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Abstract: The work of A. P. Dempster in 1960s extending Fisher’s fiducial infer-

ence for parametric inference using multivalued mapping, and that of G. Shafer in

1970s on the assessment and combination of evidence led to what is now known as

the Dempster-Shafer (DS) theory of belief functions. However, application of DS

for parametric inference has been limited due, perhaps, to its computational diffi-

culty, non-uniqueness, and lack of frequency properties. In this paper, we return to

Dempster’s original approach to constructing belief functions for parametric infer-

ence, called basic DS models (BDSMs), which are usual probability models on the

space of the so-called focal elements. We propose to modify BDSMs by enlarging

focal elements to obtain belief functions that have desired frequency properties. We

call our method Weak Belief (WB). When it enlarges the focal elements no more

than necessary, the method of WB is called Maximal Belief (MB). The MB method

is illustrated with two examples: (i) inference about a binomial proportion, and

(ii) inference about the number of outliers (µi 6= 0) based on the observed data

X1, . . . , Xn with the model Xi
ind∼ N(µi, 1).

Key words and phrases: Belief functions, fiducial inference, frequentist evaluation,

hypothesis testing, maximal belief, predictive random sets.

1. Introduction

Dempster (1966) extended Fisher’s fiducial argument to cases with multino-
mial observable variables and launched what we now call the DS theory of belief
functions. Dempster (1967a,b, 1968a,b, 1969) applied DS to a class of statistical
models, but he dropped this line of work because it could not be implemented
computationally at the time. Shafer (1973, 1976) took up the theory starting in
the 1970s, emphasizing the assessment and combination of evidence in general,
rather than statistical modeling. DS migrated from Shafer’s work to artificial
intelligence via the expert systems of the time, and thence to a variety of engi-
neering applications. Many of Dempster’s and Shafer’s articles, along with other
classic DS articles, were recently reprinted in Yager and Liu (2008).

In the 1980s, the methodology advanced with the recognition that DS mod-
els, as well as other probabilistic and fuzzy models, could be adapted to join
trees (Shenoy and Shafer (1986); Dempster (1990); Almond (1995)), where com-
putations of marginal inferences can be reduced to local computations in a small
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number of dimensions. In this context, a wide variety of hidden Markov models
and other network models can be regarded as DS models. Other DS models
continue to be used, along with fuzzy methods, in a wide variety of engineering
problems.

However, DS has not yet been accepted in the statistical community for sta-
tistical inference from observed data. This, perhaps, is due to its computational
difficulty, non-uniqueness, and lack of frequency properties. For example, the
application of the multinomial DS model (Dempster (1966)) and the Poisson DS
model (Dempster (2008)), both proposed as general tools to build belief func-
tions for parametric inference, has proved mathematically and computationally
difficult (see, e.g., Denoeux (2006)). But recent advances in Markov chain Monte
Carlo methods for Bayesian computation make DS computation possible.

For prediction of future observations from the multinomial model, Denoeux
(2006) suggests a different way of building belief functions that have certain fre-
quency properties. He proposed to build belief functions based on frequentist
simultaneous confidence intervals for multinomial proportions. This idea is use-
ful and can be viewed as an example of the general method of building belief
functions based on likelihood functions. For an alternative, here we consider
building belief functions by reasoning from the assumptions made in postulated
sampling models.

We modify Dempster’s original approach to obtain posterior belief functions
that have desired frequency properties. Given a statistical model with a param-
eter space Θ and observation space X , Dempster’s original approach is to set
up a multivalued mapping M from a probability space U into the product space
Θ×X , called the state space model (SSM). We derive the multivalued mapping
from a mapping a from Θ × U to X :

X = a(θ, U) (X ∈ X , θ ∈ Θ, U ∼ U(U)), (1.1)

where U (U) denotes the uniform distribution in the n-dimensional cube U =
[0, 1]n, but can be replaced with any fixed distribution for generality. We call
the variable U the auxiliary variable and (1.1) the auxiliary (a)-equation. The
subsets

M(U) = {(θ,X) : θ ∈ Θ, X ∈ X , X = a(θ, U)}, U ∈ U ,

are known as focal elements in the DS theory. Thus the probability model U ∼
U(U) and the multivalued mapping M(U) define a DS model (DSM) on Θ×X :

