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Abstract: Variable selection for multivariate nonparametric regression is an impor-

tant, yet challenging, problem due, in part, to the infinite dimensionality of the

function space. An ideal selection procedure would be automatic, stable, easy to

use, and have desirable asymptotic properties. In particular, we define a selection

procedure to be nonparametric oracle (np-oracle) if it consistently selects the cor-

rect subset of predictors and, at the same time, estimates the smooth surface at

the optimal nonparametric rate, as the sample size goes to infinity. In this paper,

we propose a model selection procedure for nonparametric models, and explore the

conditions under which the new method enjoys the aforementioned properties. De-

veloped in the framework of smoothing spline ANOVA, our estimator is obtained

via solving a regularization problem with a novel adaptive penalty on the sum of

functional component norms. Theoretical properties of the new estimator are es-

tablished. Additionally, numerous simulations and examples suggest that the new

approach substantially outperforms other existing methods in the finite sample

setting.
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1. Introduction

We consider the multiple predictor nonparametric regression model yi =
f(xi) + εi , i = 1, . . . , n, where f is the unknown regression function, xi =
(x1,i, . . . , xp,i) is a p-dimensional vector of predictors, and the εi’s are independent
noise terms with mean 0 and variances σ2

i . Many approaches to this problem have
been proposed, such as kernel regression (Nadaraya (1964) and others) and lo-
cally weighted polynomial regression (LOESS), (Cleveland (1979)). See Schimek
(2000) for a detailed list of references. When there are multiple predictors, these
procedures suffer from the well known curse of dimensionality. Additive models
(GAM’s) (Hastie and Tibshirani (1990)) avoid some of the problems with high
dimensionality and have been shown to be quite useful in cases when the true
surface is nearly additive. A generalization of additive modeling is the Smoothing
Spline ANOVA (SS-ANOVA) approach (Wahba (1990), Stone, Buja, and Hastie
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(1994), Wahba et al. (1995), Lin (2000), and Gu (2002)). In SS-ANOVA, the
function f is decomposed into several orthogonal functional components.

We are interested in the variable selection problem in the context of multi-
ple predictor nonparametric regression. For example, it might be thought that
the function f only depends on a subset of the p predictors. Traditionally this
problem has been solved in a stepwise or best subset approach. The MARS
procedure (Friedman (1991)) and variations thereof (Stone et al. (1997)) build
an estimate of f by adding and deleting individual basis functions in a stepwise
manner so that the omission of entire variables occurs as a side effect. However,
stepwise variable selection is known to be unstable due to its inherent discrete-
ness (Breiman (1995)). COmponent Selection Shrinkage Operator (COSSO; Lin
and Zhang (2006)) performs variable selection via continuous shrinkage in SS-
ANOVA models by penalizing the sum of norms of the functional components.
Since each of the components is continuously shrunk toward zero, the resulting
estimate is more stable than in subset or stepwise regression.

What are the desired properties of a variable selection procedure? For the
parametric linear model Fan and Li (2001) discuss the oracle property. A method
is said to possess the oracle property if it selects the correct subset of predictors
with probability tending to one, and estimates the non-zero parameters as effi-
ciently as would be possible if we knew which variables were uninformative ahead
of time. Parametric models with the oracle property include Fan and Li (2001)
and Zou (2006). In the context of nonparametric regression, we extend this
notion by saying a nonparametric regression estimator has the nonparametric
(np)-oracle property if it selects the correct subset of predictors with probability
tending to one, and estimates the regression surface f at the optimal nonpara-
metric rate.

None of the aforementioned nonparametric regression methods have been
demonstrated to possess the np-oracle property. In particular, COSSO has a
tendency to over-smooth the nonzero functional components in order to set the
unimportant functional components to zero. We propose the adaptive COSSO
(ACOSSO) to alleviate this major stumbling block. The intuition behind the
ACOSSO is to penalize each component differently so that more flexibility is
given to estimate functional components with more trend and/or curvature, while
penalizing unimportant components more heavily. Hence, it is easier to shrink
uninformative components to zero without much degradation to the overall model
fit. This is motivated by the adaptive LASSO procedure for linear models of Zou
(2006). We explore a special case where the ACOSSO possesses the np-oracle
property. The practical benefit is demonstrated on several simulated and data
examples where the ACOSSO substantially outperforms existing methods.
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In Section 2 we review the necessary literature on smoothing spline ANOVA.
The ACOSSO is introduced in Section 3, and its asymptotic properties are pre-
sented in Section 4. In Section 5 we discuss the computational details of the
estimate. Its superior performance to existing methods is shown in simulations
and on data in Sections 6 and 7, respectively. Section 8 concludes. Proofs are
given in an appendix.

2. Smoothing Splines and the COSSO

In this section we review only the necessary concepts of SS-ANOVA needed
for development. For a more detailed overview of Smoothing Splines and SS-
ANOVA see Wahba (1990), Wahba et al. (1995), Schimek (2000), Gu (2002),
and Berlinet and Thomas-Agnan (2004).

In the smoothing spline literature it is typically assumed that f ∈ F where
F is a reproducing kernel Hilbert space (RKHS). Denote the reproducing kernel
(r.k.), inner product, and norm of F as KF , 〈·, ·〉F , and ‖ · ‖F respectively. Often
F is a space of functions with a certain degree of smoothness, for example, the
second order Sobolev space, S2 = {g : g, g′ are absolutely continuous and g′′ ∈
L2[0, 1]}.

Without loss of generality, take x ∈ X = [0, 1]p. In smoothing spline (SS)-
ANOVA, F is constructed by first taking a tensor product of p one-dimensional
RKHS’s. For example, let Hj be a RKHS on [0, 1] such that Hj = {1} ⊕ H̄j

where {1} is the RKHS consisting of only constant functions and H̄j is the
RKHS consisting of functions fj ∈ Hj such that < fj , 1 >Hj= 0. If F is the
tensor product of the Hj , j = 1, . . . , p, then

F =
p⊗

j=1

Hj = {1} ⊕
{ p⊕

j=1

H̄j

}
⊕

{ ⊕
j<k

(H̄j ⊗ H̄k)
}
⊕ · · · . (2.1)

The right side of (2.1) has decomposed F into the constant space, the main effect
spaces, the two-way interaction spaces, etc., which gives rise to SS-ANOVA.
Typically (2.1) is truncated so that F includes only lower order interactions
for better estimation and ease of interpretation. Regardless of the order of the
interactions involved, F can be written in general as

F = {1} ⊕
{ q⊕

j=1

Fj

}
, (2.2)

where {1},F1 . . .Fq is an orthogonal decomposition of the space and each of the
Fj is itself a RKHS. We focus on two special cases, the additive model f(x) =
b +

∑p
j=1 fj(xj), and the two-way interaction model f(x) = b +

∑p
j=1 fj(xj) +∑p

j<k fjk(xj , xk), where b ∈ {1}, fj ∈ H̄j and fjk ∈ H̄j ⊗ H̄k.
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A smoothing spline estimate, f̂ , is the function f ∈ F that minimizes

1
n

n∑
i=1

(yi − f(xi))
2 + λ0

q∑
j=1

1
θj
‖P jf‖2

F , (2.3)

where P jf is the orthogonal projection of f onto the Fj , j = 1, . . . , q, that form
an orthogonal partition of the space as in (2.2). We use the convention 0/0 = 0
so that when θj = 0 the minimizer satisfies ‖P jf‖F = 0.

The COSSO (Lin and Zhang (2006)) penalizes the sum of the norms instead
of the squared norms, as in (2.3), and achieves (sparse) solutions in which some
of the functional components are estimated to be exactly zero. Specifically, the
COSSO estimate, f̂ , is the function f ∈ F that minimizes

1
n

n∑
i=1

(yi − f(xi))
2 + λ

q∑
j=1

‖P jf‖F . (2.4)

In Lin and Zhang (2006), F was formed using S2 with squared norm

‖f‖2 =
(∫ 1

0
f(x)dx

)2

+
(∫ 1

0
f ′(x)dx

)2

+
∫ 1

0

(
f ′′(x)

)2
dx (2.5)

for each of the Hj of (2.1). The reproducing kernel can be found in Wahba
(1990).

