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Abstract: Linear and quadratic discriminant analysis are two useful classification

methods for which the problem of variable selection is of fundamental importance.

To this end, a BIC-type selection criterion (Schwarz (1978)) was recently studied

by Raftery and Dean (2006). Despite its usefulness, the BIC’s selection consistency

(Shao (1997)) was not investigated. To fill this gap, we show that BIC, in con-

junction with a backward elimination procedure, is indeed selection consistent. To

confirm our asymptotic theory, a number of numerical studies are presented.
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1. Introduction

In supervised classification, discriminant analysis (both linear and quadratic)
is extremely popular (Friedman (1989); Tibshirani et al. (2003); Guo, Hastie, and
Tibshirani (2007)). Its popularity is mainly due to simplicity, interpretability,
and effectiveness. In fact, empirical comparisons show that good prediction accu-
racy can be easily achieved by these methods (Hand (2006); Clemmensen, Hastie,
and Ersbøll (2008)). Thus, a thorough understanding of discriminant analysis is
important.

At the same time, very little is known about variable selection for discrimi-
nant analysis. The problem of relevant (or irrelevant) variables is not straightfor-
ward. To appreciate the difficulty, consider that in a standard linear regression
model, irrelevant predictors can be taken as those with zero regression coeffi-
cients. However, for discriminant analysis, no “regression coefficient” can be
defined naturally. Here, irrelevance of a variable is not clear. One can define
irrelevant variables as those that provides no additional prediction power, con-
ditional on the existence of the others; see for example Kohavi and John (1997),
Raftery and Dean (2006), among others. Then, bringing in Bayes factors (Smith
and Spiegelhalter (1980); Kass and Raftery (1995); Kass and Wasserman (1995);
Efron and Gous (2001)), a BIC-type criterion (Schwarz (1978)) was recently
studied by Raftery and Dean (2006). Despite its usefulness, the BIC’s selection
consistency (Shao (1997)) was not investigated. The primary objective of this
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article is to fill this gap. Specifically, we show that BIC, in conjunction with a
backward elimination procedure, is selection consistent. Numerical studies are
presented to confirm our asymptotic theory.

The rest of the article is organized as follows. Section 2 introduces the
methodology, giving both computational details and theoretical properties. Nu-
merical studies are presented in Section 3.

2. The Methodology

2.1. Model and notations

Let (Yi, Xi), 1 ≤ i ≤ n, be the observation collected from the ith subject,
where Yi is the class label taking values in {1, . . . ,K}, and Xi = (Xi1, . . . , Xip)>

is the associated p-dimensional predictor. We assume that P (Yi = k) = πk > 0
for every 1 ≤ k ≤ K, and Xi|Yi = k follows a multivariate normal distribution
with mean µk = (µk1, . . . , µkp)> ∈ Rp and covariance Σk ∈ Rp×p, Σk is positive
definite for every 1 ≤ k ≤ K. Let S = {j1, . . . , jd} denote a candidate model
that contains Xij1 , . . . , Xijd

as relevant predictors. We denote its size by |S| = d

and its complement by Sc = SF \S, where SF = {1, . . . , p} is the full model. For
an arbitrary p-dimensional vector µk, we write µk(S) = (µkj : j ∈ S) ∈ R|S| to
denote its subvector corresponding to the candidate model S. Similarly, Σk(S)

denote Σk’s submatrix corresponding to S.
The objective of variable selection is to differentiate relevant variables from

redundant ones. For this, we follow the idea of Kohavi and John (1997), and
take a set of predictors SI to be irrelevant if the distribution of Xi(SI)|Yi, Xi(SR)

is the same as that of Xi(SI)|Xi(SR), where SR = Sc
I . Under this assumption, one

can easily verify that

P
(
Yi = k

∣∣∣Xi

)
= P

(
Yi = k

∣∣∣Xi(SR)

)
, (2.1)

which implies that the model SR by itself is sufficient for predicting the class
label Yi. Obviously, there exist more than one model SR satisfying (2.1), e.g.,
SR = SF . However, we are only interested in the “smallest” model satisfying
(2.1), defined as the intersection of all SR satisfying (2.1), and denoted by ST .
Following an argument of Cook (1998), we can show that ST also satisfies (2.1).
We refer to ST as the true model.

