the data D̃ti scaled in the standard way:

D̃ti =
Dti − D̄·i
sd(D·i)

, D̄·i =
1
n

n∑
t=1

Dti, sd(D·i) =

√√√√ 1
n

n∑
t=1

(Dti − D̄·i)2.

For SGM and MixM, the data is further transformed into Xti = Φ(D̃ti), where
Φ is the standard normal cumulative distribution function, in order that Xti

ranges over [0, 1]. By the transform Φ, the standard normal density as the null
Gaussian model is transformed into the uniform density as the null SGM and the
null MixM.

We used the package SDPT3 for solving the determinant-maximization prob-
lem on MATLAB (Toh, Tütüncü, and Todd (2006)).

4.1. Simulation

We first confirm that the lasso-type estimator for SGM described in Section 3
actually works. Consider Example 7 of Subsection 2.2 The true parameter is
θ(1,2,0) = 0.1, θ(0,1,1) = 0.3, and θ(1,1,1) = 0.2, with the true frequency set U0 =
{(1, 2, 0), (0, 1, 1), (1, 1, 1)}. The frequency set (4.1) we use for estimation is

U =

 1 2 0 1 2 0 1 0 1 2 0 1 0 0 1 0
0 0 1 1 1 2 2 0 0 0 1 1 2 0 0 1
0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2

 (4.2)
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in matrix form, with columns arranged according to lexicographic order. A
result of estimation is given in Figure 5, where Figure 5(a) and (b) are the
results under the tuning parameter τ = 1.0 and τ = 0.5, respectively. The
sample size is n = 100 and the number of experiments is 100. The samples were
generated by the exact method described in Section 1. For τ = 1.0, the estimator
actually distributes around the true parameter. The estimated components θ̂u

for u ∈ U \ U0 become zero at a considerable rate. For τ = 0.5, the shrinkage
effect is stronger while the estimated components θ̂u for u ∈ U0 are more biased.
Here the true parameter θ belongs to Θlit

1 but not to Θlit
0.5.

We next compare SGM with MixM and Gaussian models in a five-dimensional
example. Let φ(x|µ,Σ) denote the normal density with mean µ and covariance
Σ. Let m = 5 and take the true density to be

p0(x) = φ(x1|0, 1)φ(x2|x1, 1)φ(x3|0, σ2
3(x2))φ(x4, x5|0, Σ45(x3)), (4.3)

where

σ2
3(x2) = 1 + tanh(x2) and Σ45(x3) =

(
1 tanh(x3)

tanh(x3) 1

)
.

By definition, the set of variables (x1, x2) has positive correlation, the variable x3

has heteroscedasticity against x2, and the set of variables (x3, x4, x5) has three-
dimensional interaction. The sampled data is preprocessed before estimation
as described above. Remark that the true density does not belong to SGM.
A numerical result is shown in Table 2. The sample size is n = 40 and the
number of experiments is 200. All of the three models detected the correlation of
the pair (x1, x2). However, only SGM effectively detected the heteroscedasticity
of (x2, x3) and the three-dimensional interaction (x3, x4, x5). The estimator of
MixM was too sparse and did not effectively detect them.

For the same true density, we also computed the predictive performance of
the estimators of SGM, MixM and Gaussian. We took the tuning parameter
τ ∈ {i/10}10

i=0 for SGM and MixM, and τ ∈ {i/100}100
i=0 for Gaussian. We used

the expected predictive log-likelihood as the index of the predictive performance.
The arbitrary constant of the log-likelihood was determined in such a way that
the log-likelihood of the null model was zero. The sample size was n = 40 for
observation and 10 for prediction, the number of experiments was 200. Then the
maximum mean predictive log-likelihood of SGM was estimated as 3.37(±0.33) at
τ = 1.0, where the 95% confidence interval is based on the normal approximation.
For MixM and Gaussian, the maximum value was estimated as 1.99(±0.15) at
τ = 1.0 and 2.72(±0.26) at τ = 0.32, respectively. Hence SGM had better
predictive performance than MixM or Gaussian.
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(a) τ = 1.0.

(b) τ = 0.5.
Figure 5. A simulation of estimation of SGM. The box-plot shows the (nor-
malized) lasso-type estimator

√
Juuθ̂lit

τ,u against u ∈ U , where (a) τ = 1
and (b) τ = 0.5. The normalizing constant

√
Juu is the square root of the

Fisher information at θ = 0; the horizontal axis denotes u ∈ U arranged
according to (4.2); the dashed line denotes the true parameter; the sample
size is n = 100 and the number of experiments is 100. The data set is com-
mon to (a) and (b). The number in parentheses is the count of exact-zero
estimations out of the 100 experiments.
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Table 2. Mean value of the estimators for the five-dimensional data. The
tuning parameter τ for each model is set to 1. The sample size is n = 40
and the number of experiments is 200. The confidence interval is based on
the 95% interval with the normal approximation. For SGM and MixM, only
the top ten values of

√
Juuθ̂lit

τ,u are shown. For the Gaussian model, u is the
indicator vector of a pair (i, j).