3. An Adaptive Proposal

Although the COSSO is a significant improvement over classical stepwise
procedures, it tends to oversmooth functional components. This seemingly pre-
vents COSSO from achieving a nonparametric version of the oracle property. We
propose an adaptive approach that uses individually weighted norms to smooth
each of the components. Specifically, we select as our estimate the function f ∈ F
that minimizes

1
n

n∑
i=1

(yi − f(xi))
2 + λ

q∑
j=1

wj‖P jf‖F , (3.1)

where the 0 < wj ≤ ∞ are weights that can depend on an initial estimate
of f , denoted f̃ . For example we could initially estimate f via the smoothing
spline (2.3) with all θj = 1 and λ0 chosen by the generalized cross validation
(GCV ) criterion (Craven and Wahba (1979)). Note that there is only one tuning
parameter, λ, in (3.1); the wj ’s are not tuning parameters, rather they are weights
to be estimated from the data in a manner described below.
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3.1. Choosing adaptive weights

Given an initial estimate f̃ , we wish to construct weights so that the promi-
nent functional components enjoy the benefit of a smaller penalty relative to
less important ones. One possible scheme is to make use of the L2 norm of P j f̃ ,
‖P j f̃‖L2 = (

∫
X (P j f̃(x))2dx)1/2. For a reasonable initial estimator, this quantity

is a consistent estimate of ‖P jf‖2
L2

, a term often used to quantify the importance
of functional components. This suggests the choice

wj = ‖P j f̃‖−γ
L2

. (3.2)

In Section 4, the use of these weights is shown to result in favorable theoretical
properties.

There are other possibilities for the weights. As an extension of the adaptive
LASSO for linear models, it may seem more natural to set wj = ‖P j f̃‖−γ

F , but
these weights do not provide an estimator with sound theoretical properties.
Building an additive model using RKHS’s with norm given by (2.5) leads to
wj that essentially require estimation of the functionals

∫ 1
0 (f ′′

j (xj))2dxj , known
to be a harder problem than estimating

∫ 1
0 f2

j (x)dx (Efromovich and Samarov
(2000)). In light of the results of our empirical studies, we recommend the use
of the weights in (3.2).

4. Asymptotic Properties

In this section we show that the ACOSSO possesses a nonparametric analog
of the oracle property.

Throughout this section we assume the regression model yi = f0(xi) + εi,
i = 1, . . . , n. The unknown regression function f0 ∈ F is additive in the predictors
so that F = {1}⊕F1⊕· · ·⊕Fp, where each Fj is a space of functions corresponding
to xj . We assume that the εi are independent with E εi = 0, and are uniformly
sub-Gaussian. Thus, following van de Geer (2000), there exists K > 0 and C > 0
such that

sup
n

max
i=1,...,n

E
[
exp

(ε2
i

K

)]
≤ C. (4.1)

Let S2 denote the RKHS of second order Sobolev space endowed with the
norm in (2.5) with S2 = {1} ⊕ S̄2. Also, define the squared norm of a function
at the design points as ‖f‖2

n = 1/n
∑n

i=1 f2(xi). Let U be the set of indexes
for all uninformative functional components in the model f0 = b +

∑p
j=1 P jf0,

j = 1, . . . , p, i.e., U = {j : P jf0 ≡ 0}.
Theorem 1 below states the convergence rate of ACOSSO when used to

estimate an additive model. We sometimes write wj and λ as wj,n and λn,
respectively, to explicitly denote the dependence on n. We also use the notation
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Xn ∼ Yn to mean Xn/Yn = Op(1) and Yn/Xn = Op(1) for some sequences Xn

and Yn. The proofs of Theorem 1 and the other results in this section are deferred
to the appendix.

Theorem 1. (Convergence Rate) Assume that f0 ∈ F = {1}⊕S̄2
1 ⊕· · ·⊕ S̄2

p ,
where S̄2

j is the space S̄2 corresponding to the jth input variable, xj, and that
the εi are independent and satisfy (4.1). Consider the ACOSSO estimate, f̂ ,
defined in (3.1). Suppose that w−1

j,n = Op(1) for j = 1, . . . , p, that wj,n = Op(1)
for j ∈ U c, and that λ−1

n = Op(n4/5). For f̂ , defined at (3.1):

(i) If P jf0 6= 0 for some j, then ‖f̂ − f0‖n = Op(λ1/2w
1/2
∗,n ) where w∗,n =

min{w1,n, . . . , wp,n};

(ii) If P jf0 = 0 for all j, then ‖f̂ − f0‖n = Op(max{n−1/2, n−2/3λ−1/3w
−1/3
∗,n }).

Corollary 1. (Optimal Convergence of ACOSSO) Assume that f0 ∈ F =
{1}⊕S̄2

1 ⊕· · ·⊕S̄2
p , and that the εi are independent and satisfy (4.1). Consider f̂

with weights wj,n = ‖P j f̃‖−γ
L2

, for f̃ given by (2.3) with θ = 1p and λ0,n ∼ n−4/5.
If γ > 3/4 and λn ∼ n−4/5, then ‖f̂ − f0‖n = Op(n−2/5) if P jf0 6= 0 for some j,
and ‖f̂ − f0‖n = Op(n−1/2) otherwise.

We now discuss the properties of the ACOSSO in terms of model selection.
In Theorem 2 and Corollary 2 we consider functions in the second order Sobolev
space of periodic functions, denoted S2

per, where S2
per = {1} ⊕ S̄2

per. We take
the design points to be {x1,i1 , x2,i2 , . . . , xp,ip}

m p
ij=1 j=1

, where xj,k = k/m, k =
1, . . . ,m, j = 1, . . . , p, so the sample size is n = mp. This set-up was also used by
Lin and Zhang (2006) to examine the model selection properties of the COSSO.

Theorem 2. (Selection Consistency) Assume a tensor product design and
f0 ∈ F = {1} ⊕ S̄2

per,1 ⊕ · · · ⊕ S̄2
per,p, where S̄2

per,j is the space S̄2
per corresponding

to the jth input variable, xj. Also assume that the εi are independent and satisfy
(4.1). Then f̂ satisfies P j f̂ ≡ 0 for all j ∈ U with probability tending to one if
and only if nw2

j,nλ2
n

p→ ∞ as n → ∞ for all j ∈ U .

We say a nonparametric regression estimator, f̂ , has the nonparametric (np)-
oracle property if ‖f̂ − f0‖n → 0 at the optimal rate while P j f̂ ≡ 0 for all j ∈ U

with probability tending to one. This means that the error associated with
surface estimation has the same order as that for any other optimal estimator.
A corollary to Theorem 2 states that the ACOSSO with weights given by (3.2)
has the np-oracle property.
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Corollary 2. (Nonparametric Oracle Property) Assume a tensor product
design and f0 ∈ F where F = {1} ⊕ S̄2

per,1 ⊕ · · · ⊕ S̄2
per,p, and that the εi are

independent and satisfy (4.1). Define weights, wj,n = ‖P j f̃‖−γ
L2

, for f̃ given by the
traditional smoothing spline with λ0 ∼ n−4/5, and γ > 3/4. If also λn ∼ n−4/5,
then the ACOSSO estimator has the np-oracle property.