Because Xi|Yi is Gaussian, any S ⊃ ST satisfies (2.1). Consequently, for
each k, we have Xi(S)|Yi = k ∼ N(µk(S), Σk(S)), Σk(S) ∈ R|S|×|S| is a positive
definite matrix, and

Xi(Sc)|Xi(S), Yi = Xi(Sc)|Xi(S) ∼ N
(
µ(S) + B(S)Xi(S), Σε(S)

)
(2.2)
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for some µ(S) ∈ Rp−|S|, B(S) ∈ R(p−|S|)×|S|, and Σε(S) ∈ R(p−|S|)×(p−|S|), where
Σε(S) is a positive definite matrix. Moreover, because ST is the “smallest” model
satisfying (2.1), (2.2) is not valid for any S 6⊃ ST .

2.2. The BIC criterion

To identify the true model ST , we assume that we are given a set of candidate
models M. The choice of M is an important question that will be addressed in
the next subsection. We consider the BIC criterion

BIC = −2 × log likelihood + degrees of freedom × log n,

and proceed as follows. Write the likelihood function as `(θ(S)), where the un-
known parameter is

θ(S) =
{

(µ(S), B(S), Σε(S)) and (πk, µk(S), Σk(S)) with 1 ≤ k ≤ K
}

. (2.3)

For a candidate model S,

−2 log `(θ(S))

=
n∑

i=1

K∑
k=1

I(Yi = k)

{(
Xi(S) − µk(S)

)>
Σ−1

k(S)

(
Xi(S) − µk(S)

)
+ log

∣∣∣Σk(S)

∣∣∣}

+
n∑

i=1

{(
Xi(Sc)−µ(S)−B(S)Xi(S)

)>
Σ−1

ε(S)

(
Xi(Sc)−µ(S)−B(S)Xi(S)

)
+ log

∣∣∣Σε(S)

∣∣∣} +
n∑

i=1

K∑
k=1

I(Yi = k) log πk. (2.4)

By optimizing (2.4) with respect to θ(S), we obtain the maximum likelihood
estimators

π̂k =
1
n

n∑
i=1

I(Yi = k), µ̂k(S) =
1
nk

n∑
i=1

Xi(S)I(Yi = k),

Σ̂k(S) =
1
nk

n∑
i=1

Xi(S)X
>
i(S)I(Yi = k) − µ̂k(S)µ̂

>
k(S),

(
µ̂(S), B̂(S)

)
=

{
1
n

n∑
i=1

Xi(Sc)X̃
>
i(S)

}{
1
n

n∑
i=1

X̃i(S)X̃
>
i(S)

}−1

,

and

Σ̂ε(S) = n−1
n∑

i=1

ε̂i(S)ε̂
>
i(S),
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where nk =
∑n

i=1 I(Yi = k), X̃i(S) =
(
1, X>

i(S)

)>
, and ε̂i(S) = Xi(Sc) − µ̂(S) −

B̂(S)Xi(S). Denoting these MLEs by θ̂(S),

−2`(θ̂(S)) = n

{
K∑

k=1

π̂k log
∣∣Σ̂k(S)

∣∣ + log
∣∣Σ̂ε(S)

∣∣}, (2.5)

where some irrelevant constants are omitted. Then the number of parameters
needed for such a model specification is

df(S) = K − 1 + K

{
|S| + 1

2
|S|

(
|S| + 1

)}
+

(
p − |S|

)
|S| + 1

2

(
p − |S|

)(
p − |S| + 1

)
+

(
p − |S|

)
, (2.6)

where the first term is due to {πk}, the second to {µk(S), Σk(S)}, the third to B(S),
and the last two to Σε(S) and µ(S). One can verify that df(S) is a monotonically
increasing function in |S|. Thus, larger candidate models lead to larger degrees
of freedom. Combing the results from (2.5) and (2.6), we have

BIC(S) = −2 log `(θ̂(S)) + df(S) × log n. (2.7)

Thereafter, the best model can be selected as Ŝ = argminS∈MBIC(S).

2.3. A backward algorithm

The generation of the candidate model set M is very important. To this
end, we consider here a standard backward algorithm conducted as follows.

Step 1: (The Initialization Step). Set S(0) = SF , and the relevant Xi(S(0)) = Xi,
Xi(Sc

(0)
) = ∅, 1 ≤ i ≤ n. Calculate BIC(S(0)).

