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Abstract: We establish limit theory for the Grenander estimator of a monotone

density near zero. In particular we consider the situation when the true density

f0 is unbounded at zero, with different rates of growth to infinity. In the course
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1. Introduction and Main Results

Let X1, . . . , Xn be a sample from a decreasing density f0 on (0,∞), and let
f̂n denote the Grenander estimator (i.e. the maximum likelihood estimator) of
f0. Thus f̂n ≡ f̂L

n is the left derivative of the least concave majorant F̂n of the
empirical distribution function Fn; see e.g., Grenander (1956a,b), Groeneboom
(1985), and Devroye (1987, Chap. 8).

The Grenander estimator f̂n is a uniformly consistent estimator of f0 on sets
bounded away from 0 if f0 is continuous:

sup
x≥c

|f̂n(x) − f0(x)| →a.s. 0

for each c > 0. It is also known that f̂n is consistent with respect to the L1 (‖p−
q‖1 ≡

∫
|p(x) − q(x)|dx) and Hellinger (h2(p, q) ≡ 2−1

∫ [√
p(x) −

√
q(x)

]2
dx)

metrics: that is,

‖f̂n − f0‖1 →a.s. 0 and h(f̂n, f0) →a.s. 0;

see e.g. Devroye (1987, Thm. 8.3) and van de Geer (1993).
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However, it is also known that f̂n(0) ≡ f̂n(0+) is an inconsistent estimator
of f0(0) ≡ f0(0+) = limx↘0 f0(x), even when f0(0) < ∞. In fact, Woodroofe
and Sun (1993) showed that

f̂n(0) →d f0(0) sup
t>0

N(t)
t

d= f0(0)
1
U

(1.1)

as n → ∞, where N is a standard Poisson process on [0,∞) and U ∼ Uniform(0, 1).
Woodroofe and Sun (1993) introduced penalized estimators f̃n of f0 which yield
consistency at 0: f̃n(0) →p f0(0). Kulikov and Lopuhaä (2006) study estima-
tion of f0(0) based on the Grenander estimator f̂n evaluated at points of the
form t = cn−γ . Among other things, they show that f̂n(n−1/3) →p f0(0) if
|f ′

0(0+)| > 0.
Our view in this paper is that the inconsistency of f̂n(0) as an estimator of

f0(0) exhibited in (1.1) can be regarded as a simple consequence of the fact that
the class of all monotone decreasing densities on (0,∞) includes many densities
f which are unbounded at 0, so that f(0) = ∞, and the Grenander estimator
f̂n simply has difficulty deciding which is true, even when f0(0) < ∞. From this
perspective we seek answers to three questions under some reasonable hypotheses
concerning the growth of f0(x) as x ↘ 0.

Q1: How fast does f̂n(0) diverge as n → ∞?

Q2: Do the stochastic processes {bnf̂n(ant) : 0 ≤ t ≤ c} converge for some
sequences an, bn, and c > 0?

Q3: What is the behavior of the relative error

sup
0≤x≤cn

∣∣∣∣ f̂n(x)
f0(x)

− 1
∣∣∣∣

for some constant cn?

It turns out that answers to questions Q1 - Q3 are intimately related to the
limiting behavior of the minimal order statistic Xn:1 ≡ min{X1, . . . , Xn}. By
Gnedenko (1943) or de Haan and Ferreira (2006, Thm. 1.1.2)), it is well-known
that there exists a sequence {an} such that

a−1
n Xn:1 →d Y, (1.2)

where Y has a nondegenerate limiting distribution G if and only if

nF0(anx) → xγ , x > 0, (1.3)
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for some γ > 0, and hence an → 0. One possible choice of an is an = F−1
0 (1/n),

but any sequence {an} satisfying nF0(an) → 1 also works. Since F0 is concave
the convergence in (1.3) is uniform on any interval [0,K]. Concavity of F0 and
existence of f0 also implies convergence of the derivative:

nanf0(anx) → γxγ−1. (1.4)

By Gnedenko (1943), (1.2) is equivalent to

lim
x→0+

F0(cx)
F0(x)

= cγ , c > 0. (1.5)

Thus (1.2), (1.3), and (1.5) are equivalent. In this case we have

G(x) = 1 − e−xγ
, x ≥ 0. (1.6)

Since F0 is concave, the power γ ∈ (0, 1].
As illustrations of our general result, we consider three hypotheses on f0:

G0: the density f0 is bounded at zero, f0(0) < ∞;

G1: for some β ≥ 0 and 0 < C1 < ∞, (log(1/x))−βf0(x) → C1, as x ↘ 0;

G2: for some 0 ≤ α < 1 and 0 < C2 < ∞, xαf0(x) → C2, as x ↘ 0.

Note that in G2 the value α = 1 is not possible for a positive limit C2, since
xf(x) → 0 as x → 0 for any monotone density f ; see e.g. Devroye (1986,
Thm. 6.2). Below we assume that F0 satisfies the condition (1.5). Our cases G0
and G1 correspond to γ = 1 and G2 to γ = 1 − α.

One motivation for considering monotone densities which are unbounded
at zero comes from the study of mixture models. An example of this type, as
discussed by Donoho and Jin (2004), is as follows. Suppose X1, . . . , Xn are i.i.d.
with distribution function F where,

under H0 : F = Φ, the standard normal d.f.,

under H1 : F = (1 − ε)Φ + εΦ(· − µ), ε ∈ (0, 1), µ > 0.

If we transform to Yi ≡ 1 − Φ(Xi) ∼ G, then for 0 ≤ y ≤ 1

under H0 : G(y) = y, the Uniform(0, 1) d.f.,

under H1 : G = Gε,µ(y) = (1 − ε)y + ε(1 − Φ(Φ−1(1 − y) − µ)).

It is easily seen that the density gε,µ of Gε,µ, given by

gε,µ(y) = (1 − ε) + ε
φ(Φ−1(1 − y) − µ)

φ(Φ−1(1 − y))
,
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is monotone decreasing on (0, 1) and is unbounded at zero. We show in Section 4
that Gε,µ satisfies our key hypothesis (1.5) with γ = 1. Moreover, we show
that the whole class of models of this type with Φ replaced by the generalized
Gaussian (or Subbotin) distribution, also satisfy (1.5), and hence the behavior
of the Grenander estimator at zero gives information about the behavior of the
contaminating component of the mixture model (in the transformed form) at
zero.

Another motivation for studying these questions in the monotone density
framework is to gain insights for a study of the corresponding questions in the
context of nonparametric estimation of a monotone spectral density. In that
setting, singularities at the origin correspond to the interesting phenomena of
long-range dependence and long-memory processes; see e.g. Cox (1984), Beran
(1994), Martin and Walker (1997), Gneiting (2000), and Ma (2002). Although
our results here do not apply directly to the problem of nonparametric estimation
of a monotone spectral density function, it seems plausible that similar results
hold in that setting; note that when f is a spectral density, G1 and G2 corre-
spond to long-memory processes (with the usual description being in terms of
β = 1−α ∈ (0, 1) or the Hurst coefficient H = 1−β/2 = 1−(1−α)/2 = (1+α)/2).
See Anevski and Soulier (2011) for recent work on nonparametric estimation of
a monotone spectral density.