Remark 1. The derivation of the variable selection properties of adaptive
COSSO requires detailed investigation on the eigen-properties of the reproduc-
ing kernel, which is generally intractable. In the case of Theorem 2 and Corol-
lary 2 however, f periodic and x a tensor product design, the eigenfunctions
and eigenvalues of the associated reproducing kernel have a particularly simple
form. Results for this design are often instructive for general cases, as suggested
in Wahba (1990). We conjecture that the selection consistency of the adaptive
COSSO also holds more generally, and this is supported by numerical results in
Section 6. The derivation of variable selection properties in the general case is a
technically difficult problem which is worthy of future investigation. Neither the
f periodic assumption nor x a tensor product design are required for establish-
ing the MSE consistency of the adaptive COSSO estimator in Theorem 1 and
Corollary 1.

Remark 2. The COSSO (the ACOSSO with wj,n = 1 for all j and n) does
not appear to enjoy the np-oracle property. Notice that by Theorem 2, λn must
go to zero slower than n−1/2 in order to achieve asymptotically correct variable
selection. However, even if λn = n−1/2, Theorem 1 implies that the convergence
rate is Op(n−1/4) which is not optimal. These results are not surprising given
that the linear model can be obtained as a special case of ACOSSO by using
F = {f : f = β0 +

∑p
j=1 βj(xj − 1/2)}. For this F the COSSO reduces to the

LASSO which is known not to have the oracle property (Knight and Fu (2000),
Zou (2006)). In contrast, the ACOSSO reduces to the adaptive LASSO (Zou
(2006)) that is known to achieve the oracle property.

Remark 3. The distribution of the error terms εi in Theorems 1 and 2 need
only be independent with sub-Gaussian tails (4.1). The distributions need not be
Gaussian, and need not even be the same for each εi. In particular, this allows
for heteroskedastic errors.

Remark 4. Theorems 1 and 2 assume an additive model, in which case func-
tional component selection is equivalent to variable selection. In higher order
interaction models, the main effect for xj and all of the interaction functional
components involving xj must be set to zero in order to eliminate xj from the
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model and achieve true variable selection. Thus, when interactions are involved,
we use the term variable selection to refer to functional component selection.

5. Computation

Since the ACOSSO in (3.1) may be viewed as the COSSO in (2.4) with
an “adaptive” RKHS, the computation proceeds in a manner similar to that
for the COSSO. We first present an equivalent formulation of the ACOSSO,
then describe how to minimize this equivalent formulation for a fixed value of
the tuning parameter. Discussion of tuning parameter selection is delayed until
Section 5.3.

5.1. Equivalent formulation

Consider the problem of finding θ = (θ1, . . . , θq)′ and f ∈ F to minimize

1
n

n∑
i=1

[yi − f(xi)]2 + λ0

q∑
j=1

θ−1
j w2−ϑ

j ‖P jf‖2
F + λ1

q∑
j=1

wϑ
j θj , subject to θj ≥ 0 ∀j,

(5.1)
where 0 ≤ ϑ ≤ 2, λ0 > 0 is a fixed constant, and λ1 > 0 is a smoothing param-
eter. That the above optimization problem is equivalent to (3.1) has important
implications for computation, since (5.1) is easier to solve.

Lemma 1. Set λ1 = λ2/(4λ0). (i) If f̂ minimizes (3.1) and θ̂j = λ
1/2
0 λ

−1/2
1 w1−ϑ

j

‖P j f̂‖F , j = 1, . . . , q, then (θ̂, f̂) minimizes (5.1). (ii) If (θ̂, f̂) minimizes (5.1),
then f̂ minimizes (3.1).

5.2. Computational algorithm

The form at (5.1) gives a class of equivalent problems for ϑ ∈ [0, 2]. For
simplicity we consider the case ϑ = 0, since the ACOSSO can be then viewed as
having the same form as the COSSO with an adaptive RKHS. For a given value
of θ = (θ1, . . . , θq)′, the minimizer of (5.1) is the smoothing spline of (2.3) with
θj replaced by w−2

j θj . Hence, it is known (Wahba (1990) for example) that the
solution has the form f(x) = b +

∑n
i=1 ciKw,θ(x, xi) where c ∈ <n, b ∈ <, and

Kw,θ =
∑q

j=1(θj/w2
j )KFj , with Fj corresponding to the decomposition in (2.2).

Let Kj be the n × n matrix {KFj (xi, xj)}n
i,j=1 and let 1n be the column

vector consisting of n ones. Write the vector f = (f(x1), . . . , f(xn))′ as f =
b1n + (

∑q
j=1(θj/w2

j )Kj)c, y = (y1, . . . , yn)′, and define ‖v‖2
n = 1/n

∑n
i=1 v2

i for
a vector v of length n. Now, for fixed θ, minimizing (5.1) is equivalent to

min
b,c

{
1
n

∥∥∥∥y − b1n −
q∑

j=1

θjw
−2
j Kjc

∥∥∥∥2

n

+ λ0

q∑
j=1

θjw
−2
j c′Kjc

}
, (5.2)
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which is just the traditional smoothing spline problem in Wahba (1990). On the
other hand if b and c were fixed, the θ that minimizes (5.1) is the same as the
solution to

min
θ

{
‖z − Gθ‖2

n + nλ1

q∑
j=1

θj

}
, subject to θj ≥ 0 ∀j, (5.3)

where gj = w−2
j Kjc, G is the n × p matrix with the jth column being gj , and

z = y − b1n − (n/2)λ0c. Notice that (5.3) is equivalent to

min
θ

‖z − Gθ‖2
n subject to θj ≥ 0 ∀j and

q∑
j=1

θj ≤ M, (5.4)

for some M > 0. The formulation in (5.4) is a quadratic programming problem
with linear constraints for which there exist many algorithms (see Goldfarb and
Idnani (1982) for example). A reasonable scheme is then to iterate between (5.2)
and (5.4). In each iteration (5.1) is decreased. We have observed that after the
second iteration the change between iterations is small and decreases slowly.

5.3. Selecting the tuning parameter

In (5.1) there is only one tuning parameter, λ1, or equivalently M of (5.4);
changing the value of λ0 only scale shifts the value of M being used, so λ0 can
be fixed at any positive value. We choose to initially fix θ = 1q and to find λ0

to minimize the GCV score of the smoothing spline problem in (5.2). This has
the effect of placing the θj ’s on a scale so that M roughly translates into the
number of non-zero components. Hence, it seems reasonable to tune M on [0, 2q]
for example.

We used 5-fold cross validation (5CV ) in our examples to tune M , though we
also found that the BIC criterion (Schwarz (1978)) was quite useful for selecting
M . We approximated the effective degrees of freedom, ν, by ν = tr(S), where S

is the weight matrix corresponding to the smoothing spline fit with θ = θ̂. This
type of approximation gives an under-estimate of the actual df , but has been
demonstrated to be useful (Tibshirani (1996)). We have found that the ACOSSO
with 5CV tends to over-select non-zero components, just as Zou, Hastie, and
Tibshirani (2007) found that AIC-type criteria over-selected non-zero coefficients
in the LASSO. They recommend using BIC with the LASSO when the goal is
variable selection, as do we for the ACOSSO.

6. Simulated Data Results

In this section we study the empirical performance of the ACOSSO estimate
and compare it to several other existing methods. We display the results of four
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different versions of the ACOSSO. All versions used weights wj given by (3.2)
with γ = 2, since we found that γ = 2 produced the best overall results among
γ ∈ {1.0, 1.5, 2.0, 2.5, 3.0}. The initial estimate, f̃ , was either the traditional
smoothing spline or the COSSO with λ selected by GCV . We also used either
5CV or BIC to tune M . Hence, the four versions of ACOSSO are ACOSSO-5CV-
T, ACOSSO-5CV-C, ACOSSO-BIC-T, and ACOSSO-BIC-C, where (-T) and (-
C) stand for using the traditional smoothing spline and COSSO, respectively, as
the initial estimate.