M(U) = {(θ,X) : θ ∈ Θ, X ∈ X , X = a(θ, U)} (U ∼ U(U)). (1.2)

In general, a DSM on a space Ω is a usual probability model on 2Ω, the power
space of Ω consisting of all subsets of Ω. Thus, M(U) is referred to as a random
set when U ∼ U(U) and M(U) 6= ∅.
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The setting (1.1) is similar to Fisher’s fiducial argument, e.g., in the context
of the functional models of Bunke (1975) and Dawid and Stone (1982), and
the structural inference of Fraser (1966). To call attention to the difference
between (1.1) and the setting for fiducial inference, we note that (i) X = a(θ, U)
determines a multivalued mapping from U to Θ×X , and (ii) X can be the whole
sample of data, rather than a (minimal) sufficient statistic as required by Fisher’s
fiducial argument.

For statistical inference, the a-equation (1.1) is specified in such a way that it
would reproduce the probability distribution for the observed data X ∈ X when
restricted to θ ∈ Θ. When conditioned on X, the DSM (1.2) defines the random
set

MX(U) = {θ : X = a(θ, U), θ ∈ Θ} (U ∼ U(U)) (1.3)

and, thereby, a DSM on Θ for inference about θ. We call the DSM (1.3) the
posterior DSM (PDSM). In the case that MX(U) is not a singleton, we “don’t
know” the exact value of θ in MX(U). We note that Hannig (2006) discussed
the use of multivalued mappings in the context of generalized fiducial intervals,
where “don’t know” is removed by taking θ to be a single point in MX(U).

Let A ⊆ Θ represent an assertion of interest about θ and let A denote the
denial of A, i.e., A = Θ \ A. Write

pX (A) =
Pr (MX(U) ⊆ A)
Pr (MX(U) 6= ∅)

, qX (A) =
Pr

(
MX(U) ⊆ A

)
Pr (MX(U) 6= ∅)

, (1.4)

and rX (A) = 1 − pX (A) − qX (A). Then, using the new terms introduced by
Dempster (2008) for statisticians, we call p = pX (A) the probability for the
truth of A, q = qX (A) the probability against the truth of A, and r = rX (A)
the probability of “don’t know”, which supports neither A nor A. For readers
who are familiar with Shafer (1976), we note that p is the lower probability or
belief for the truth of A and p + r is the upper probability or plausibility for the
truth of A. In the remainder of this paper, we refer to DSMs as belief models or
simply beliefs.

DS (p, q, r) probabilities are personal and may not have desired frequency
properties. We call the DSM (1.2) a Basic DSM (BDSM). To obtain the desired
frequency property, we propose to modify the BDSM by enlarging its focal ele-
ments before conditioning on the observed data X. We do this enlargement in
a systematic way, and enlarge just enough to obtain the desired frequency prop-
erty. Because enlarged focal elements result in DSMs representing weaker beliefs,
we call our method Weak Belief (WB). Accordingly, the WB method enlarging
focal elements no more than necessary is called Maximal Belief (MB).

The remainder of this article is arranged as follows. Section 2 gives a brief
introduction to the ideas from DS theory. Section 3 describes the WB and MB
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methods. Section 4 presents a specific class of WB models. Sections 5 and
6 illustrate the method of MB with the binomial and the many-normal-means
problems. Section 7 concludes with a brief discussion.

2. A Brief Introduction to BDSMs

We review in Section 2.1 the DS calculus (Dempster (2008)) for deriving the
sampling model, called sampling DSM, for data X given parameter θ and the
posterior DSM for θ conditional on X, and give in Section 2.2 two illustrative
examples. We assume basic knowledge of the DS calculus; See Shafer (1976),

2.1. Sampling and posterior DSMs

The sampling distribution of X given θ can be recovered by combining a DSM
on Θ×X with a DSM that has the single focal element {(θ,X) : X ∈ X} ⊆ Θ×X .
The random set of the combined DSM is obtained, by applying Dempster’s rule of
combination, as the intersection of the subset {(θ,X) : X ∈ X} and the random
set M(U) of the BDSM (1.2). It can be written as

{(θ,X) : X ∈ X , X = a(θ, U)} (U ∼ U(U)).