SGM MixM Gaussian

u E[
√

Juuθ̂lit
τ,u] u E[

√
Juuθ̂lit

τ,u] u E[ρ̂ij(τ)]

(1, 1, 0, 0, 0) 0.510 (±0.013) (1, 1, 0, 0, 0) 0.123 (±0.006) (1, 1, 0, 0, 0) 0.706 (±0.011)

(0, 0, 1, 1, 1) -0.297 (±0.017) (0, 1, 2, 0, 0) -0.031 (±0.005) (1, 0, 0, 0, 1) -0.023 (±0.023)

(0, 1, 2, 0, 0) -0.232 (±0.015) (0, 0, 1, 1, 1) -0.007 (±0.003) (0, 1, 1, 0, 0) 0.014 (±0.023)

(0, 0, 2, 0, 0) -0.106 (±0.014) (0, 0, 2, 0, 0) -0.006 (±0.002) (1, 0, 0, 1, 0) -0.010 (±0.022)

(2, 0, 0, 0, 0) -0.095 (±0.011) (0, 2, 0, 0, 0) -0.002 (±0.001) (0, 1, 0, 0, 1) 0.008 (±0.024)

(0, 2, 0, 0, 0) -0.084 (±0.010) (1, 0, 2, 0, 0) -0.002 (±0.001) (0, 0, 0, 1, 1) -0.007 (±0.028)

(0, 0, 0, 0, 2) -0.043 (±0.013) (2, 0, 0, 0, 0) -0.001 (±0.001) (0, 1, 0, 1, 0) 0.007 (±0.024)

(0, 0, 0, 2, 0) -0.043 (±0.010) (0, 2, 0, 1, 0) -0.000 (±0.001) (0, 0, 1, 1, 0) -0.006 (±0.023)

(1, 0, 2, 0, 0) -0.036 (±0.009) (0, 0, 1, 0, 2) -0.000 (±0.001) (1, 0, 1, 0, 0) -0.004 (±0.021)

(0, 0, 0, 2, 1) -0.015 (±0.015) (0, 0, 0, 0, 2) -0.000 (±0.001) (0, 0, 1, 0, 1) 0.004 (±0.023)

4.2. A dataset

We consider the digoxin clearance data reported in Halkin et al. (1975) (see
also Edwards (2000)). The data consists of creatinine clearance (x1), digoxin
clearance (x2), and urine flow (x3) of 35 patients. In Table 3, we compare the
lasso-type estimators of SGM, MixM, and the Gaussian model. The predictive
performance was estimated by the 5-fold cross-validated predictive log-likelihood.
The tuning parameter examined was τ ∈ {i/10}10

i=0 for SGM and MixM, and
τ ∈ {i/100}100

i=0 for Gaussian. The result shows that for the data our SGM gives
slightly better predictive performance than MixM or the Gaussian models. As
stated in Edwards (2000), the partial correlation of (x1, x3) is not significant.
SGM suggests a heteroscedastic effect of x1 (creatinine clearance) against x3

(urine flow).

5. Discussion

We defined SGM as a set of potential functions ψ and studied the lasso-type
estimator. SGM was applied in both simulations and data. We discuss remaining
mathematical and practical problems.

We used the finite Fourier expansion to define the potential function ψ at
(2.1). It is sometimes hard to describe the local behavior of the density function
if we use this expansion. For such purposes, we can use wavelets instead of
the cosine functions as long as the resultant potential function satisfies (2.3).
For example, assume that we want to describe tail behavior of two-dimensional
data around x = (1, 1). Then we can use ψ(x|θ, a) = (x2

1 + x2
2)/2 + π−2θ(2 +
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Table 3. A result for the digoxin data. The lasso-type estimators of SGM,
MixM and the graphical Gaussian model for highlighted values of τ are
shown. The exact-zero estimation is not displayed. For the Gaussian model,
the estimated partial correlation of the pairs {1, 2}, {1, 3}, {2, 3} is displayed
on the row u = (1, 1, 0), (1, 0, 1), (0, 1, 1), respectively. The cross-validated
predictive log-likelihood (referred to as CV prediction) is put on the bottom.
For each model, the asterisk ‘∗’ indicates the optimal tuning parameter se-
lected by CV prediction.

