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In this section, we provide detailed proofs of Lemma 7.2 and Theorem 3.3.

S1 Proof of Lemma 7.2

The proof is similar to that of Theorem 1 in Bickel and Levina (2008a) and Theorem 1
in Rothman, Levina and Zhu (2009).

We show (7.31) first. Let o}, = s,(0y;), then
13¢5 — Beslle = Igleég(z |65 — o45] < T%Eg(z 655 — ol +Yiﬂ€agz |05 — il
JjES JjES JjES

By properties in (2.4), the last term is bounded from above by v - d,g. For the second
to the last term, we perform the following decomposition,

I}glcxz 6% —oil < max (1655 — oigl + 167 — 35| + |oF; — 0ij]) 1(1645] > v, |oiz| > v)

JjES jE€S
+ flrglcxz 65311(|635] > v, |o;] < v) +Yiréacxz o33 [1(|635] < v, o3| > v).
JjES JjES

The three terms on the right-hand side of the above inequality are denoted by IV, V,
and VI, respectively. By Lemma 7.1, it is easy to see that

max |35 — i3] < 0, (Viog(s(p — 5)/Vin) - (SL.1)

i€C,je

Therefore,
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I}%Z |6ij — 0ij|1(|63;] > v, |o35] > v) ielgffésk}ij - aijlr}éaé(z (o] > v)

JES jES

0, (dz-5\/10g(s(p — ))/v/n)
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and
IV < 0, (dis/logls(p— 9)/Vin) + 20 diss.
Next, we consider V.

Vo< omax ) |67 — 0i|1(65] > v, loy] < v) +I}1€acxz |oij|1(|oij| < v)

i€C,jES

i€ £ 2
< Ineac),( (|6';j] - &2J| + ‘(3'1] - 0'7;j|) ].(|(3'”| > v, |0ij| < V) +uv- dés
=Y jes
< <1/+iergg‘>és|6ij - (Tij|> max Zl(|0ij| > ) + Zl(\aﬂ <, |G| >v) p +v-dig
jes J€S
< (vr o oul) (e + max 3100 — ol > (- | v s,
K2
JjES

where 7, < 1 and the last inequality above follows from the fact that 1(|o;;| < yv, |64 >
I/) < 1(|a'ij_gij| > (1—’}/1)1/). Since it is clear that maX;ec Zjes 1(|a'ij_0'z’j| > (1—’}/1)V)

is negligible when v is chosen to be greater than C'y/log(s(p — s))/+/n for some C large
enough, then, by (S1.1),

V <0, (des\/log(s(p — ) /v/n) + 20 - dis.

Finally,
VI < max d (|l — oyl + lowl) 1165 < viloi| > v)
jeSs
< wdos+ max loilmax § D (lowl < vev) + 3 1(16w] < viloy| > 12v)
jes jes
< (4 My)vdos + max o] Igle%(;gl(@j —0ij| > (v2 = 1)v)
J
S Ol) (V'dz's)7

where 75 > 1 and the last inequality follows from the fact that the second term is

negligible when v is chosen to be greater than Cy/log(s(p — s))/+/n for some C large
enough. Summing up the bounds for IV, V, and VI gives (7.31).

The proof for (7.32) is similar as above, thus omitted. O

S2 Proof of Theorem 3.3

Denote A as the event in (3.11), B as the event in (3.12), and

C= {Amm (zss) > ;Ammmss)}.
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Then,
P (sgn(B) = sgn(B*)) >P(ANBNCQC).

D= { cs(igs)lem <1l- g}’
.

AD{DNENF}.

o= <55}

BDO{GNE}.

Define events

= {|xeq

§ i/\ —syp}.

Then,

Define event

Then,

To sum up the above, we have
P (sgn(B) - sgn(B*)) > P(CNDNENFNG)
> 1-P(C°)—-P(D°)—P(E°)—P(F°)—P(G°).

In the following Lemma, we restate the results of Lemma 7.2 in probabilistic terms.
The conditions of dimension parameters are reexpressed in the convergence rates of the
probabilities. The proof is essentially the same as that of Lemma 7.2.

Lemma S2.1
P (Hiés - ECSH > tB) < exp(log(s(p — 5)) — nt% /C")(1 4 o(1)), (52.1)
where ; (54 M)
B + My2)v
fr— —_— 1
tH 46%5 2 ) V2 > 1,
and X
P (Hzgs - zSSH > tc) < exp(2log s — nt2/C")(1 + o(1)), (52.2)
where

gt (54 M2)v

T 4dy 2

Using Lemma S2.1, we can calculate P (C°), P (G¢), and P (D°), respectively. First of
all,

p (Amm (Ess> ;Amin(255)>

P(C°)

IN

P (Higs - ESSH2 > 2Amm(255)>

IN

. 1
P (HEES - ESSHOO > 2Amin(ESS))

exp(2log s — azn(n= —n~)?)(1 + o(1)),

A
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where the last inequality is by (S2.2) and the values of v and d¥. Secondly,

P(GY) = P(H(A§S>_1Hw>5gn>

IA

p (s~ > 525 0)

P (285 —=ss]] > )
< exp(2logs — asn(n= —n")?)(1 + o(1)),

IN

where the second inequality is by (7.42). Thirdly,

c 4 oo\ — €
P = p(fszass | >1-)
€
< P (Iloo + 1T > £)
< P([Bes —es| > as) + P (dos 255~ 2ss]| > o).

where the last inequality is by (7.44), (7.46), and (7.42). By (S2.1),
P (S5 —Sos|_ > as) < explios(s(p — )) — asn(n= — 0711 +o(1),
and, by (52.2),

P (dés Higs — ZSSH > a7) < exp(2logs — agn(n_2°'2 — n_cl)Q)(l +o(1)).

oo

To sum up the above, we have

P(C%)+P(G)+P (D) <O (exp(2 log s — agn(n=2 — n_cl)g)) <0 (exp(—ozgn(n_gc2 - n_cl)Q)) .

Next, we calculate P (E€) and P (F€). Since € ~ N(0,0%I), then, given X, we can
apply the standard results on the extreme value of multivariate normal as follows:

P (E°)

IN

B (expliog s — anun?/(4maa)
JE€

< exp(—a1n'2¢) + exp(log s) P ( max 0;; > M/2>
1<j<p

< exp(—ain'T2¢) + exp(log sp — nM/16)
< O (exp(—oqnlfzc)) .

Similarly,
P (F¢) < exp(—a1n'™2¢) + exp(log(p — s)p — nM/16) < O (exp(_a1n1—2C)) .

Result follows by summing up the above. |
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S3 Proof of Lemma S2.1

Similar to the proof of Lemma 7.2, we have

|S2s —Ses| < 5+ Mg +2ags, a6 — o

+ ( + ggax |o’w—O'UDIIlaXN(1—71)+MH1&XN(’}/2—1)

Then,

P(“iéS—Ecs"m>tB> < P (54 My)vdig +2dtg Hclax |64 — Uij>t3/2)

i€C,jes

+ P MmaxN 2—1)>t3/4>

+ P<U+ max |Ul] Uij|)HTéaC)(Ni(1—’yl)>tB/4>
_ p(

o = ol >t ) (1-+ (D)

and (S2.1) follows by Lemma 7.1.

(52.2) can be derived in a similar way.