Let N denote the standard Poisson process on R+. When (1.5), and hence
(1.6) hold, it follows from Miller (1976, Thm. 2.1) together with Jacod and
Shiryaev (2003, Thm. 2.15(c)(ii)), that

nFn(ant) ⇒ N(tγ) in D[0,∞), (1.7)

which should be compared to (1.3).
Since we are studying the estimator f̂n near zero, and because the value

of f̂n at zero is defined as the right limit limx↘0 f̂n(x) ≡ f̂n(0), it is sensible to
study instead the right-continuous modification of f̂n, and this of course coincides
with the right derivative f̂R

n of the least concave majorant F̂n of the empirical
distribution function Fn. Therefore we change notation for the rest of this paper
and write f̂n for f̂R

n throughout. We write f̂L
n for the left-continuous Grenander

estimator.

Theorem 1.1. Suppose that (1.5) holds. Let an satisfy nF0(an) ∼ 1, let ĥγ

denote the right derivative of the least concave majorant of t 7→ N(tγ), t ≥ 0.
Then

(i) nanf̂n(tan) ⇒ ĥγ(t) in D[0,∞),
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(ii) for all c ≥ 0,

sup
0<x≤can

∣∣∣∣∣ f̂n(x)
f0(x)

− 1

∣∣∣∣∣ →d sup
0<t≤c

∣∣∣∣∣ t1−γ ĥγ(t)
γ

− 1

∣∣∣∣∣ .

The behavior of f̂n near zero under the different hypotheses G0, G1, and
G2 now follows as corollaries to Theorem 1.1. Let Yγ ≡ ĥγ(0). We then have

Yγ = sup
t>0

(N(tγ)/t) = sup
s>0

(N(s)/s1/γ). (1.8)

Here we note that Y1 =d 1/U , where U ∼ Uniform(0, 1) has distribution function
H1(x) = 1 − 1/x for x ≥ 1. The distribution of Yγ for γ ∈ (0, 1] is given in
Proposition 1.5 below. The first part of the following corollary was established
by Woodroofe and Sun (1993).

Corollary 1.2. Suppose that G0 holds. Then γ = 1, a−1
n = nf0(0+) satisfies

nF0(an) → 1, and it follows that

(i) f̂n(0) →d f0(0)ĥ1(0) = f0(0)Y1,

(ii) the processes {t 7→ f̂n(tn−1) : n ≥ 1} satisfy

f̂n(tn−1) ⇒ f0(0)ĥ1(f0(0)t) in D[0,∞),

(iii) for cn = c/n with c > 0,

sup
0<x≤cn

∣∣∣∣∣ f̂n(x)
f0(x)

− 1

∣∣∣∣∣ →d Y1 − 1,

which has distribution function H1(x + 1) = 1 − 1/(x + 1) for x ≥ 0.

Corollary 1.3. Suppose that G1 holds. Then F0(x) ∼ C1x(log(1/x))β so γ = 1,
and a−1

n = C1n(log n)β satisfies nF0(an) → 1. It follows that

(i) f̂n(0)/(log n)β →d C1Y1,

(ii) the processes {t 7→ (log n)−β f̂n(t/(n(log n)β)) : n ≥ 1} satisfy

1
(log n)β

f̂n

(
t

n(log n)β

)
⇒ C1ĥ1(C1t) in D[0,∞),

(iii) for cn = c/(n(log n)β) with c > 0,

sup
0<x≤cn

∣∣∣∣∣ f̂n(x)
f0(x)

− 1

∣∣∣∣∣ →d Y1 − 1.
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Corollary 1.4. Suppose that G2 holds and set C̃2 = (C2/(1−α))1/(1−α). Then
F0(x) ∼ C2x

1−α/(1 − α) so γ = 1 − α, a−1
n = C̃2n

1/(1−α) satisfies nF0(an) → 1,
and it follows that

(i)
f̂n(0)

nα/(1−α)
→d C̃2Y1−α, (1.9)

(ii) the processes {t 7→ n−α/(1−α)f̂n(tn−1/(1−α)) : n ≥ 1} satisfy

f̂n(tn−1/(1−α))
nα/(1−α)

⇒ C̃2ĥ1−α(C̃2t) in D[0,∞),

(iii) for cn = c/n1/(1−α) with c > 0,

sup
0<x≤cn

∣∣∣∣∣ f̂n(x)
f0(x)

− 1

∣∣∣∣∣ →d sup
0<t≤c eC2

∣∣∣∣∣ tαĥ1−α(t)
1 − α

− 1

∣∣∣∣∣ .

Taking β = 0 in (i) of Corollary 1.3 yields the limit theorem (1.1) of
Woodroofe and Sun (1993) as a corollary; in this case C1 = f0(0). Similarly,
taking α = 0 in (ii) of Corollary 1.4 yields the limit theorem (1.1) of Woodroofe
and Sun (1993) as a corollary; in this case C2 = f0(0). Note that Theorem 1.1
yields further corollaries when assumptions G1 and G2 are modified by other
slowly varying functions.

Recall the definition (1.8) of Yγ . The following proposition gives the distri-
bution of Yγ for γ ∈ (0, 1].

Proposition 1.5. For fixed 0 < γ ≤ 1 and x > 0,

Pr
(

sup
s>0

{
N(s)
s1/γ

}
≤ x

)
=

{
1 − 1

x , if γ = 1, x ≥ 1,

1 −
∑∞

k=1 ak(x, γ) , if γ < 1, x > 0,

where the sequence {ak(x, γ)}k≥1 is constructed recursively as follows:

a1(x, γ) = p

((
1
x

)γ

; 1
)

,

and, for j ≥ 1,

ak(x, γ) = p

((
k

x

)γ

; k
)
−

k−1∑
i=1

{
ai(x, γ) · p

((
k

x

)γ

−
(

i

x

)γ

; k − i

)}
,

where p(m; k) ≡ e−mmk/k!.
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Figure 1. The distribution functions of Yγ , γ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.

Remark 1.6. The random variables Yγ are increasingly heavy-tailed as γ de-
creases; cf. Figure 1. Let T1, T2, . . . be the event times of the Poisson process N,
i.e., N(t) =

∑∞
j=1 1[Tj≤t]. Then note that

Yγ
d= sup

j≥1

j

T
1/γ
j

≥ 1

T
1/γ
1

,

where T1 ∼ Exponential(1). On the other hand

Yγ =
(

sup
t>0

N(t)γ

t

)1/γ

≤
(

sup
t>0

N(t)
t

)1/γ
d=

1
U1/γ

,

where U ∼ Uniform(0, 1). Thus it is easily seen that E(Y r
γ ) < ∞ if and only if

r < γ, and that the distribution function Fγ of Yγ is bounded above and below
by the distribution functions GL

γ and GU
γ of 1/T

1/γ
1 and 1/U1/γ , respectively.