Applying the DS marginalization operation on this combined DSM leads to the
DSM on X , called the sampling DSM, having the random set

Mθ(U) = {X : X ∈ X , X = a(θ, U)} (U ∼ U(U)). (2.1)

Similarly, one can derive the posterior DSM (1.3) discussed in Section 1.

2.2. Examples

Example 2.1. In this example, we consider the simple Gaussian model with the
a-equation

X = µ + Φ−1(U) (µ ∈ R, U ∼ U(0, 1)), (2.2)

where R = (−∞,∞) and Φ−1(·) stands for the inverse CDF of the standard
normal distribution N(0, 1). That is, the sampling model is X ∼ N(µ, 1) with
unknown µ ∈ R. The SSM is the product space R × R for (µ, X). The focal
elements are the lines M(U) = {(µ,X) : X = µ+Φ−1(U)} indexed by U ∈ [0, 1].
Routine application of DS calculus leads to the following results: (i) the sampling
distribution of X given µ is N(µ, 1), and (ii) the posterior DSM for µ given X

is the usual fiducial distribution µ|X ∼ N(X, 1).

Example 2.2. Let X be a dichotomous observation with X ∈ X = {0, 1}.
Suppose that the Bernoulli model Bernoulli(θ)

Prθ (X = 1) = θ and Prθ (X = 0) = 1 − θ (2.3)
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with unknown θ ∈ Θ = [0, 1] is considered to generate the observed data X. The
problem is to infer θ from X. We use the following a-equation for the quantities
X and θ with an auxiliary random variable U ∼ U(0, 1):

X =

{
1, if U ≤ θ;

0, if U > θ.
(2.4)

It follows that the sampling DSM has the random set

Mθ(U) =

{
{1}, if U ≤ θ;

{0}, if U > θ,
(U ∼ U(0, 1)) (2.5)

which is consistent with the Bernoulli model (2.3). The posterior DSM for θ has
the random set

MX(U) = [U, 1] for X = 1, and [0, U ] for X = 0 (U ∼ U(0, 1)). (2.6)

To illustrate the DS (p, q, r) output based on the DSM (2.6) with state space
Θ = [0, 1], consider the assertion A = {θ ≤ θ0} ⊆ Θ for a known θ0. Given
X = 1, for example, we have the random interval [U, 1] for θ with U ∼ U(0, 1).
There are two possible cases: (i) the case of U > θ0, which provides evidence
against the truth of A, and (ii) the case of U ≤ θ0, which does not have any
information about the truth or falsity of A. Note that there are no realizations
of the random interval that provide evidence for the truth of A. As a result, the
DS output for the assertion A has the following (p, q, r) components

pX (A) = 0, qX (A) = Pr (U > θ0) = 1 − θ0, and rX (A) = θ0.

3. Weak and Maximal Beliefs

Suppose that the a-equation (1.1) is considered for making inference about
an unknown θ given the observed data X. We are interested in making inference
about an assertion A ⊆ Θ.

3.1. Credibility: a frequentist evaluation

DS inference would be questionable if large values of pX (A) under the truth
of A or large values of qX (A) under the truth of A occur frequently in repeated
experiments. This motivates the following definition of credibility of DS inference.

Definition 3.1. Suppose that the observed data model X is specified by the
a-equation (1.1) with unknown θ ∈ Θ. Given α ∈ (0, 1), the DS (pX (A), qX (A),
rX (A)) output for an assertion A is said to be credible at α-level if

Pr
θ
(pX (A) ≥ 1 − α) ≤ α (3.1)
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for every θ ∈ A and
Pr

θ
(qX (A) ≥ 1 − α) ≤ α (3.2)

for every θ ∈ A, where the distribution of the random variable X is determined
by the a-equation (1.1) and θ ∈ Θ. The DS (pX (A), qX (A), rX (A)) output for an
assertion A is said to be credible if (3.1) and (3.2) hold for all α ∈ (0, 1).

To explain the definition of credibility, we consider the following simple so-
lution to the problem of choosing A, A, or neither, given the observed data X.
Take a small value α, e.g., α = 0.05, and choose A if p > 1 − α, A if q > 1 − α,
and neither A nor A otherwise. It follows that if the (p, q, r) is credible at α-level,
we would make wrong choices at most α × 100% of the times. A familiar such
example is the precise/sharp hypothesis problem. Incidentally, we note that the
above definition of credibility is related to the fundamental frequentist principle
of Walley (2002).