SGM MixM Gaussian
τ = 0.5 τ = 1.0∗ τ = 0.5 τ = 1.0∗ τ = 0.25∗ τ = 1.0

(1, 1, 0) 0.351 0.558 0.177 0.354 0.480 0.758
(0, 1, 1) 0.149 0.301 0.217 0.485
(2, 0, 1) -0.166 — —
(1, 0, 1) 0.149 0.148 -0.191

u (0, 0, 2) -0.070 -0.147 — —
(0, 2, 0) -0.088 — —
(1, 0, 2) 0.072 — —
(0, 0, 1) 0.073 0.050 — —
(0, 1, 2) -0.039 — —

CV prediction 11.19 14.54 6.95 12.26 14.49 -0.92

cos(πx1) + cos(πx2))a, where a > 1/2. A typical shape of the density function
p(x|θ, a) = det(D2ψ(x|θ, a)) is given in Figure 6. One can confirm that the
gradient map Dψ is continuous on [0, 1]2 and satisfies (2.3). A sufficient condition
for convexity of ψ is 0 ≤ θ ≤ 21−2a/a. If a < 1, then the tail behavior of p(x|θ, a)
is

p(x|θ, a) ' θ2a2(2a − 1)
(

π2

2
{(1 − x1)2 + (1 − x2)2}

)2(a−1)

as (x1, x2) → (1, 1). The proofs of these facts are omitted. Although estimation
of θ is described by the determinant maximization, that of a is not. Further
investigation is needed.

If any covariates are available, together with given data, we can include the
covariates in the parameter θ of SGM. However, since the parameter space Θ of
SGM is not the whole Euclidean space, its use is restricted.

The author recently proved an inequality on Efron’s statistical curvature:
the curvature of SGM at θ = 0 is always smaller than that of MixM (2.4). This
fact is not so practical but it supports SGM. Since the statement and the proof of
this inequality are rather complicated, we present them in a forthcoming paper.

We constructed a lasso-type estimator for SGM as a byproduct of the con-
servative feasible region in Section 3. Performance of the estimator was numer-
ically studied in Section 4. For the existing lasso estimators, some asymptotic
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Figure 6. The density function p(x|θ, a) for a = 0.75 and θ = 21−2a/a.

results are known when the sample size n and/or the number m of variates in-
crease (Knight and Fu (2000), Meinshausen and Bühlmann (2006), Yuan and
Lin (2007), Bunea, Tsybakov, and Wegkamp (2007), Banerjee, Ghaoui, and
d’Aspremont (2008)). We think it important to compare our SGM with the
Gaussian, mixture, and exponential models on asymptotics.
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Appendix: Proofs

A.1. Proof of Lemma 1

Let ψ have the form (2.1) and choose any θ such that D2ψ(x|θ) º 0 for every
x ∈ [0, 1]m. We prove that the gradient map Dψ(·|θ) is a bijection on [0, 1]m.
If θ = 0, then the bijectivity of Dψ(x|θ) = x is clear, so we take θ 6= 0. We
can extend the domain of ψ(·|θ) from [0, 1]m to Rm using (2.1), and denote the
extended function by ψ̃(x) = ψ̃(x|θ) for x ∈ Rm. Since ψ̃(x) is a periodic and even
function along each axis, the convexity condition D2ψ̃ º 0 holds over x ∈ Rm.
We prove that (i) Dψ̃ is a bijection on Rm and (ii) Dψ̃ is a bijection on each
hyperplane {x | xj = b}, where j ∈ {1, . . . ,m} and b ∈ {0, 1}. We first show that
the bijectivity on [0, 1]m follows from conditions (i) and (ii). Indeed, if (i) and (ii)
are fulfilled, then for each j ∈ {1, . . . ,m} the sandwiched region {x ∈ Rm | 0 ≤
xj ≤ 1} between two hyperplanes is mapped onto itself because Dψ̃ is continuous.
Therefore [0, 1]m is injectively mapped onto itself. To prove (i), it is sufficient to
show that ψ̃ is strictly convex and co-finite: limλ→∞ ψ̃(λx)/‖x‖ = 0 whenever
x 6= 0 (see Theorem 26.6 of Rockafeller (1970)). We set f(z) = ψ̃(x0 + ze),
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where x0 ∈ Rm and e ∈ Rm \ {0} are arbitrary. Then f ′′(z) ≥ 0 for any z

since D2ψ̃(x) º 0 for any x ∈ Rm. However, since f ′′(z) is a non-constant
analytic function (recall that θ 6= 0), f ′′(z) must be positive except for a finite
number of z for each bounded interval. Hence f , and therefore ψ̃, is strictly
convex. The co-finiteness of ψ̃ is immediate because ψ̃ is the sum of x>x/2 and
a bounded function. Hence (i) is proved. For (ii), we consider the hyperplane
{x | xm = b}, where b ∈ {0, 1} without loss of generality. Denote the restriction
of ψ̃ to {x | xm = b} by ψ̃m−1. Then

ψ̃m−1(x1, . . . , xm−1) =
b2

2
+

1
2

m−1∑
i=1

x2
i −

∑
u∈U

π−2θu(−1)ujb
m−1∏
i=1

cos(πujxj).