The proofs of the above results appear in Appendix A. They rely heavily
on a set equality known as the “switching relation”. We study this relation
using convex analysis in Section 2. Section 3 gives some numerical results that
accompany the results presented here, and Section 4 studies applications to the
estimation of mixture models.

2. Switching Relations

In this section we consider several general variants of the so-called switch-
ing relation first given in Groeneboom (1985), and used repeatedly by other
authors, including Kulikov and Lopuhaä (2005, 2006), and van der Vaart and
Wellner (1996). Other versions of the switching relation were studied by
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van der Vaart and van der Laan (2006, Lemma 4.1). In particular, we provide a
novel proof of the result using convex analysis. This approach also allows us to re-
state the relation without restricting the domain to compact intervals. Through-
out this section we make use of definitions from convex analysis (cf., Rockafellar
(1970); Rockafellar and Wets (1998); Boyd and Vandenberghe (2004)) that are
given in Appendix B.

Suppose that Φ is a function, Φ : D → R, defined on the (possibly infinite)
closed interval D ⊂ R. The least concave majorant Φ̂ of Φ is the pointwise
infimum of all closed concave functions g : D → R with g ≥ Φ. Since Φ̂ is
concave, it is continuous on Do, the interior of D. Furthermore, Φ̂ has left
and right derivatives on Do, and is differentiable with the exception of at most
countably many points. Let φ̂L and φ̂R denote the left and right derivatives,
respectively, of Φ̂.

If Φ is upper semicontinuous, then so is Φy(x) = Φ(x)−yx for each y ∈ R. If
D is compact, then Φy attains a maximum on D, and the set of points achieving
the maximum is closed. Compactness of D was assumed by van der Vaart and
van der Laan (2006, see their Lemma 4.1). One of our goals here is to relax this
assumption.

Assuming they are defined, we consider the argmax functions

κL(y) ≡ argmaxLΦy ≡ argmaxL
x{Φ(x) − yx}

= inf{x ∈ D : Φy(x) = sup
z∈D

Φy(z)},

κR(y) ≡ argmaxRΦy ≡ argmaxR
x {Φ(x) − yx}

= sup{x ∈ D : Φy(x) = sup
z∈D

Φy(z)}.

Theorem 2.1. Suppose that Φ is a proper upper-semicontinuous real-valued
function defined on a closed subset D ⊂ R. Then Φ̂ is proper if and only if Φ ≤ l

for some linear function l on D. Furthermore, if conv(hypo(Φ)) is closed, then
the functions κL and κR are well defined and for x ∈ D and y ∈ R,

S1 φ̂L(x) < y if and only if κR(y) < x.

S2 φ̂R(x) ≤ y if and only if κL(y) ≤ x.

When Φ is the empirical distribution function Fn as in Section 1, then Φ̂ = F̂n

is the least concave majorant of Fn, and φ̂L = f̂L
n the Grenander estimator, while

φ̂R = f̂n = f̂R
n is the right continuous version of the estimator. In this situation

the argmax functions κR, κL correspond to

ŝR
n (y) = sup{x ≥ 0 : Fn(x) − yx = sup

z≥0
(Fn(z) − yz)},

ŝL
n(y) = inf{x ≥ 0 : Fn(x) − yx = sup

z≥0
(Fn(z) − yz)}.
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The switching relation given by Groeneboom (1985) says that, with probability
one,

{f̂L
n (x) ≤ y} = {ŝR

n (y) ≤ x}. (2.1)

van der Vaart and Wellner (1996, p.296), say that (2.1) holds for every x and y;
see also Kulikov and Lopuhaä (2005, p.2229), and Kulikov and Lopuhaä (2006,
p.744). The advantage of (2.1) is immediate: the MLE is related to a continuous
map of a process whose behavior is well-understood.

The following corollary gives the conclusion of Theorem 2.1 when Φ is the
empirical distribution function Fn.

Corollary 2.2. Let F̂n be the least concave majorant of the empirical distribution
function Fn, and let f̂L

n and f̂R
n denote its left and right derivatives, respectively.

Then

{f̂L
n (x) < y} = {ŝR

n (y) < x}, (2.2)

{f̂R
n (x) ≤ y} = {ŝL

n(y) ≤ x}. (2.3)

The following example shows, however, that the set identity (2.1) can fail.

Example 2.3. Suppose that we observe (X1, X2, X3) = (1, 2, 4). Then the MLE
is

f̂L
n (x) =


1
3 , 0 < x ≤ 2,

1
6 , 2 < x ≤ 4,

0, 4 < x < ∞.

The process ŝR
n is given by

ŝR
n (y) =


4, 0 < y ≤ 1

6 ,

2, 1
6 < y ≤ 1

3 ,

0, 1
3 < y < ∞.

Note that (2.1) fails if x = 4 and 0 < y < 1/6, since in this case f̂L
n (x) = f̂L

n (4) =
1/6 and the event {f̂L

n (x) ≤ y} fails to hold, while ŝR
n (y) = 4 and the event

{ŝR
n (y) ≤ x} holds. However, (2.2) does hold: with x = 4 and 0 < y < 1/6, both

of the events {f̂L
n (x) < y} and {ŝR

n (y) < x} fail to hold. Some checking shows
that (2.2) and (2.3) hold for all other values of x and y.

Our proof of Theorem 2.1 is based on a proposition that is a consequence
of general facts concerning convex functions, as given in Rockafellar (1970) and
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Rockafellar and Wets (1998). Let h be a closed proper convex function on R,
and let f be its conjugate, f(y) = supx∈R{yx− h(x)}. Let h′

− and h′
+ be the left

and right derivatives of h, and define functions s− and s+ by

s−(y) = inf{x ∈ R : yx − h(x) = f(y)}, (2.4)

s+(y) = sup{x ∈ R : yx − h(x) = f(y)}. (2.5)

Proposition 2.4. The following set identities hold:

{(x, y) : h′
−(x) ≤ y} = {(x, y) : s+(y) ≥ x}; (2.6)

{(x, y) : h′
+(x) < y} = {(x, y) : s−(y) > x}. (2.7)

Proof. All references are to Rockafellar (1970). By Theorem 24.3 the set Γ =
{(x, y) ∈ R2 : y ∈ ∂h(x)} is a maximal complete non-decreasing curve. By
Theorem 23.5, the closed proper convex function h and its conjugate f satisfy
h(x) + f(y) ≥ xy, and equality holds if and only if y ∈ ∂h(x), or equivalently if
x ∈ ∂f(y) where ∂h and ∂f denote the subdifferentials of h and f , respectively.
Thus we have Γ = {(x, y) ∈ R2 : x ∈ ∂f(x)} and, by the definitions of s− and
s+, Γ = {(x, y) : s−(y) ≤ x ≤ s+(y)}. By Theorem 24.1, the curve Γ is defined
by the left and right derivatives of h:

Γ = {(x, y) : h′
−(x) ≤ y ≤ h′

+(x)}. (2.8)

Using the dual representation we obtain

Γ = {(x, y) : f ′
−(y) ≤ x ≤ f ′

+(y)}, (2.9)

so s− ≡ f ′
− and s+ ≡ f ′

+. Moreover, the functions h′
− and f ′

− are left-continuous,
the functions h′

+ and f ′
+ are right continuous, and all of these functions are

nondecreasing.
From (2.8) and (2.9) it follows that {h′

−(x) ≤ y} = {f ′
+(y) ≥ x}, which

implies (2.6). Since the functions h and f are conjugate to each other, the
relations between them are symmetric. Thus we have {f ′

−(y) ≤ x} = {h′
+(x) ≥

y} or, equivalently, {f ′
−(y) > x} = {h′

+(x) < y}, which implies (2.7).