We include the methods COSSO, MARS, stepwise GAM, Random Forest
(Breiman (2001)), and the Gradient Boosting Method (GBM) (Friedman (2001)).
The tuning parameter for COSSO was chosen via 5CV . To fit MARS models
we used the ’polymars’ procedure in the R-package ’polspline’. Stepwise GAM,
Random Forest, and GBM fits were obtained using the R-packages ’gam’, ’ran-
domForest’, and ’gbm’, respectively. Input parameters for these methods, such as
gcv for MARS, n.trees for GBM, etc., were appropriately set to give best results.

Note that Random Forest and GBM are both black box prediction machines
that produce function estimates that are difficult to interpret, and they are not
intended for variable selection. They are, however, well-known for making ac-
curate predictions. Thus, we included them to demonstrate the utility of the
ACOSSO even in situations where prediction is the goal.

We also included the results of the traditional smoothing spline (2.3) when
fit with only the informative variables. That is, we set θj = 0 if P jf = 0, and
θj = 1 otherwise, then chose λ0 by GCV. This is referred to as the ORACLE
estimator. Notice that the ORACLE estimator is only available in simulations
where we know which variables are informative. Though the ORACLE cannot
be used in practice, it gives us a baseline for the best estimation risk we could
hope to achieve with other methods.

Performance is measured in terms of estimation risk and model selection,
specifically with the variables R̂, ᾱ, β̄. Here R̂ is the average of ISE values over
100 realizations, where the ISE = E X{f(X)− f̂(X)}2 is calculated for each real-
ization via a monte carlo integration with 1,000 points. Let α̂j be the proportion
of realizations such that P j f̂ 6= 0, j = 1, . . . , q; then ᾱ = 1/|U |

∑
j∈U α̂j where

U = {j : P jf ≡ 0} and |U | is the number of elements in U . If β̂j is the proportion
of realizations such that P j f̂ = 0, j = 1, . . . , q, then β̄ = 1/|U c|

∑
j∈Uc β̂j where

U c is the complement of U . Model size is the number of functional components
included in the model averaged over the 100 realizations.

We first present a very simple example to highlight the benefit of using the
ACOSSO; then we repeat the same examples used in the COSSO paper to offer
a direct comparison on examples where the COSSO is known to perform well.
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The only difference here is that we have increased the noise level to make these
problems a bit more challenging.

Example 1. Four functions on [0, 1] were used as building blocks of regression
functions in the simulations:

g1(t)=t; g2(t) = (2t − 1)2; g3(t) =
sin(2πt)

2 − sin(2πt)
;

g4(t)=0.1 sin(2πt)+0.2 cos(2πt)+0.3 sin2(2πt)+0.4 cos3(2πt)+0.5 sin3(2πt). (6.1)

In this example X ∈ <10 and we took n = 100 observations from the model
y = f(X) + ε, where f(x) = 5g1(x1) + 3g2(x2) + 4g3(x3) + 6g4(x4), and ε

i.i.d.∼
N (0, 3.03). Therefore X5, . . . , X10 were uninformative. We first considered the
case where X was uniform in [0, 1]10, in which case the signal to noise ratio
(SNR) was 3:1 (here we have adopted the variance definition for signal to noise
ratio, SNR = [Var (f(X))]/σ2). For comparison, the variances of the functional
components were Var {5g1(X1)} = 2.08, Var {3g2(X2)} = 0.80, Var {4g3(X3)} =
3.30 and Var {6g4(X4)} = 9.45.

For the estimations ACOSSO, COSSO, MARS, and GBM, we restricted f̂

to be a strictly additive function; the Random Forest function does not have an
option for this. There were 10 functional components considered for inclusion
in the ACOSSO model. Figure 1 gives plots of y versus x1, . . . , x4, along with
the true P jf component curves for a realization from Example 1. The true
component curves, j = 1, . . . , 4, along with the estimates given by ACOSSO-
5CV-T and COSSO are shown in Figure 2, here without the data for added
clarity. Notice that the ACOSSO captured more of the features of the P 3f

component and, particularly, the P 4f component, since the reduced penalty on
these components allowed it more curvature. In addition, since the weights more
easily allow for curvature on components that need it, M did not need to be
large (relatively) to allow a good fit to components like P 3f and P 4f . This
had the effect that components with less curvature, like the linear P 1f , could be
estimated more accurately by ACOSSO than by COSSO, as seen in Figure 2.

Figure 3 shows how the magnitudes of the estimated components change
with the tuning parameter M for both the COSSO and ACOSSO for this re-
alization; magnitudes of the estimated components are measured by their L2

norms ‖P j f̂‖L2 , dashed lines are drawn at the true values of ‖P jf‖L2 for refer-
ence. Notice that estimated functional component norms given by ACOSSO were
closer to the true values than those given by the COSSO in general. Also, the
uninformative components were more heavily penalized in the ACOSSO making
it harder for them to enter the model.

Incidentally using GCV or 5CV for tuning parameter selection for the
ACOSSO on the above realization gave M = 3.81 and M = 4.54, respectively,
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Figure 1. Plot of the true functional components, P jf , j = 1, . . . , 4, along
with the data for a realization from Example 1.

both resulting in a model of five functional components for this run. The BIC

method however gave M = 2.97, which resulted in the correct model of four
functional components. This was a typical occurrence for realizations from this
example, as can be seen in Table 1.

In Table 1 we can compare the risk and variable selection capability of the
ACOSSO to the COSSO and other methods with X uniform on [0, 1]10. All
four of the ACOSSO methods did significantly better than COSSO and other
methods in terms of risk. COSSO, MARS, GAM, Random Forest, and GBM
had 131%, 180%, 150%, 349%, and 167% the risk of the ORACLE respectively,
while the ACOSSO methods all had risk less than 108% that of the ORACLE. In
terms of variable selection, the two ACOSSO-5CV methods had a much higher
average type I error rate than the two ACOSSO-BIC methods and MARS. In
fact ACOSSO-5CV-T had ᾱ = 0.25, which is quite high. Both ACOSSO-BIC
methods, however, had ᾱ ≤ 0.03, and had an average model size of close to 4.0,
the correct number of components.
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Figure 2. Plot of P jf , j = 1, . . . , 4, along with their estimates given by
ACOSSO and COSSO for a realization from Example 1.

Table 1. Results of 100 realizations from Example 1 in the uniform case.
Standard errors are given in parantheses.

R̂ ᾱ 1 − β̄ model size
ACOSSO-5CV-T 1.204 (0.042) 0.252 (0.034) 0.972 (0.008) 5.4 (0.21)
ACOSSO-5CV-C 1.186 (0.048) 0.117 (0.017) 0.978 (0.007) 4.6 (0.11)
ACOSSO-BIC-T 1.257 (0.048) 0.032 (0.008) 0.912 (0.012) 3.8 (0.08)
ACOSSO-BIC-C 1.246 (0.064) 0.018 (0.006) 0.908 (0.014) 3.7 (0.07)

COSSO 1.523 (0.058) 0.095 (0.023) 0.935 (0.012) 4.3 (0.15)
MARS 2.057 (0.064) 0.050 (0.010) 0.848 (0.013) 3.7 (0.08)
GAM 1.743 (0.053) 0.197 (0.019) 0.805 (0.011) 4.4 (0.13)

Random Forest 4.050 (0.062) NA NA 10.0 (0.00)
GBM 1.935 (0.039) NA NA 10.0 (0.00)

ORACLE 1.160 (0.034) 0.000 (0.000) 1.000 (0.000) 4.0 (0.00)

Although the ACOSSO-5CV methods had higher ᾱ, they had better power
than the other methods, as can be seen in the 1 − β̄ column of Table 1. Here
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Figure 3. Plot of ‖P j f̂‖L2 along with ‖P jf‖L2 by M for both ACOSSO and
COSSO on a realization from Example 1.