This function is the same form as (2.1) with the dimension m−1. The convexity
condition (∂2ψ̃m−1/∂xi∂xj) º 0 is also satisfied because ψ̃m−1 is a restriction of
ψ̃. Thus (ii) is proved in the same manner as (i).

A.2. Proof of Lemma 2

A statistical model is a mixture model with respect to a given parameter
if and only if all the second derivatives of the density function with respect to
the parameter vanish. Hence we calculate the second derivative of the density
function of SGM. Put Zi = {u ∈ (Zm

≥0)
+ | uj = 0 if j 6= i}. If U ⊂ Zi for

some i, then it is easy to confirm that SGM coincides with MixM. Hence we
assume that U 6⊂ Zi for any i. Then there exist u, v ∈ U (the case u = v is
available) such that |σ(u) ∪ σ(v)| ≥ 2, where σ(u) = {j | uj > 0}. Putting
Au = {D2ψ(x|θ)}−1{∂/∂θu(D2ψ(x|θ))}, we have

∂2p(x|θ)
∂θu∂θv

= trAu trAv − tr[AuAv].

Since Au|θ=0,x=0 = diag(u2
1, . . . , u

2
m), we have

∂2p(x|θ)
∂θu∂θv

∣∣∣∣
θ=0,x=0

= ‖u‖2‖v‖2 −
∑

i

u2
i v

2
i =

∑
i

∑
j 6=i

u2
i v

2
j > 0,

where the last inequality follows from |σ(u) ∪ σ(v)| ≥ 2. Thus SGM is not a
mixture model as long as U 6⊂ Zi for any i.

A.3. Proof of Lemma 3

The score function Lu of SGM at θ = 0 is directly calculated as Lu =
(∂/∂θu) log p(x|θ)|θ=0 = ‖u‖2

∏m
j=1 cos(πujxj). The score function of MixM is
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also easily proved to be Lu. Then the Fisher information matrix of both the
models is

Juv =
∫

p(x|0)LuLvdx = ‖u‖2‖v‖2
m∏

j=1

∫ 1

0
cos(πujxj) cos(πvjxj)dxj .

Here the integral is easily calculated.

A.4. Proof of Lemma 4

Let p(x|θ) be the density function of SGM. For each i ∈ {1, . . . ,m}, let
x−i = (xj)j∈{1,...,m}\{i} and denote the marginal density of xi by ri(xi|θ) =∫
[0,1]m−1 p(x|θ) dx−i. Then ri(xi|θ) is a polynomial with respect to θ = (θu)u∈U

by the definition of SGM. Note that ri(xi|θ = 0) = 1 for any i and xi because
p(x|θ = 0) = 1. We prove by contradiction that there exist i and xi such
that ri(xi|θ) is a non-constant polynomial of θ. Assume that ri(xi|θ) is the
constant polynomial 1 for any i and xi. Fix u ∈ U . Put cj = cos(πujxj) and
sj = sin(πujxj) for each j. Put Au = {D2ψ(x|θ)}−1{∂/∂θu(D2ψ(x|θ))}. Then,
for each i, the second derivative of ri with respect to θu at θ = 0 is

0 =
∂2ri(xi|θ)

∂θ2
u

∣∣∣∣
θ=0

=
∫

[0,1]m−1

∂2p(x|θ)
∂θ2

u

∣∣∣∣
θ=0

dx−i

=
∫

[0,1]m−1

{
(trAu)2 − tr(A2

u)
}∣∣

θ=0
dx−i

=
∫

[0,1]m−1

{ m∑
j,k=1

1{j 6=k}u
2
ju

2
k(c

2
jc

2
k − s2

js
2
k)

∏
l 6=j,k

c2
l

}
dx−i

= 2u2
i

( ∑
j 6=i

u2
j

)
(c2

i − s2
i )2

−|σ(u)\{i}|,

where σ(u) = {j | uj > 0}. Thus we have u2
i = 0 or

∑
j 6=i u

2
j = 0 for each i.