Before proving Theorem 2.1 we need two lemmas.

Lemma 2.5. Let S = argmax D Φ and Ŝ = argmax D Φ̂ be the maximal super-
level sets of Φ and Φ̂. Then the set Ŝ is defined if and only if the set S is defined
and, in this case, conv(S) ⊆ Ŝ.

Lemma 2.6. If conv(hypo(Φ)) is a closed convex set then conv(S) = Ŝ.
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Proof of Lemma 2.5. Since cl(Φ) ≤ Φ̂ the set S is defined if Ŝ is defined. On
the other hand, if S is defined then Φ is bounded from above on D. Since

sup
D

Φ = sup
D

Φ̂,

the function Φ̂ is also bounded from above on D, i.e. the set Ŝ is defined.
By (2.10) we have S ⊆ Ŝ. Since Φ and Φ̂ are upper semicontinuous the sets

S and Ŝ are closed. Since Ŝ is convex we have conv(S) ⊆ Ŝ.

Proof of Lemma 2.6. Indeed, we have conv(hypo(Φ)) ≡ conv(cl(hypo(Φ))),
and conv(hypo(Φ)) ⊆ hypo(Φ̂). Therefore conv(hypo(Φ)) is a hypograph of some
closed concave function H such that Φ ≤ H ≤ Φ̂. Thus H = Φ̂. The set Ŝ is a
face of hypo(Φ̂) and the set conv(S) is a face of conv(hypo(Φ)). The statement
now follows from Rockafellar (1970, Thm. 18.3).

Proof of Theorem 2.1. To prove the first statement, start with Φ̂ proper. We
have

hypo(Φ) ⊆ hypo(cl(Φ)) ≡ cl(hypo(Φ)) ⊆ cl(conv(hypo(Φ))) ≡ hypo(Φ̂), (2.10)

and therefore hypo(Φ) is bounded by any support plane of hypo(Φ̂). This implies
that there exists a linear function l such that Φ ≤ l.

Now suppose that there is a linear function l such that Φ ≤ l on D. Then
cl(Φ) ≤ l and, from (2.10), we have hypo(Φ) ⊆ hypo(l), conv(hypo(Φ)) ⊆
hypo(l), and hypo(Φ̂) ≡ cl(conv(hypo(Φ))) ⊆ hypo(l). Thus Φ̂ < +∞ on D.
Since hypo(Φ) ⊆ hypo(Φ̂) there exists a finite point in hypo(Φ̂).

To show that the two switching relations hold, first consider the convex
function h = −Φ̂. Then φ̂L(x) = −h′

−(x), φ̂R(x) = −h′
+(x), κL(y) = s−(−y),

and κR(y) = s+(−y). By the properness of Φ̂ proved above and Proposition 2.4,
it suffices to show that

argmaxL
x (Φ(x) − yx) = argmaxL

x (Φ̂(x) − yx),

argmaxR
x (Φ(x) − yx) = argmaxR

x (Φ̂(x) − yx).

To accomplish this, it suffices, without loss of generality, to prove the equalities
in the last display when y = 0, and this in turn follows if we relate the maximal
superlevel sets of Φ and Φ̂. This follows from Lemmas 2.5 and 2.6.

Remark 2.7. Note that conv(S) 6= Ŝ in general. To see this, consider the
function

Φ(x) =

{
0 x 6= 0,

1 x = 0.

We have that Φ is upper-semicontinuous, S = {0} and Φ̂ ≡ 1, so Ŝ = R.
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Figure 2. Empirical distributions of the re-scaled MLE at zero when sam-
pling from the Beta distribution (left) and the Gamma distribution (right):
from top to bottom we have α = 0.2, 0.5, 0.8.

Remark 2.8. Note that if conv(hypo(Φ)) is a polyhedral set, then it is closed
(see e.g., Rockafellar (1970, Corollary 19.1.2)). This is the case in our applica-
tions.
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Figure 3. Empirical distributions of the supremum measure: the cutoff
values shown are c = 5 (top left), c = 25 (top right), c = 100 (bottom left),
c = 1,000 (bottom right).

3. Some Numerical Results

Figure 2 gives plots of the empirical distributions of m =10,000 Monte Carlo
samples from the distributions of f̂n(0)/(C2n

α/(1 − α))1/(1−α)) when n = 200
and n = 500, together with the limiting distribution function obtained in (1.9).
The true density f0 on the right side in Figure 2 is

f0(x) =
∫ ∞

0

1
y
1[0,y](x)

yc−1

Γ(c)
exp(−y)dy. (3.1)

For c ∈ (0, 1), this family satisfies (G2) with α = 1 − c and C2 = 1/(αΓ(1 − α)).
(Note that for c = 1, f0(x) ∼ log(1/x) as x ↘ 0.)

The true density f0 on the left side in Figure 2 is

f0(x) =
1

Beta(1 − a, 2)
x−a(1 − x)1(0,1](x). (3.2)
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Table 1. Simulation of (3.4) for different values of γ and c.

c = 0.5 c = 5 c = 25 c = 100 c =1,000
γ = 0.25 0.361 0.171 0.140 0.092 0.060
γ = 0.50 0.422 0.249 0.190 0.162 0.148
γ = 0.75 0.489 0.387 0.349 0.358 0.367

Figure 4. Empirical distributions of the location where the supremum occurs:
from left to right we have γ = 0.25, 0.50, 0.75. Recall that for γ = 1, the
(non-unique) location of the supremum is always zero by Corollary 1.2. The
data were re-scaled to lie within the interval [0, 1].

For a ∈ [0, 1), this family satisfies (G2) with α = a and C2 = 1/Beta(1 − α, 2).
Figure 3 shows simulations of the limiting distribution

sup
0≤t≤c

∣∣∣∣∣t1−γ ĥ(t)
γ

− 1

∣∣∣∣∣ (3.3)

for different values of c and γ. Recall that if γ = 1 the supremum occurs at t = 0
regardless of the value of c, and the limiting distribution (3.3) has cumulative
distribution function 1 − 1/(x + 1). However, for γ < 1, the distribution of
(3.3) depends both on γ and on c, although the dependence on c is not visually
prominent in Figure 3. Table 1 shows estimated values of

P

(
sup

0≤t≤c

∣∣∣t1−γ ĥ(t)
γ

− 1
∣∣∣ = 1

)
(3.4)

for different c and γ < 1, which clearly depends on the cutoff value c (upper
bound on the standard deviation in each case is 0.016). Note that (3.3) is equal
to one if the location of the supremum occurs at t = 0 (with probability one).