1− β̄ was almost completely determined by how well the methods do at including
the second variable. The components P 1f , P 3f , and P 4f were included in the
model nearly always for all of the methods. The percentage of the realizations
that included P 2f was 65% for the ACOSSO-BIC methods, 75% for the COSSO,
and only 40% and 23% for MARS and GAM, respectively. The percentage of the
realizations that included P 2f was close to 90% for the ACOSSO-5CV methods
but, as mentioned, the price paid was a higher type I error rate.

Example 2. Here X ∈ <60. We took 500 observations from y = f(X) + ε. The
regression function was additive in the predictors,

f(x) = g1(x1) + g2(x2) + g3(x3) + g4(x4) + 1.5g1(x5) + 1.5g2(x6) + 1.5g3(x7)

+1.5g4(x8) + 2g1(x9) + 2g2(x10) + 2g3(x11) + 2g4(x12),

with g1, . . . , g4 as given in (6.1). The noise variance was set to σ2 = 2.40, yielding
a SNR of 3:1 in the uniform case. Notice that X13, . . . , X60 are uninformative.
In this example, we took the two distributional families for the input vector X

found in Lin and Zhang (2006).

Compound Symmetry: For an input X = (X1, . . . , Xp), let Xj = (Wj + tU)/(1+
t), j = 1, . . . , p, where W1, . . . ,Wp and U are i.i.d. Unif(0, 1). Thus, Corr (Xj , Xk)
= t2/(1 + t2) for j 6= k. The uniform distribution design corresponds to the case
t = 0.

(trimmed) AR(1): Let W1, . . . ,Wd be i.i.d. N (0, 1), and let X1 = W1, Xj =
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Table 2. Estimation Risk based on 100 realizations from Example 2 under
various covariance structures; standard errors are given in parantheses.

Compound Symmetry Trimmed AR(1)
t = 0 t = 1 t = 3 ρ = −0.5 ρ = 0.0 ρ = 0.5

ACOSSO-5CV-T 0.41 (0.01) 0.41 (0.01) 0.52 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01)
ACOSSO-5CV-C 0.42 (0.01) 0.40 (0.01) 0.43 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01)
ACOSSO-BIC-T 0.42 (0.01) 0.41 (0.01) 0.60 (0.02) 0.42 (0.01) 0.39 (0.01) 0.42 (0.01)
ACOSSO-BIC-C 0.42 (0.01) 0.42 (0.01) 0.47 (0.01) 0.45 (0.02) 0.39 (0.01) 0.43 (0.01)

COSSO 0.48 (0.01) 0.60 (0.01) 0.54 (0.01) 0.60 (0.02) 0.57 (0.01) 0.57 (0.01)
MARS 0.97 (0.02) 0.66 (0.01) 1.05 (0.02) 0.64 (0.01) 0.62 (0.01) 0.64 (0.01)
GAM 0.49 (0.01) 0.52 (0.01) 0.50 (0.01) 0.52 (0.01) 0.52 (0.01) 0.52 (0.01)

Random Forest 1.86 (0.01) 1.50 (0.01) 0.76 (0.00) 1.26 (0.01) 1.19 (0.01) 1.25 (0.01)
GBM 0.73 (0.01) 0.52 (0.01) 0.47 (0.00) 0.58 (0.01) 0.58 (0.01) 0.57 (0.01)

ORACLE 0.30 (0.00) 0.28 (0.00) 0.27 (0.00) 0.29 (0.00) 0.29 (0.01) 0.29 (0.01)

ρXj−1 + (1 − ρ2)1/2Wj , j = 2, . . . , p. Then trim Xj to [−2.5, 2.5] and scale to
[0, 1].

Table 2 shows the results of estimation risk for six distributions for the predic-
tors. Again the ACOSSO methods had estimation risk much closer to ORACLE
than the other methods. COSSO and GAM had very similar performance in this
example and generally had the best risk among the other methods. One notable
exception was the extremely high correlation case (Compound Symmetry, t = 3,
where Corr (Xj , Xk) = .9 for j 6= k). Here ACOSSO-BIC-T and ACOSSO-5CV-
T had risks near or above the risks of COSSO and GAM. GBM had the best risk
in this particular case. However, the ACOSSO variants were substantially better
overall than any of the other methods. A similar trend was also noticed (table
not presented) for these six cases on the test function from Example 1.

Example 3. Here we considered a regression model with 10 predictors and
several two way interactions, with

f(x) = g1(x1) + g2(x2) + g3(x3) + g4(x4) + g3(x1x2) + g2(
x1+x3

2
) + g1(x3x4)

so that x5, . . . , x10 were uninformative. The noise variance was set at σ2 =
0.44098 to give a SNR of 3:1. We considered only the uniform distribution on the
predictors and evaluated performance at various sample sizes, n = 100, n = 250,
and n = 500.

A summary of the estimation risk on 100, realizations can be found in Table 3.
When n = 100, all of the other methods except Random Forest had substantially
better risk than COSSO. However, the ACOSSO methods had risk comparable or
better than the other methods, and less than half that of COSSO. The estimation
risk for all methods improved as the sample size increased. However, stepwise
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Table 3. Estimation Risk based on 100 realizations from Example 3 with
n = 100, 250, and 500; standard errors are given in parantheses.

n = 100 n = 250 n = 500
ACOSSO-5CV-T 0.139 (0.017) 0.055 (0.001) 0.034 (0.001)
ACOSSO-5CV-C 0.120 (0.011) 0.055 (0.001) 0.036 (0.001)
ACOSSO-BIC-T 0.200 (0.027) 0.054 (0.001) 0.034 (0.001)
ACOSSO-BIC-C 0.138 (0.016) 0.050 (0.001) 0.034 (0.001)

COSSO 0.290 (0.016) 0.093 (0.002) 0.057 (0.001)
MARS 0.245 (0.021) 0.149 (0.009) 0.110 (0.008)
GAM 0.149 (0.005) 0.137 (0.001) 0.136 (0.001)

Random Forest 0.297 (0.006) 0.190 (0.002) 0.148 (0.001)
GBM 0.126 (0.003) 0.084 (0.001) 0.065 (0.001)

ORACLE 0.071 (0.003) 0.042 (0.001) 0.029 (0.000)

Table 4. Average CPU time (in seconds) for each method to compute a model
fit (including tuning parameter selection) for the simulations of Example 3.

n = 100 n = 250 n = 500
ACOSSO-5CV-T 8.7 47.2 155.2
ACOSSO-5CV-C 10.5 49.7 163.6
ACOSSO-BIC-T 3.0 11.9 89.0
ACOSSO-BIC-C 3.9 26.6 118.4

COSSO 7.5 43.4 150.1
MARS 9.2 11.2 13.6
GAM 5.7 7.9 11.3

Random Forest 0.3 6.4 15.3
GBM 4.2 9.1 17.0

GAM did not improve from n = 250 to n = 500, probably because of its inability
to model the interactions in this example. Also notice that the ACOSSO methods
maintained close to half the risk of COSSO for all sample sizes. For n = 500
the ACOSSO methods had risks nearly the same as that of the ORACLE, and
roughly half that of the next best methods (COSSO and GBM).

Computation Time. Table 4 gives the computation times (in seconds) for the
various methods used in Example 3. In this example there were 10 predictors,
but the total number of functional components, including interactions, was 55.
The times given are the average over the 100 realizations, and include the time
required for tuning parameter selection.

For larger sample sizes, ACOSSO and COSSO took significantly longer than
the other methods. Considering the performance in the simulation examples and
the computation times, the best overall ACOSSO variant seems to be ACOSSO-
BIC-T. It is important to point out that other methods were computed via more
polished R-packages that take advantage of the speed of compiled languages such
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as C or Fortran. The computing time for ACOSSO (and COSSO) could also be
decreased substantially by introducing more efficient approximations, and by
taking advantage of a compiled language.