Step 2: (The Evaluation Step). In the t-th step(t > 0), given S(t−1), Xi(S(t−1)),
and Xi(Sc

(t−1)
), compute d(t) = argminj∈S(t−1)

BIC(S(t−1)\{j}) and update
S(t) = S(t−1)\{d(t)}.

Step 3: (The Selection Step). Iterate Step 2 p times, generating a sequence of
candidate models M = {S(t) : 0 ≤ t ≤ p}. Based on M, the best model
is Ŝ = argminS∈MBIC(S).

We show in the following theorem (the proof is in Appendix B) that, with prob-
ability tending to one, Ŝ = ST . Thus, the BIC criterion together with this
backward algorithm is indeed selection consistent.

Theorem 1. Under (2.2), P (Ŝ = ST ) → 1.
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As a cautionary note, we remark that one has only a guarantee that the proposed
backward elimination procedure converges to the true model asymptotically; with
a finite dataset, whether one gets convergence to the model with smallest BIC
score is not guaranteed.

3. Numerical Experiments

3.1. Simulation studies

To evaluate the finite sample performances of the proposed method, two
simulation experiments borrowed from Raftery and Dean (2006) were conducted.

Example 1. There were seven variables and two classes; the first two variables
were relevant and were generated from bivariate normal distributions. For the
first class, the mean vector and covariance matrix were, respectively, µ1(ST ) =
(2.5,−1.0)> and Σ2(ST ) = [1, 0; 0, 1] ∈ R2×2; for the second class, they were,
respectively, µ2(ST ) = (−0.5, 0)> and Σ2(ST ) = [1.1, 0.5; 0.5, 0.85] ∈ R2×2. The
remaining five Xij variables were independently generated as N(mj , 1) , where
mj was U [0, 1].

Example 2. There were fifteen variables and two classes; the first two variables
were relevant, and generated as in Example 1. The next eight variables were
irrelevant and generated from the standard normal distribution; the next two
variables were also irrelevant and were generated from a bivariate normal distri-
bution with mean 0, variance 1, and correlation 0.5. The thirteenth predictor
was

Xi13 = α13 + β13Xi1 + εi13, (3.1)

where α13 was generated from U [0, 1], β13 from U [0, 10], and εi13 from N(0, 16).
The fourteenth variable Xi14 was generated in a similar manner as Xi13. But
with Xi1 in (3.1) replaced by Xi2. Lastly, Xi15 = α15 + βaXi1 + βbXi2 + εi15,
where α15 and εi15 were generated in a similar manner as α13 and εi13, while
both βa and βb were indepently U [0, 1].

For a given simulation model and parameter setup (e.g., the sample size n),
two independent but identically distributed datasets were generated. The first
dataset served as the training data while the second one was used for testing.
We then applied the BIC criterion with the backward algorithm to the training
data. By doing so, a “best” model was selected. Subsequently, the “best” model’s
prediction accuracy (in terms of mis-classification error, ME) was evaluated based
on the testing data, via the method of quadratic discriminant analysis (Johnson
and Wichern (2003)). For a reliable evaluation, the experiment was replicated
100 times, the average value of ME, AME, computed and reported in Table 1.

We next evaluated the BIC method’s model selection consistency. To this
end, we took a selected model to be correct if Ŝ = ST , and the percentage of
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Table 1. Detailed results for the two simulation examples. n: the sample
size; FULL: the quadratic discriminant analysis without variable selection;
CV: the model selected by cross-validation in terms of minimal misclassifica-
tion error; AIC: the model selected by the AIC; BIC: the model selected by
the BIC. PCF: the percentage of the correct fits; AFN: the average false neg-
atives; AFP: the average false positives; AME: the average mis-classification
error; AMS: the average model size;