Cumulative distribution functions for the location of the supremum in (3.3)
are shown in Figure 4; these depend on both γ and c.
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Figure 5. Generalized Gaussian (or Subbotin) mixture densities with ε = .1,
µ = 1, r ∈ {1.0, 1.2, . . . , 2.0} (black to light grey, respectively) as given by
(4.1).

4. Application to Mixtures

4.1. Behavior near zero

Suppose X1, . . . , Xn are i.i.d. with distribution function F , where

under H0 : F = Φr, the generalized normal distribution,

under H1 : F = (1 − ε)Φr + εΦr(· − µ), ε ∈ (0, 1), µ > 0,

where Φr(x) ≡
∫ x
−∞ φr(y)dy with φr(y) ≡ exp(−|y|r/r)/Cr for r > 0 gives

the generalized normal (or Subbotin) distribution; here Cr ≡ 2Γ(1/r)r(1/r)−1

is the normalizing constant. If we transform to Yi ≡ 1 − Φr(Xi) ∼ G, then, for
0 ≤ y ≤ 1,

under H0 : G(y) = y, the Uniform(0, 1) d.f.,

under H1 : G(y) = Gε,µ,r(y) = (1 − ε)y + ε(1 − Φr(Φ−1
r (1 − y) − µ)).

Let gε,µ,r denote the density of Gε,µ,r; thus

gε,µ,r(y) = 1 − ε + ε exp
{
−1

r

(
|Φ−1

r (1 − y) − µ|r − |Φ−1
r (1 − y)|r

)}
. (4.1)

It is easily seen that gε,µ,r is monotone decreasing on (0, 1) and is unbounded at
zero if r > 1. Figure 5 shows plots of these densities for ε = .1, µ = 1, and r ∈
{1.0, 1.1, . . . , 2.0}. Note that gε,µ,1 is bounded at 0, in fact gε,µ,1(y) = 1− ε + εeµ

for 0 ≤ y ≤ 2−1e−µ.
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Proposition 4.1. The distribution Fµ,r(y) ≡ 1−Φr(Φ−1
r (1−y)−µ) is regularly

varying at 0 with exponent 1. That is, for any c > 0,

lim
y→0+

Fµ,r(cy)
Fµ,r(y)

= c.

Proof. Let κr(y) = Φ−1
r (1 − y). Our first goal is to show that

lim
y→0

κr(y)
κ̃r(y)

= 1, (4.2)

where (for y small)

κ̃r(y) =

(
−r log

(
Cr y

{
r log

(
1

Cry

)}(r−1)/r
))1/r

.

To prove (4.2), it is enough to show that

lim
y→0

κ̃r(y)r−1(κr(y) − κ̃r(y)) = 0. (4.3)

This result follows from de Haan and Ferreira (2006, Thm. 1.1.2). Let bn =
κ̃r(1/n), an = 1/br−1

n , and choose F = Φr in the statement of Theorem 1.1.2.
Then, if we can show that

n(1 − Φr(anx + bn)) → log G(x) ≡ e−x, x ∈ R, (4.4)

it would follow from de Haan and Ferreira (2006, Thm. 1.1.2 and Sec. 1.1.2) that
for all x ∈ R,

lim
y→0

U(x/y) − bb1/yc

ab1/yc
= G−1(e−1/x) = log(1/x),

where U(t) = (1/(1 − Φr))−1(t) = Φ−1
r (1 − 1/t). Choosing x = 1 yields (4.3).

To prove (4.4), we make use of the following, a generalization of Mills’ ratio
to the generalized Gaussian family,

1 − Φr(z) ∼ φr(z)
zr−1

as z → ∞. (4.5)

This follows from l’Hôpital’s rule:

lim
z→∞

∫ ∞
z φr(y)dy

z1−rφr(z)
= lim

z→∞

−φr(z)
(1 − r)z−rφr(z) + z1−rφr(z)(−zr−1)

= lim
z→∞

1
1 − (1 − r)z−r

= 1.
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Now,

n(1 − Φr(anx + bn)) ∼ n
φr(anx + bn)
(anx + bn)r−1

=
n

Crb
r−1
n

exp (−(br
n/r) (1 + anx/bn)r)

(1 + anx/bn)r−1

∼ n

Crb
r−1
n

exp
(
−br

n

r

(
1 +

rx

br
n

))
= exp

(
−

(
br
n

r
+ (r − 1) log bn − log n + log Cr

))
exp(−x)

→ exp(−0) · exp(−x)

by using the definition of bn. We have thus shown that (4.2) holds. Then, for
y → 0, by (4.5) and (4.2),

Fµ,r(y) = 1 − Φr(κr(y) − µ) ∼ 1 − Φr(κ̃r(y) − µ)

∼ φr(κ̃r(y) − µ)
(κ̃r(y) − µ)r−1

.

Plugging in the definition of φr, we find that

Fµ,r(y) ∼ 1/Cr

(κ̃r(y) − µ)r−1
exp

(
− κ̃r(y)r

r

∣∣∣∣1 − µ

κ̃r(y)

∣∣∣∣r)
=

1/Cr

(κ̃r(y) − µ)r−1
exp

{(
log(Cry) + log(r log(

1
Cry

))
) ∣∣∣∣1 − µ

κ̃r(y)

∣∣∣∣r)
=

1/Cr

(κ̃r(y) − µ)r−1
(Cry)|1−µ/κ̃r(y)|r ·

{
r log

1
Cry

}[(r−1)/r]|1−µ/κ̃r(y)|r

.

Note that limy→0 κ̃r(cy)/κ̃r(y) = 1. Therefore,

Fµ,r(cy)
Fµ,r(y)

∼ c|1−µ/κ̃r(cy)|r · (Cry)|1−µ/κ̃r(cy)|r−|1−µ/κ̃r(y)|r ·
(

κ̃r(y) − µ

κ̃r(cy) − µ

)r−1

·

{
r log 1

Crcy

}[(r−1)/r]|1−µ/κ̃r(cy)|r

{
r log 1

Cry

}[(r−1)/r]|1−µ/κ̃r(y)|r

→ c · 1 · 1 · 1 = c.

Thus (1.5) holds with γ = 1.

By the theory of regular variation (see e.g., Bingham, Goldie and Teugels
(1989, p. 21)), Fµ,r(y) = y`(y) where ` is slowly varying at 0. It then follows
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easily that (1.5) holds for F0 = Gε,µ,r with exponent 1. Thus the theory of
Section 1 applies with an of Theorem 1.1 taken to be an = Gε,µ,γ(1/n); i.e.

1
n

= Gε,µ,r(an) = (1 − ε)an + εFµ,r(an) =̇ εFµ,r(an),

where the last approximation is valid for r > 1, but not for r = 1. When r = 1,
the first equality can be solved explicitly, and we find

an =

{
1 − Φr(Φ−1

r (1 − ( 1
nε) + µ), when r > 1,

n−1(1 − ε + εeµ)−1, when r = 1.
(4.6)

We conclude that Theorem 1.1 holds for an as in the last display, where f̂n is the
Grenander estimator of gε,µ,r based on Y1, . . . , Yn.