7. Application to Data

We applied the ACOSSO to three datasets. We only report the results of
using the two ACOSSO-BIC methods since they performed much better over-
all than the ACOSSO-5CV methods in our simulations. The Ozone data and
Tecator data were also used by Lin and Zhang (2006). They are available from
the datasets archive of StatLib at http://lib.stat.cmu.edu/datasets/. The
Ozone data has been looked at by Breiman and Friedman (1995), Buja, Hastie,
and Tibshirani (1989), and Breiman (1995). The data consists of the daily maxi-
mum one-hour-average ozone reading and eight meteorological variables recorded
in the Los Angeles basin for 330 days of 1976. The Tecator data was recorded on
a Tecator Infratec Food and Feed Analyzer. Each sample contains finely chopped
pure meat with different moisture, fat, and protein contents. The input vector
consists of a 100 channel spectrum of absorbances, − log10 of the transmittance
measured by the spectrometer. As in Lin and Zhang (2006), we used the first 13
principal components to predict fat content. The total sample size is 215.

The third data set comes from a computer model for two phase fluid flow
(Vaughn et al. (2000)). Uncertainty/sensitivity analysis of this model was car-
ried out as part of the 1996 compliance certification application for the Waste
Isolation Pilot Plant (WIPP) (Helton and Marietta, Editors (2000)). There were
31 uncertain variables that were inputs into the two-phase fluid flow analysis; see
Storlie and Helton (2008) for a full description. We considered only a specific
scenario which was part of the overall analysis. The variable BRNREPTC10K
was used as the response. This variable corresponds to cumulative brine flow
in m3 into the waste repository at 10,000 years, assuming there was a drilling
intrusion at 1000 years. The sample size is n = 300. This data set is available at
http://www.stat.unm.edu/~storlie/acosso/.

We applied each of the methods on these data sets, and estimated the pre-
diction risk, E [Y − f(X)]2, by ten-fold cross validation. We selected the tuning
parameter using only data within the training set, i.e., a new value of the tuning
parameter was selected for each of the ten training sets without using any data
from the test sets. The estimate obtained was then evaluated on the test set.
We repeated this ten-fold cross validation 50 times and averaged. The resulting
prediction risk estimates along with standard errors are displayed in Table 5.
The interaction model was used for all of the methods (except GAM) since it
had better prediction accuracy on all three data sets than did the additive model.

http://lib.stat.cmu.edu/datasets/
http://www.stat.unm.edu/~storlie/acosso/
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Table 5. Estimated prediction risk for data examples; standard errors are
given in parantheses. Risk for BRNREPTC10K for the WIPP data is in
units of 100m6.

Ozone Tecator WIPP
ACOSSO-BIC-T 15.07 (0.07) 1.44 (0.02) 1.04 (0.00)
ACOSSO-BIC-C 14.81 (0.08) 1.38 (0.02) 1.05 (0.01)

COSSO 15.99 (0.06) 0.88 (0.02) 1.30 (0.01)
MARS 14.24 (0.12) 3.01 (0.17) 1.12 (0.01)
GAM 15.91 (0.12) 592.52 (4.26) 1.83 (0.01)

Random Forest 18.11 (0.07) 14.35 (0.10) 1.29 (0.01)
GBM 10.69 (0.00) 3.35 (0.00) 0.97 (0.00)

For the Ozone data set, the ACOSSO was comparable to MARS but better
than COSSO, GAM and Random Forest, while GBM was the best method for
prediction accuracy. For the Tecator data, both the COSSO and ACOSSO were
much better than all of the other methods. There were several significant in-
teractions so GAM performed poorly here. Interestingly, COSSO is better than
ACOSSO here, the adaptive weights aren’t always an advantage. In this case
the advantage was likely due to the fact that 12 out of the 13 variables were se-
lected for inclusion into the model, and around 62 out of the 91 total functional
components were estimated to be non-zero, so this was not a very sparse model.
Hence, using all weights equal to 1 (the COSSO) should work quite well here. In
cases like this, it may be that using adaptive weights in the ACOSSO can detract
from the COSSO fit by adding more noise to the estimation process. In contrast,
the WIPP data set had only about 8 informative input variables of the 31 inputs
and the ACOSSO significantly outperformed the COSSO and was comparable to
GBM for prediction accuracy.

8. Conclusions and Further Work

We have developed the ACOSSO, a regularization method for simultaneous
model fitting and variable selection in the context of nonparametric regression.
The relationship between the ACOSSO and the COSSO is analogous to that
between the adaptive LASSO and the LASSO, and we have explored a special case
under which the ACOSSO has a nonparametric version of the oracle property,
that which the COSSO does not appear to possess. In addition we have shown
that the ACOSSO outperforms COSSO, MARS, and stepwise GAMs for variable
selection and prediction in simulations and in some data examples. The ACOSSO
also has competitive performance for prediction when compared with Random
Forest and GBM. R code to fit ACOSSO models is available at http://www.
stat.unm.edu/~storlie/acosso/.

http://www.stat.unm.edu/~storlie/acosso/
http://www.stat.unm.edu/~storlie/acosso/
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It remains to show that ACOSSO has the np-oracle property under more
general conditions such as random designs. It may also be possible to yet im-
prove the performance of the ACOSSO by using a different weighting scheme. In
addition, there are other ways to use the initial estimate, f̃ , in the creation of
the penalty term. These are topics for further research.
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A. Appendix

A.1. Equivalent Form

Proof of Lemma 1. Denote the functional in (3.1) by A(f) and the functional
in (5.1) by B(θ, f). Since a + b ≥ 2

√
ab for a, b ≥ 0, with equality if and only if

a = b, we have for each j = 1, . . . , q,

λ0θ
−1
j w2−ϑ

j ‖P jf‖2
F + λ1w

ϑ
j θj ≥ 2λ

1/2
0 λ

1/2
1 wj‖P jf‖F = λwj‖P jf‖F

for any θj ≥ 0 and any f ∈ F . Hence, B(θ, f) ≥ A(f) with equality only when
θj = λ

1/2
0 λ

−1/2
1 w1−ϑ

j ‖P j f̂‖F , and the result follows.

A.2. Convergence rate

The proof of Theorem 1 uses the next Lemma; it is a generalization of
Theorem 10.2 of van de Geer (2000). Consider the regression model yi = g0(xi)+
εi, i = 1, . . . , n, where g0 is known to lie in a class of functions G, the xi’s are
given covariates in [0, 1]p, and the εi’s are independent and sub-Gaussian. Let
In : G → [0,∞) be a pseudonorm on G, and set ĝn = arg ming∈G 1/n

∑n
i=1(yi −

g(xi))2 + τ2
nIn(g). Let H∞(δ,G) be the δ-entropy of the function class G under

the supremum norm ‖g‖∞ = supx |g(x)| (see page 17 of van de Geer (2000)).

Lemma 2. Suppose there exists I∗ such that I∗(g) ≤ In(g) for all g ∈ G, n ≥ 1,
and suppose there exist constants A > 0 and 0 < α < 2 such that

H∞

(
δ,

{
g − g0

I∗(g) + I∗(g0)
: g ∈ G, I∗(g) + I∗(g0) > 0

})
≤ Aδ−α (A.1)
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for all δ > 0 and n ≥ 1. Then if I∗(g0) > 0 and τ−1
n = Op

(
n1/(2+α)

)
I

(2−α)/(4+2α)
n

(g0), we have ‖ĝn − g0‖ = Op(τn)I1/2
n (g0). Moreover if In(g0) = 0 for all n ≥ 1,

then ‖ĝn − g0‖ = Op(n−1/(2−α))τ−2α/(2−α)
n .