This implies u = (0, . . . , 0, uρ, 0, . . . , 0) for some ρ ∈ {1, . . . ,m}. Then we have,
however,

0 =
∂rρ(xρ|θ)

∂θu

∣∣∣∣
θ=0

=
∫

[0,1]m−1

tr(Au)|θ=0 dx−ρ = u2
ρcρ

and uρ = 0. This contradicts (0, . . . , 0) /∈ U . Hence there exist i and xi such that
ri(xi|θ) is a non-constant polynomial of θ. Since the set of zero-points of a given
non-zero polynomial has zero Lebesgue measure, we obtain the result.
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A.5. Proofs of Equations (2.6) and (2.7)

We first prove (2.6). Let m = 1 and U = {u}. We only consider the case u =
1, the other cases are proved similarly. Put θ = θ1. Since p(x1|θ) = 1+θ cos(πx1),
we have Juu(θ) =

∫ 1
0 cos2(πx1)/(1 + θ cos(πx1))dx1. By putting z = exp(iπx1),

we obtain

Juu(θ) =
1

2πi

∮
|z|=1

(z + z−1)2/4
1 + θ(z + z−1)/2

dz

z
=

1
4πi

∮
|z|=1

(z2 + 1)2

z2(θz2 + 2z + θ)
dz.

The poles of the integrand inside the unit circle are 0 and z+, where z± = (−1±√
1−θ2)/θ. By the residue theorem, we obtain Juu(θ) = (1−

√
1−θ2)/(θ2

√
1−θ2).

This proves (2.6).
We next prove (2.7). Put u = (1, 1) and θ = θu. We use the identity

p(x|θ) = det
(

1 + θ cos(πx1) cos(πx2) −θ sin(πx1) sin(πx2)
−θ sin(πx1) sin(πx2) 1 + θ cos(πx1) cos(πx2)

)
= (1 + θ cos(π(x1 − x2)))(1 + θ cos(π(x1 + x2))).

The Fisher information is

Juu(θ) =
∫

[0,1]2

(
cos2(π(x1 − x2))

1 + θ cos(π(x1 − x2))
+

cos2(π(x1 + x2))
1 + θ cos(π(x1 + x2))

)
dx1dx2

=
1
4

∫
[−1,1]2

(
cos2(π(x1 − x2))

1 + θ cos(π(x1 − x2))
+

cos2(π(x1 + x2))
1 + θ cos(π(x1 + x2))

)
dx1dx2

=
1
4

∫
[−1,1]2

(
cos2(πy1)

1 + θ cos(πy1)
+

cos2(πy2)
1 + θ cos(πy2)

)
dy1dy2,

where the last equality follows from the transformation y1 = x1 − x2 and y2 =
x1 + x2, and from the periodicity of the integrand. Then (2.7) is proved in the
same manner as (2.6).

A.6. Proof of Theorem 3

Let θ ∈ Θlit. We show that D2ψ(x|θ) º 0 for all x ∈ [0, 1]m. By Euler’s
formula, we obtain

∏m
j=1 cos(πujxj) = 2−m

∑
α∈{−1,1}m cos(πα>d(u)x), where

d(u) is the m × m diagonal matrix with the diagonal vector u. Note that
2−m

∑
α∈{−1,1}m αα> = I. Then

D2ψ(x|θ) = I +
∑
u∈U

θu

2m

∑
α∈{−1,1}m

cos(πα>d(u)x)d(u)αα>d(u)

º I −
∑
u∈U

|θu|
2m

∑
α∈{−1,1}m

d(u)αα>d(u)

= I −
∑
u∈U

|θu|d(u)2.
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Since the last formula is non-negative definite, we have θ ∈ Θ.
Next we assume that V ⊂ U is linearly independent modulo 2. Since Θlit ⊂

Θ, it is sufficient to prove that Θ ∩ RV ⊂ Θlit ∩ RV . Let θ ∈ Θ ∩ RV . We
evaluate D2ψ(x|θ) at lattice points ξ ∈ {0, 1}m. For any ξ ∈ {0, 1}m and any v ∈
Zm, we have D2(−π−2

∏m
j=1 cos(πvjxj))|x=ξ = (−1)v>ξd(v)2. Since V is linearly

independent modulo 2, we can choose ξ ∈ {0, 1}m such that v>ξ = 1{θv>0} (mod
2) for all v ∈ V. Then

0 ¹ D2ψ(x|θ)
∣∣
x=ξ

= I +
∑
v∈V

θv(−1)v>ξd(v)2 = I −
∑
v∈U

|θv|d(v)2.

This means θ ∈ Θlit ∩ RV .
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