Another interesting mixture family is as follows: suppose that Φ1, Φ2 are
two fixed distribution functions, then

under H0 : F = Φ1,

under H1 : F = (1 − ε)Φ1 + εΦ2, ε ∈ (0, 1).

Using Yi ≡ 1 − Φ1(Xi) ∼ G, then, for 0 ≤ y ≤ 1, we find that under H1 the
distribution of the Yi’s is given by

G(y) = (1 − ε)y + ε(1 − Φ2(Φ−1
1 (1 − y))),

g(y) = (1 − ε) + ε
φ2(Φ−1

1 (1 − y))
φ1(Φ−1

1 (1 − y))
.

For Φ2 given in terms of Φ1 by the (Lehmann alternative) distribution function
Φ2(y) = 1 − (1 − Φ1(y))γ , this becomes

G(y) = (1 − ε)y + εyγ and g(y) = (1 − ε) + εγyγ−1.

When 0 < γ < 1 this family fits into the framework of our condition G2 with
α = 1 − γ and C2 = εγ.

4.2. Estimation of the contaminating density

Suppose that Gε,F (y) = (1 − ε)y + εF (y) where F is a concave distribution
on [0, 1] with monotone decreasing density f . Thus the density gε,F of Gε,F is
given by gε,F (y) = (1 − ε) + εf(y). Note that gε,F is also monotone decreasing,
and gε,F (y) ≥ 1− ε + εf(1) = 1− ε = gε,F (1) if f(1) = 0. For ε > 0 we can write

f(y) =
gε,F (y) − (1 − ε)

ε
.
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If Y1, . . . , Yn are i.i.d. gε,F , then we can estimate gε,F by the Grenander estimator
ĝn, and we can estimate ε by ε̂n = 1 − ĝn(1). This results in an estimator of the
contaminating density f ,

f̂n(y) =
ĝn(y) − (1 − ε̂n)

ε̂n
=

ĝn(y) − ĝn(1)
1 − ĝn(1)

,

which is quite similar in spirit to a setting studied by Swanepoel (1999). Here,
however, we propose using the shape constraint of monotonicity, and hence the
Grenander estimator, to estimate both ε and f . We will study this estimator
elsewhere.

Appendix A: Proofs for Section 1

For the proof of Theorem 1.1 we need two lemmas. Together, they show
that argmax R and argmax L are continuous. We assume that (1.5) holds and
that nF0(an) ∼ 1. Thus both (1.3) and (1.7) also hold.

Lemma A.1. (i) When γ = 1 and x > 1, argmaxL,R
v {nFn(anv)− xv} = Op(1).

(ii) When γ ∈ (0, 1) and x > 0, argmaxL,R
v {nFn(anv) − xv} = Op(1).

Proof. It suffices to show that lim supn→∞ P (supv≥K{nFn(anv)−xv} ≥ 0) → 0,
as K → ∞ under the conditions specified. Let h(x) = x(log x− 1) + 1 and recall
the inequality

P (Bin(n, p)/(np) ≥ t) ≤ exp(−nph(t))

for t ≥ 1, where Bin(n, p) denotes a Binomial(n, p) random variable; see e.g.
Shorack and Wellner (1986, p.415). It follows that

P (sup
v≥K

{nFn(anv) − xv} ≥ 0)

= P (∪∞
j=K{nFn(anv) − xv ≥ 0 for some v ∈ [j, j + 1)})

≤
∞∑

j=K

P (nFn(an(j + 1)) − xj ≥ 0)

=
∞∑

j=K

P

(
nFn(an(j + 1))
nF0(an(j + 1))

≥ xj

nF0(an(j + 1))

)

≤
∞∑

j=K

exp
(
−nF0(an(j + 1))h

(
xj

nF0(an(j + 1))

))
. (A.1)

Next, since F0 is concave,

nF0(an(j + 1)) ≤ nF0(an(K + 1))
j + 1
K + 1
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for j ≥ K and nF0(an(K +1)) → (K +1)γ and n → ∞. Therefore, for all j ≥ K

and sufficiently large n, we have

xj

nF0(an(j + 1))
≥ δ(K + 1)1−γ xj

j + 1

for any fixed δ < 1. We need to handle the two cases γ = 1 and γ < 1 sep-
arately. Note that if γ < 1, then the above display shows that K,n can be
chosen sufficiently large so that (xj)/nF0(an(j + 1)) is uniformly large. On the
other hand if γ = 1 and x > 1, then we can pick δ,K, n large enough so that
(xj)/nF0(an(j +1)) is strictly greater than 1+ ε for some ε > 0, again uniformly
in j.

Suppose first that γ < 1. Then for K,n large, since h(x) ∼ x log x as x → ∞,
there exists a constant 0 < C < 1 such that for all j ≥ K

nF0(an(j + 1))h
(

xj

nF0(an(j + 1))

)
≥ C(xj) log

(
xj

j + 1

)
≥ Cx(xj),

for some other constant Cx > 0. This shows that the sum in (A.1) converges to
zero as K → ∞, as required.

Suppose next that γ = 1. Note that the function h(x) > 0 for x > 1.
Therefore, combining our arguments above, we find that for all j ≥ K

nF0(an(j + 1))h
(

xj

nF0(an(j + 1))

)
≥ δ(j + 1)h

(
xj

nF0(an(j + 1))

)
≥ Cx,δ(j + 1),

again for some Cx,δ > 0. This again implies that the sum in (A.1) converges to
zero as K → ∞, and completes the proof.

Lemma A.2. Suppose that γ ∈ (0, 1]. Then

V L
x ≡ L

argmax
v

{N(vγ) − xv} =
R

argmax
v

{N(vγ) − xv} ≡ V R
x a.s..

Proof. Suppose that V L
x < V R

x . Then it follows that N((V L
x )γ) − xV L

x =
N((V R

x )γ) − xV R
x or, equivalently,

N((V R
x )γ) − N((V L

x )γ) = x{V R
x − V L

x }.

Now (V R
x )γ , (V L

x )γ ∈ J(N) ≡ {t > 0 : N(t) − N(t−) ≥ 1}, so the left side here
takes values in the set {1, 2, . . .} while the right side takes values in x·{r1/γ−s1/γ :
r, s ∈ J(N), r > s}. But it is well-known that all the (joint) distributions of the
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points in J(N) are absolutely continuous with respect to Lebesgue measure, and
hence the equality in the last display holds only for sets with probability 0.