Proof. This proof follows the same logic as the proof of Theorem 10.2 of van de
Geer (2000). Notice that

‖ĝn − g0‖2
n + τ2

nIn(ĝn) ≤ 2(ε, ĝn − g0)n + τ2
nIn(g0). (A.2)

Condition (A.1), along with Lemma 8.4 in van de Geer (2000), guarantees that

sup
g∈G

|(ε, ĝn − g0)n|
‖ĝn − g0‖1−α/2

n (I∗(g) + I∗(g0))α/2
= Op(n−1/2). (A.3)

Case (i) Suppose that I∗(ĝn) > I∗(g0). Then by (A.2) and (A.3) we have

‖ĝn − g0‖2
n + τ2

nIn(ĝn) ≤ Op(n−1/2)‖ĝn − g0‖1−α/2
n I

α/2
∗ (ĝn) + τ2

nIn(g0)

≤ Op(n−1/2)‖ĝn − g0‖1−α/2
n Iα/2

n (ĝn) + τ2
nIn(g0).

The rest of the argument is identical to that on page 170 of van de Geer (2000).
Case (ii) Suppose that I∗(ĝn) ≤ I∗(g0) and I∗(g0) > 0. By (A.2) and (A.3) we
have

‖ĝn − g0‖2
n ≤ Op(n−1/2)‖ĝn − g0‖1−α/2

n I
α/2
∗ (g0) + τ2

nIn(g0)

≤ Op(n−1/2)‖ĝn − g0‖1−α/2
n Iα/2

n (g0) + τ2
nIn(g0).

The remainder of this case is identical to that on page 170 of van de Geer (2000).

Proof of Theorem 1. The conditions of Lemma 2 do not hold directly for the F
and In(f) =

∑p
j=1 wj,n‖P jf‖F of Theorem 1. An orthogonality argument used

in van de Geer (2000) and Lin and Zhang (2006) works to remedy this problem.
For any f ∈ F , we can write f(x) = b + g(x) = b + f1(x1) + · · · + fp(xp),
such that

∑n
i=1 fj(xj,i) = 0, j = 1, . . . , p. Similarly write f̂(x) = b̂ + ĝ(x) and

f0(x) = b0 + g0(x). Then
∑n

i=1(g(xi) − g0(xi)) = 0, and we can write (3.1) as

(b0 − b)2 +
2
n

(b0 − b)
n∑

i=1

εi +
1
n

n∑
i=1

(g0(xi) − g(xi))2 + λn

p∑
j=1

wj,n‖P jg‖F .

Therefore b̂ must minimize (b0 − b)2 + 2/n(b0 − b)
∑n

i=1 εi, so that b̂ = b0 +
1/n

∑
i εi. Hence, (b̂ − b0)2 = Op(n−1). On the other hand, ĝ must minimize

1
n

n∑
i=1

(g0(xi) − g(xi))2 + λn

p∑
j=1

wj,n‖P jg‖F (A.4)
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over all g ∈ G, where

G = {g ∈ F : g(x) = f1(x1) + · · · + fp(xp),
n∑

i=1

fj(xj,i) = 0, j = 1, . . . , p}. (A.5)

Now rewrite (A.4) as

1
n

n∑
i=1

(g0(xi) − g(xi))2 + λ̃n

p∑
j=1

w̃j,n‖P jg‖F , (A.6)

where λ̃n = λnw∗,n, w∗,n = min{w1,n, . . . , wp,n}, and w̃j,n = wj,n/w∗,n.
The problem is reduced to showing that the conditions of Lemma 2 hold for

τ2
n = λ̃n and In(g)=

∑p
j=1 w̃j,n‖P jg‖F . However, notice that min{w̃1,n, . . . , w̃p,n}

= 1 for all n, and this implies that In(g) ≥ I∗(g) =
∑p

j=1 ‖P jg‖F for all g ∈ G
and n ≥ 1. Also notice that the entropy bound in (A.1) holds whenever

H∞(δ, {g ∈ G : I∗(g) ≤ 1}) ≤ Aδ−α, (A.7)

since I∗(g− g0) ≤ I∗(g)+ I∗(g0) so that the set in brackets in (A.7) contains that
in (A.1). Now (A.7) holds by Lemma 4 in the COSSO paper with α = 1/2. We
complete the proof by separately treating the cases U c not empty and U c empty.
Case (i) Suppose that P jf 6= 0 for some j. Then I∗(g0) > 0. Also, w−1

∗,n = Op(1)
and wj,n = Op(1) for j ∈ U c by assumption. This implies that w̃j,n = Op(1) for
j ∈ U c, so that In(g0) = Op(1). Also λ̃−1

n = Op(1)λ−1
n = Op(n4/5). The result

now follows from Lemma 2.
Case (ii) Suppose P jf = 0 for all j. Then In(g0) = 0 for all n and the result
follows from Lemma 2.

Proof of Corollary 1. For the traditional smoothing spline with λ0 ∼ n−4/5 it
is known (Lin (2000)) that ‖P j f̃−P jf0‖L2 = Op(n−2/5). This implies |‖P j f̃‖L2−
‖P jf0‖L2 | ≤ Op(n−2/5). Hence, w−1

j,n = Op(1) for j = 1, . . . , p and wj,n = Op(1)
for j ∈ U c, which also implies w∗,n = Op(1). The conditions of Theorem 1 are
now satisfied and we have ‖f − fn‖ = Op(n−2/5) if P jf 6= 0 for some j. On the
other hand, notice that w−1

j,n = Op(n−2γ/5) for j ∈ U . Hence, w−1
∗,n = Op(n−2γ/5)

whenever P jf = 0 for all j, so that n−2/3λ
−1/3
n w

−1/3
∗,n = Op(n−1/2) for γ > 3/4,

and the result follows.

A.3. Oracle property

Proof of Theorem 2. Let Σ = {K̄(x1,i, x1,j)}m
i,j=1 be the m×m Gram matrix

corresponding to the reproducing kernel for S̄2
per. Also let Kj be the n × n

Gram matrix corresponding to the reproducing kernel for S̄2
per on variable xj ,
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j = 1, . . . , p. Let 1m be a vector of m ones. Assuming the observations are
arranged with an appropriate permutation, we can write

K1 = Σ ⊗ (1m1′
m) ⊗ · · · ⊗ (1m1′

m),

K2 = (1m1′
m) ⊗ Σ ⊗ · · · ⊗ (1m1′

m),
...

Kp = (1m1′
m) ⊗ · · · ⊗ (1m1′

m) ⊗ Σ,

where ⊗ here stands for the Kronecker product between two matrices.
Straightforward calculation shows that Σ1m = 1/(720m3)1m. Write the

eigenvectors of Σ as {υ1 = 1m, υ2, . . . , υm}, and let Υ be the m × m ma-
trix with these eigenvectors as its columns. The corresponding eigenvalues are
{mφ1,mφ2, . . . ,mφm}, where φ1 = 1/(720m4) and φ2 ≥ φ3 ≥ · · · ≥ φm. It is
known (Uteras (1983)) that φi ∼ i−4 for i ≥ 2. Notice that υ1, υ2, . . . , υm are
also the eigenvectors of (1m1′

m) with eigenvalues m, 0, . . . , 0, respectively. Write
O = Υ ⊗ Υ ⊗ · · · ⊗ Υ and let ξi be the ith column of O, i = 1, . . . , n. It is easy
to verify that {ξ1, . . . , ξn} forms an eigensystem for each of K1, . . . , Kp.

Let {ζ1,j , . . . , ζn,j} be the collection of vectors {ξ1, . . . , ξn} sorted so that
those corresponding to nonzero eigenvalues for Kj are listed first. Specifically,
let

ζi,1 = υi ⊗ 1m ⊗ · · · ⊗ 1m,

ζi,2 = 1m ⊗ υi ⊗ · · · ⊗ 1m,
...