Example n Selection Method PCF (%) AFN AFP AME(%) AMS
1 75 FULL − − − 6.73 7.00

CV 17 0.06 1.72 5.23 3.66
AIC 67 0.02 0.37 4.36 2.35
BIC 85 0.14 0.01 4.40 1.87

100 FULL − − − 5.82 7.00
CV 24 0.05 1.80 5.15 3.75
AIC 74 0.00 0.30 4.39 2.30
BIC 93 0.06 0.01 4.24 1.95

150 FULL − − − 5.25 7.00
CV 14 0.00 2.17 4.64 4.17
AIC 78 0.00 0.27 4.35 2.27
BIC 99 0.01 0.00 4.25 1.99

2 75 FULL − − − 16.37 15.00
CV 11 0.26 2.61 6.95 4.35
AIC 37 0.23 1.38 5.76 3.15
BIC 67 0.33 0.14 5.17 1.81

100 FULL − − − 12.42 15.00
CV 9 0.18 3.11 6.61 4.93
AIC 49 0.16 0.86 5.21 2.70
BIC 79 0.21 0.15 4.73 1.94

150 FULL − − − 8.59 15.00
CV 18 0.03 2.96 5.51 4.93
AIC 57 0.03 0.71 4.71 2.68
BIC 95 0.03 0.05 4.59 2.02

the correct fit (PCF) across 100 replications was computed. To better gauge our
method’s underfitting effect, took the average false negative (AFN) frequency
as the average number of the relevant variables missed by Ŝ; to characterize
the overfitting effect, we took the average false positive (AFP) frequency as the
average number of irrelevant variables included in Ŝ. Lastly, the average model
size (AMS) of Ŝ was also summarized. For comparison proposes, we considered
the FULL model (the model without going through variable selection), the CV
model (the model selected by cross-validation in terms of ME), and the AIC
model (the model selected by the AIC criterion, where the factor log n in (2.7)
is replaced by 2).
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Table 2. The detailed analysis results for the Landsat Satellite data based on
100 simulation replications. FULL: the quadratic discriminant analysis with-
out variable selection; CV: the model selected by cross-validation in terms of
minimal mis-classification error; AIC: the model selected by the AIC; BIC:
the model selected by the BIC. AME: the average mis-classification error;
AMS: the average model size.

Selection Methods AME(%) AMS
FULL 17.90 36.00
CV 16.48 13.41
AIC 16.66 24.92
BIC 16.36 12.01

According to Table 1, as n increases, the BIC’s PCF value approaches 100%
very quickly, numerically confirming that the BIC criterion (2.7) with the back-
ward elimination procedure is selection consistent. No similar pattern was ob-
served for other methods. As a consequence, we find that the prediction accuracy
of the BIC models to be very competitive, particularly in large sample size situ-
ations. It is noteworthy that this prediction accuracy was achieved with a much
smaller average model size than with competing methods.

3.2. The Landsat satellite data

To further illustrate the usefulness of our method, we considered the Landsat
Satellite Data that is publicly available at the UCI Machine Learning Repository;
see http://www.ics.uci.edu/~mlearn/. The database consists of the multi-
spectral values of pixels in a satellite image. The sample contains a total of
6 different classes and has 36 predictive variables. The original dataset has
been divided into a training set with 4,435 samples and a testing set with 2,000
samples. We used 1,000 samples (randomly selected from the training data) to
estimate and select the model. Based on the selected model, we evaluated the
BIC model’s ME on the testing data. We replicated this experiment 100 times
and summarized the results in Table 2. As one can see, the models selected by
BIC have both the smallest average model size and the smallest misclassification
error.
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Appendix

Appendix A. A useful lemma

Lemma 1. Assuming that S2 ⊂ S1 and |S1\S2| = 1,

− 2n−1`(θ̂(S1)) + 2n−1`(θ̂(S2)) = Op(n−1) if ST ⊆ S2 ⊆ S1, (A.1)

−2n−1`(θ̂(S1)) + 2n−1`(θ̂(S2)) = −CS1,S2 + Op(n−1) if |ST \S2| 6= 0, (A.2)

where CS1,S2 ≥ 0 is a constant given S1 and S2. In addition, CS1,S2 > 0 holds if
ST ⊆ S1.