Proof of Theorem 1.1. We first prove convergence of the one-dimensional
distributions of nanf̂n(ant). Fix K > 0, and let x > 1{γ=1} and t ∈ (0,K]. By
the switching relation (2.3),

P (nanf̂n(ant) ≤ x) = P (ŝL
n(

x

nan
) ≤ ant)

= P (argmaxL
s {Fn(s) − xs

nan
} ≤ ant)

= P (argmaxL
v {Fn(van) − x(

v

n
)} ≤ t)

= P (argmaxL
v {nFn(van) − xv} ≤ t)

→ P (argmaxL
v {N(vγ) − xv} ≤ t)

= P (ĥγ(t) ≤ x),

where the convergence follows from (1.7), and the argmax continuous mapping
theorem for D[0,∞) applied to the processes {v 7→ nFn(van) − xv : v ≥ 0}; see
e.g. Ferger (2004, Thm. 3 and Corollary 1). Note that Lemma A.1 yields the
Op(1) hypothesis of Ferger’s Corollary 1, while Lemma A.2 shows that equality
holds in the limit.

Convergence of the finite-dimensional distributions of ĥn(t) ≡ nanf̂n(ant)
follows in the same way by using the process convergence in (1.7) for finitely
many values (t1, x1), . . . , (tm, xm), where each tj ∈ R+ and xj > 1{γ=1}.

To verify tightness of ĥn in D[0,∞), we use Billingsley (1999, Thm. 16.8).
Thus, it is sufficient to show that for any K > 0, and any ε > 0,

lim
M→∞

lim sup
n

P

(
sup

0≤t≤K
|ĥn(t)| ≥ M

)
= 0, (A.2)

lim
δ→0

lim sup
n

P
(
wδ,K(ĥn) ≥ ε

)
= 0. (A.3)

Here wδ,K(h) is the modulus of continuity in the Skorohod topology,

wδ,K(h) = inf
{ti}r

max
0<i≤r

sup {|h(t) − h(s)| : s, t ∈ [ti−1, ti) ∩ [0,K]} ,

where {ti}r is a partition of [0,K] such that 0 = t0 < t1 < . . . < tr = K

and ti − ti−1 > δ. Suppose then that h is a piecewise constant function with
discontinuities occurring at the (ordered) points {τi}i≥0. Then if δ ≤ infi |τi −
τi−1| we necessarily have that wδ,K(h) = 0.
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First, note that since ĥn is non-increasing,

‖ĥn‖m
0 ≡ sup

0≤t≤m
|ĥn(t)| = ĥn(0),

and hence (A.2) follows from the finite-dimensional convergence proved above.
Next, fix ε > 0. Let 0 = τn,0 < τn,1 < · · · < τn,Kn < K denote the (ordered)

jump points of ĥn, and let 0 = Tn,0 < Tn,1 < · · · < Tn,Jn < K denote the (again,
ordered) jump points of nFn(ant). Because {τn,1, . . . , τn,Kn} ⊂ {Tn,1, . . . , Tn,Jn},
it follows that inf{τi,n − τi−1,n} ≥ inf{Ti,n − Ti−1,n}, and hence

P
(
wδ,K(ĥn) ≥ ε

)
≤ P

(
inf

i=1,...,Jn

{Ti,n − Ti−1,n} < δ

)
.

Now, by (1.7) and continuity of the inverse map (see e.g., Whitt (2002, Thm. 13.6.3))

(Tn,1, . . . , Tn,Jn , 0, 0, . . .) ⇒ (T 1/γ
1 , . . . , T

1/γ
J , 0, 0, . . .),

where T1, . . . , TJ denote the successive arrival times on [0,K] of a standard Pois-
son process. Thus

lim
δ→0

P

(
inf

i=1,...,J
{T 1/γ

i − T
1/γ
i−1} < δ

)
= 0,

and therefore (A.3) holds. This completes the proof of (i).
To prove (ii), fix 0 < c < ∞. Write

sup
0<x≤can

∣∣∣∣∣ f̂n(x)
f0(x)

− 1

∣∣∣∣∣ = sup
0<t≤c

∣∣∣∣∣nanf̂n(tan)
nanf0(tan)

− 1

∣∣∣∣∣ . (A.4)

Suppose we could show that the ratio process nanf̂n(ant)/nanf0(ant) converges
to the process t1−γ ĥγ(t)/γ in D[0,∞). Then the conclusion follows by noting
that the functional h 7→ sup0<t≤c |h| is continuous in the Skorohod topology as
long as c is not a point of discontinuity of h (Jacod and Shiryaev (2003, Prop. VI
2.4)). Since N(tγ) is stochastically continuous (i.e. P (N(tγ) − N(tγ−) > 0) = 0
for each fixed t > 0), t1−γ ĥγ(t)/γ is almost surely continuous at c.

It remains to prove convergence of the ratio. Fix K > c, and again we may
assume that K is a continuity point. Consider the term in the denominator,
nanf0(ant): it follows from (1.4) that gn(t) ≡ (nanf0(ant))−1 → g(t) ≡ γ−1t1−γ ,

where g is monotone increasing and uniformly continuous on [0,K]. Thus gn → g

in C[0,K]. Since the term in the numerator satisfies hn(t) ≡ nanf̂n(ant) ⇒
ĥγ(t) ≡ h(t) in D[0,K], it follows that gnhn ⇒ gh in D[0, K], as required. Here,
we have again used the continuity of the supremum. This completes the proof
of (ii).
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Lemma A.3. Suppose that an = p(1/n) for some function with p(0) = 0 satis-
fying limx→0+ p′(x)f0(p(x)) = 1. Then nF0(an) → 1.

Proof. This follows easily from l’Hôpital’s rule, since

lim
n→∞

nF0(an) = lim
x→0+

F0(p(x))
x

= lim
x→0+

f0(p(x))p′(x).

Proof of Corollary 1.2. Under the assumption G0 we see that F0(x) ∼
f0(0+)x as x → 0, so (1.5) holds with γ = 1. The claim that an = 1/(nf0(0+))
satisfies nF0(an) → 1 follows from Lemma A.3 with p(x) = x/f0(0+). For (i)
note that ĥ1(0) = ĥ1(0+) = supt>0(N(t)/t), and the indicated equality in distri-
bution follows from Pyke (1959); see Proposition 1.5 and its proof. (ii) follows
directly from (i) of Theorem 1.1. To prove (iii), note that from (ii) of Theorem 1.1
that it suffices to show that

sup
0<t≤c

∣∣∣ĥ1(t) − 1
∣∣∣ =

∣∣∣ĥ1(0+) − 1
∣∣∣ = ĥ1(0+) − 1 = Y1 − 1 (A.5)

for each c > 0, where ĥ1(t) is the right derivative of the LCM of N(t). The
equality in (A.5) holds if ĥ1(c) > 1, since ĥ1 is decreasing by definition. By the
switching relation (2.3), we have the equivalence {ĥ1(c) > 1} = {ŝL(1) > c}. The
equality in (A.5) thus follows if ŝL(1) = ∞. That is, if N(t)−t < supy≥0{N(y)−y}
for all finite t. Let W = supy≥0{N(y) − y}. Pyke (1959, pp. 570-571) showed
that P (W ≤ x) = 0 for x ≥ 0, i.e. P (W = ∞) = 1.