ζi,p = 1m ⊗ 1m ⊗ · · · ⊗ υi,

(A.8)

for i = 1, . . . ,m. Notice that each ζi,j , i = 1, . . . ,m, j = 1, . . . , p, corresponds to
a distinct ξk, for some k ∈ {1, . . . , n}. Let the first m elements of the collection
{ζ1,j , . . . , ζm,j , ζm+1,j , . . . , ζn,j} be given by (A.8) and the remaining n − m be
given by the remaining ξi in any order. The corresponding eigenvalues are then

ηi,j =
{

nφi for i = 1, . . . ,m,

0 for i = m + 1, . . . , n.

It is clear that {ξ1, . . . , ξn} is also an orthonormal basis in <n with respect
to the inner product

〈u, v〉n =
1
n

∑
i

uivi. (A.9)

Let f = (f(x1), . . . , f(xn))′, a = (1/n)O′f , and z = (1/n)O′y. That is, zi =
〈y, ξi〉n, ai = 〈f , ξi〉n, δi = 〈ε, ξi〉n, and we have that zi = ai + δi. With some
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abuse of notation, also let zi,j =
〈
y, ζi,j

〉
n
, ai,j =

〈
f , ζi,j

〉
n
, and δi,j =

〈
ε, ζi,j

〉
n
.

Now, using ϑ = 2 in (5.1), the ACOSSO estimate is the minimizer of

1
n

(y − Kθc − b1n)′(y − Kθc − b1n) + c′Kθc + λ1

p∑
j=1

w2
j θj , (A.10)

where Kθ =
∑p

j=1 θjKj . Let s = O′c and Dj = (1/n2)O′KjO be the diagonal
matrix with diagonal elements φi. Then (A.10) is equivalent to

(
z − Dθs − (b, 0, . . . , 0)′

)′ (
z − Dθs − (b, 0, . . . , 0)′

)
+ s′Dθs + λ1

p∑
j=1

w2
j θj ,

(A.11)
where Dθ =

∑p
j=1 θjDj . Straightforward calculation shows that this minimiza-

tion problem is equivalent to

`(s, θ) =
m∑

i=1

p∑
j=1

(zij − φiθjsij)2 +
m∑

i=1

p∑
j=1

φiθjs
2
ij + λ1

p∑
j=1

w2
j θj , (A.12)

where sij = ζ′
ijc, i = 1, . . . ,m, j = 1, . . . , p, are distinct elements of s.

We condition on θ and then minimize over s. Given θ, `(s, θ) is a convex
function of s and is minimized at ŝ(θ) = {ŝij(θj)}m p

i=1 j=1, where ŝij(θj) = zij(1−
φiθj). Inserting ŝ(θ) into (A.12) gives

`(ŝ(θ),θ) =
m∑

i=1

p∑
j=1

z2
ij

(1 + φiθj)2
+

m∑
i=1

p∑
j=1

φiθjz
2
ij

(1 + φiθj)2
+ λ1

p∑
j=1

w2
j θj

=
m∑

i=1

p∑
j=1

z2
ij

1 + φiθj
+ λ1

p∑
j=1

w2
j θj . (A.13)

Notice that `(ŝ(θ), θ) is continuous in θj ,

∂2`(ŝ(θ), θ)
∂θ2

j

= 2
m∑

i=1

z2
ijφ

2
i

(1 + φiθj)3
> 0 for each j, (A.14)

and ∂2`(ŝ(θ),θ)/∂θj∂θk = 0 for j 6= k. Therefore `(s, θ) is convex and has a
unique minimum, θ̂.

Clearly, P j f̂ ≡ 0 if and only if θ̂j = 0. So it suffices to consider θ̂j . As such,
since we must have θj ≥ 0, the minimizer, θ̂j = 0 if and only if

∂

∂θj
` (ŝ(θ), θ)

∣∣∣∣
θj=0

≥ 0,
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which is equivalent to

T = n
m∑

i=1

φiz
2
ij ≤ nw2

j,nλ1,n. (A.15)

If we assume that P jf = 0, then we have zij = δij . We obtain bounds for E (T )
and Var (T ) to demonstrate that T is bounded in probability when P jf = 0.
To this end, we first obtain bounds for E (δ2

ij) and Var (δ2
ij). Recall that δij =

(1/n)ζ′
ijε and that the individual elements of ε are independent with E (ε) = 0.

For notational convenience let ξ = ζij , some column of the O matrix and the ξ’s
are orthonormal with respect to the inner product in (A.9). Now,

E (δ2
ij) =

1
n2

E [(ξ′ε)2] =
1
n2

E

(
n∑

a=1

n∑
b=1

ξaξbεaεb

)

=
1
n2

n∑
a=1

ξ2
aE (ε2

a) ≤
1
n2

n∑
a=1

ξ2
aM1 =

M1

n
, (A.16)

where M1 = maxa E (ε2
a), bounded because of the sub-Gaussian condition (4.1).

The variance of δ2
ij is

Var (δ2
ij) = Var

(
n∑

a=1

n∑
b=1

ξaξbεaεb

)

=
n∑

a=1

n∑
b=1

n∑
c=1

n∑
d=1

ξaξbξcξd Cov (εaεb , εcεd). (A.17)

The εa’s are independent, so Cov (εaεb , εcεd) 6= 0 only in the three mutually
exclusive cases (i) a = b = c = d, (ii) a = c and b = d with a 6= b, or (iii) a = d
and b = c with a 6= b. Thus, (A.17) becomes,

Var (δ2
ij) =

1
n4

 n∑
a=1

ξ4
a Cov (ε2

a , ε2
a) + 2

n∑
a=1

n∑
b6=a

ξ2
aξ2

b Cov (εaεb , εaεb)


≤ 2

n4

n∑
a=1

n∑
b=1

ξ2
aξ2

b Var (εaεb) ≤
2M2

n4

(
n∑

a=1

ξ2
a

)2

=
2M2

n2
, (A.18)

where M2 = maxa,b{Var (εaεb)}, bounded because of the sub-Gaussian condition
in (4.1). Notice that the derivations of the bounds in (A.16) and (A.18) do not
depend on i or j, so the bounds in (A.16) and (A.18) are uniform for all i.

Using (A.16) we can write E (T ) as

E (T ) = n

m∑
i=1

φiE [δ2
ij ] ≤ M1

m∑
i=1

φi ∼ M1. (A.19)
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Further, we can use (A.18) to write Var (T ) as

Var (T ) = n2Var

(
m∑

i=1

φiδij

)
= n2

m∑
k=1

m∑
l=1

φkφl Cov (δ2
k,j , δ

2
l,j)

≤ 2M2

m∑
k=1

m∑
l=1

φkφl = 2M2

(
m∑

k=1

φk

)2

∼ 2M2. (A.20)

Finally, as n increases, (A.19) and (A.20) guarantee that the left side of
(A.15) is bounded in probability when P jf = 0. Assuming that nw2

j,nλ2
n

p→ ∞, or

equivalently that nw2
j,nλ1,n

p→ ∞ by Lemma 1, the right side of (A.15) increases
to ∞ in probability. Therefore, if P jf = 0 then θ̂j = 0 with probability tending
to one. If, on the other hand, nw2

j,nλ2
n = Op(1), then the probability that T >

nw2
j,nλ1,n converges to a positive constant. Hence the probability that θ̂j > 0

converges to a positive constant.

Proof of Corollary 2. It is straightforward to to show that Theorem 1 still
holds with S2

per in place of S2. From the proof of Corollary 1, these weights also
satisfy the conditions of Theorem 1. Since w−1

j,n = Op(n−2γ/5) for j ∈ U , we have

nw2
j,nλ2

n
p→ ∞ for j ∈ U whenever γ > 3/4. The conditions of Theorem 2 are now

satisfied. In light of Theorem 1, we also know that if P jf 6= 0, the probability
that P j f̂ 6= 0 also tends to one as the sample size increases due to consistency.
Corollary 2 follows.
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