Proof. First, (A.1) is made clear by following Theorem 6.5 on page 432 in Shao
(2003). Consider (A.2). For simplicity, write S1 = {1, . . . , b} and S2 = S1\{b},
Xi(a) = (Xi1, . . . , Xi,b−1)> and Xi(c) = (Xi,b+1, . . . , Xip)>. According to Raftery
and Dean (2006), we can write

−2n−1`(θ̂(S1)) + 2n−1`(θ̂(S2)) =
K∑

k=1

π̂k log σ̂2
k,b|a − log σ̂2

b|a,

where σ2
k,b|a = var(Xib|Yi = k,Xi(a)) and σ2

b|a = var(Xib|Xi(a)). Moreover, σ̂2
k,b|a

and σ̂2
b|a are the corresponding MLE. Then we have

K∑
k=1

π̂k log σ̂2
k,b|a − log σ̂2

b|a →p

K∑
k=1

πk log σ2
k,b|a − log σ2

b|a

=
K∑

k=1

πk log σ2
k,b|a − log

( K∑
k=1

πkσ
2
k,b|a

)
+ log

( K∑
k=1

πkσ
2
k,b|a

)
− log σ2

b|a

, −CS1,S2 ,

where CS1,S2 is constant given S1 and S2. According to Jensen Inequality,∑K
k=1 πk log σ2

k,b|a ≤ log
( ∑K

k=1 πkσ
2
k,b|a

)
. Also, since σ2

b|a =
∑K

k=1 πk

{
σ2

k,b|a +{
E(Xib|Yi = k,Xi(a)) − E(Xib|Xi(a))

}2
}

, log
( ∑K

k=1 πkσ
2
k,b|a

)
≤ log σ2

b|a. Con-
sequently, CS1,S2 ≥ 0. Moreover, if ST ⊆ S1 with |ST \S2| 6= 0, we should have
either σ2

k1,b|a 6= σ2
k2,b|a for some k1 6= k2, or E(Xib|Yi = k,Xi(a)) 6= E(Xib|Xia) for

some k, which further leads to either
∑K

k=1 πk log σ2
k,b|a−log

( ∑K
k=1 πkσ

2
k,b|a

)
< 0

or log
( ∑K

k=1 πkσ
2
k,b|a

)
−log σ2

b|a < 0 should be true. Then CS1,S2 > 0 holds. This
completes the proof of Lemma 1.
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Appendix B. Proof of Theorem 1

At the t-th step of the backward algorithm. Assume ST ⊆ S(t−1) and
|S(t−1)| − |ST | > 0. Let jd1 , jd2 ∈ S(t−1) such that jd1 ∈ ST , jd2 ∈ Sc

T . Write
Sd1 = S(t−1)\{jd1}, and Sd2 = S(t−1)\{jd2}. Then, by (2.7) and Lemma 1

n−1
{

BIC(Sd1) − BIC(S(t−1))
}

= CS(t−1),Sd1
+ Op(n−1) − df1 ×

log n

n
, (A.3)

n−1
{

BIC(Sd2) − BIC(S(t−1))
}

= Op(n−1) − df1 ×
log n

n
, (A.4)

where CS(t−1),Sd1
> 0 and df1 = (|S(t−1)| + 1) × (K − 1). By combining (A.3)

and (A.4), we can verify that P
{

BIC(Sd1) > BIC(Sd2)
}

→ 1 as n → ∞.
Consequently, with probability tending to one, we will not eliminate any relevant
variable in the tth step. Thus, with probability tending to 1, we must have
ST ⊂ S(t) as long as |S(t−1)| − |ST | > 0. This further implies that

P
{
ST ∈ M

}
→ 1 as n → ∞. (A.5)

By (A.5), we know that, with probability tending to 1, the true model must
be included in candidate model set M. Next, we will show that BIC-criterion
will indeed identify the true model consistently. To this end, we consider an
arbitrary candidate model S(t) ∈ M, but S(t) 6= ST . Due to the natural of
backward algorithm, we know that, S(t) satisfies either S(t) ⊃ ST or S(t) ⊂ ST .
Then by Lemma 1, we have

n−1
{

BIC(S(t)) − BIC(ST )
}

=
p−|ST |∑
l=t+1

CS(l),S(l−1)
− df2 ×

log n

n
, if S(t) ⊂ ST , (A.6)

n−1
{

BIC(ST ) − BIC(S(t))
}

= Op(n−1) − df2 ×
log n

n
, if S(t) ⊃ ST , (A.7)

where
∑p−|ST |

l=t+1 CS(l),S(l−1)
≥ CST ,S(p−|ST |−1)

> 0 and df2 = |df(S(t))− df(ST )|. By
(A.6) and (A.7), we have BIC(ST ) < BIC(S(t)) with probability tending to 1,
regardless of whether S(t) ⊂ ST or S(t) ⊃ ST . This completes the proof.
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