Proof of Corollary 1.3. Under the assumption G1 we see that F0(x) ∼
C1x(log(1/x))β as x → 0, so (1.5) holds with γ = 1. The claim that an =
1/(C1n(log n)β) satisfies nF0(an) → 1 follows from Lemma A.3 with p(x) =
x/(C1 log(1/x))β . For (i), note that ĥ1(0) = ĥ1(0+) = supt>0(N(t)/t), as in the
proof of Corollary 1.2. (ii) again follows directly from (i) of Theorem 1.1, and
the proof of (iii) is the same as the proof of Corollary 1.2.

Proof of Corollary 1.4. Under the assumption G2 we see that F0(x) ∼
C2x

1−α/(1 − α) as x → 0, so (1.5) holds with γ = 1 − α. The claim that
an = {(1−α)/(nC2)}1/(1−α) satisfies nF0(an) → 1 follows from Lemma A.3 with
p(x) = ((1 − α)x/C2)1/(1−α). For (i), note that

ĥ1−α(0) = ĥ1−α(0+) = sup
t>0

(N(t1−α)
t

)
= sup

s>0

( N(s)
s1/(1−α)

)
,

much as in the proof of Corollary 1.2. (ii) and (iii) follow directly from (i) and
(ii) of Theorem 1.1.
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Proof of Proposition 1.5. The part of the proposition with γ = 1 follows from
Pyke (1959, pp. 570-571); this is closely related to a classical result of Daniels
(1945) for the empirical distribution function, see e.g. Shorack and Wellner (1986,
Thm. 9.1.2).

The proof for the case γ < 1 proceeds along the lines of Mason (1983, pp. 103-
105). Fix x > 0 and γ < 1. We aim to establish an expression for the distribution
function of Yγ ≡ sups>0(N(s)/s1/γ) at x > 0. First, observe that

P (Yγ ≤ x) = P

(
sup
s>0

{
N(s)
s1/γ

}
≤ x

)
= P (N(t) ≤ U(t) for all t > 0), (A.6)

where the function U(t) = xt1/γ . For j ∈ N, let tj := (j/x)γ and note that
t1 < t2 < . . . and U(tj) = j.

Let B ≡ [N(tk) 6= k ; for all k ≥ 1] and C ≡ [N(s) > U(s) ; for some s > 0].
Then P (B ∩ C) = 0 as a consequence of the following argument. Suppose that
there exists some t > 0 and k ∈ N such that k = N(t) > U(t) and N(ti) 6= i, for
all i ≥ 1. It then follows that tk > t, for otherwise k = U(tk) ≤ U(t), as U(·)
is increasing, which is a contradiction. Therefore, tk > t implies that N(tk) >

N(t) = k, as N(·) is non–decreasing and N(tk) = k is disallowed by hypothesis.
Hence N(ti) > i holds for all i ≥ k, for otherwise there would exist some j ≥ k

such that N(tj) = j, since N(·) is a counting process. Therefore, for each i ≥ k we
have that N(s) ≥ i + 1 for all ti ≤ s ≤ ti+1 and, consequently, that N(s) ≥ U(s)
for all s ≥ tk. This implies that B ∩ C ⊆ [lim infs→∞{N(s)/s1/γ} ≥ x] and
therefore P (B∩C) = 0, since the SLLN implies that N(s)/s1/γ → 0 holds almost
surely, for fixed γ < 1. Thus P (B ∩ C) = 0.

Now P (C) = P (C ∩ Bc). Furthermore, since U is a strictly increasing func-
tion and since N has jumps at the points {tk} with probability zero, we also
find that P (C ∩ Bc) = P (Bc). Finally, write Bc = ∪∞

k=1Ak for the disjoint sets
Ak ≡ [N(tk) = k, N(tj) 6= j for all 1 ≤ j < k], k ≥ 1. Combining the arguments
above,

P (Yγ ≤ x) = 1 − P (C) = 1 −
∞∑

k=1

P (Ak),

where P (A1) = P (N(t1) = 1) = p(t1; 1) and, for k ≥ 2, P (Ak) may be written as

P (N(tk) = k) − P ({N(tk) = k} ∩ {N(ti) 6= i, i < k}c)

= P (N(tk) = k) −
k−1∑
j=1

P (N(tk) = k, N(tj) = j, N(ti) 6= i, i < j)

= P (N(tk) = k) −
k−1∑
j=1

P (N(tk) − N(tj) = k − j)P (N(tj) = j, N(ti) 6= i, i < j).
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The result follows.

Appendix B: Definitions from Convex Analysis

The epigraph (hypograph) of a function f from a subset S of Rd to [−∞, +∞]
is the subset epi(f) (hypo(f)) of Rd+1 defined by

epi(f) = {(x, t) : x ∈ S, t ∈ R, t ≥ f(x)},
hypo(f) = {(x, t) : x ∈ S, t ∈ R; t ≤ f(x)}.

The function f is convex if epi(f) is a convex set. The effective domain of a
convex function f on S is

dom(f) = {x ∈ Rd : (x, t) ∈ epi(f) for some t} = {x ∈ Rd : f(x) < ∞}.

The t-sublevel set of a convex function f is the set Ct = {x ∈ dom(f) :
f(x) ≤ t}, and the t-superlevel set of a concave function g is the set St = {x ∈
dom(g) : g(x) ≥ t}. The sets Ct, St are convex. The convex hull of a set S ⊂ Rd,
denoted by conv(S), is the intersection of all the convex sets containing S.

A convex function f is said to be proper if its epigraph is non-empty and
contains no vertical lines, i.e., if f(x) < +∞ for at least one x and f(x) > −∞
for every x. Similarly, a concave function g is proper if the convex function
−g is proper. The closure of a concave function g, denoted by cl(g), is the
pointwise infimum of all affine functions h ≥ g. If g is proper, then cl(g)(x) =
lim supy→x g(y). For every proper convex function f there exists closed proper
convex function cl(f) such that epi(cl(f)) ≡ cl(epi(f)). The conjugate function
g∗ of a concave function g is defined by g∗(y) = inf{〈x, y〉 − g(x) : x ∈ Rd},
and the conjugate function f∗ of a convex function f is defined by f∗(y) =
sup{〈x, y〉 − f(x) : x ∈ Rd}. If g is concave, then f = −g is convex and f has
conjugate f∗(y) = −g∗(−y).

A complete non-decreasing curve is a subset of R2 of the form

Γ = {(x, y) : x ∈ R, y ∈ R, ϕ−(x) ≤ y ≤ ϕ+(x)}

for some non-decreasing function ϕ from R to [−∞, +∞] that is not everywhere
infinite. Here ϕ+ and ϕ− denote the right and left continuous versions of ϕ,
respectively. A vector y ∈ Rd is said to be a subgradient of a convex function f

at a point x if f(z) ≥ f(x) + 〈y, z − z〉 for all z ∈ Rd. The set of all subgradients
of f at x is called the subdifferential of f at x, and is denoted by ∂f(x).

A face of a convex set C is a convex subset B of C such that every closed
line segment in C with a relative interior point in B has both endpoints in B.
If B is the set of points where a linear function h achieves its maximum over C,
then B is a face of C. If the maximum is achieved on the relative interior of a
line segment L ⊂ C, then h must be constant on L and L ⊂ B. A face B of this
type is called an exposed face.
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