Example 3.1. Consider the Gaussian model N(µ, 1) with unknown mean µ in
Example 2.1 for a single observation X. Example 2.1 showed that the PDSM for
inference about µ is the familiar fiducial posterior, i.e., µ|X ∼ N(X, 1). Here we
consider the assertions

(i) A1 = {µ ≤ µ0} for fixed µ0, and

(ii) A2 = {µ0 − δ ≤ µ ≤ µ0 + δ} for fixed µ0 and δ ≥ 0.

The DS (p, q, r) output for the assertion A1 is given by

pX (A1) = Pr (µ ≤ µ0|X) = Φ(µ0 − X), qX (A1) = 1 − pX (A1),

and rX (A1) = 0. For any α ∈ (0, 1), we have for every µ ∈ A1, i.e., µ > µ0,

Prµ (pX (A1) ≥ 1 − α) = Pr
µ

(Φ(µ0 − X) ≥ 1 − α)

= Pr
µ

(
X ≤ µ0 − Φ−1(1 − α)

)
= Φ(µ0 − µ − Φ−1(1 − α))

≤ Φ(Φ−1(α)) = α

and similarly for every µ ∈ A1, Prµ (qX (A1) ≥ 1 − α) ≤ α. Thus, the fiducial
inference about A1 is credible for all α ∈ (0, 1).

For A2, the DS (p, q, r) output has the components

pX (A2) = Φ(µ0 + δ − X) − Φ(µ0 − δ − X), qX (A2) = 1 − pX (A2),

and rX (A2) = 0. It follows that for δ ≈ 0 and α ∈ (0, 1),

Prµ (qX (A2) ≥ 1 − α) = Prµ (Φ(µ0 + δ − X) − Φ(µ0 − δ − X) ≤ α) ≈ 1
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for every µ ∈ A2. This result shows that the DS inference about the assertion
A2 with a small δ is not credible.

3.2. Weakening BDSMs: a motivating example

The posterior DSM for inference about the unknown parameter µ in the
Gaussian model N(µ, 1) from a single observation X may fail to be credible. This
indicates that the belief specified in the BDSM to derive the posterior DSM is too
strong in the sense that the resulting p or q are too large in repeated experiments
for certain assertions. To take a closer look at what that belief is, assume that the
observation X was indeed generated according to (2.2). In this case, inference
about the unknown θ is the same as inference about the unobserved realization
of U in the specific experiment. Let U∗ denote this unobserved realization of U .
Then, U∗ is known to have followed U (0, 1) and satisfies the identity

X = µ + Φ−1(U∗). (3.3)

The fiducial distribution µ|X ∼ N(X, 1) can be viewed as obtained from (3.3)
by predicting U∗ with a random draw U from U (0, 1). We call the random
variable U the predictive random variable (PRV) and we call U∗ the generative
random variable (GRV). The BDSM for posterior inference is effectively specified
by assigning the distribution of the GRV to the PRV.

For credible DS inference with the Gaussian model, we weaken the BDSM
and, thereby, the posterior DSM by expanding U into an interval, denoted by
S(U). To illustrate the idea, we enlarge the PRV U into the random interval

S(U) =
[
U − U

2
, U +

1 − U

2

]
(U ∼ U(0, 1)). (3.4)

This modification replaces µ|X ∼ N(X, 1) with the DSM

SX(U) =
{

µ : X − Φ−1

(
U + 1

2

)
≤ µ ≤ X − Φ−1

(
U

2

)}
(U ∼ U(0, 1)).

To investigate the credibility of this modified DSM for inference about the sharp
assertion {µ = µ0}, for which the BDSM is not credible, we now have the DS
(p, q, r) output

pX ({µ = µ0}) = 0, qX ({µ = µ0}) = 2Φ(|X − µ0|) − 1,

and rX ({µ = µ0}) = 1−qX ({µ = µ0}). Thus, the long-run frequency distribution
of qX ({µ = µ0}) is the uniform on the interval [0, 1] when X ∼ N(µ0, 1). It follows
that for all α ∈ [0, 1] Prµ (pX ({µ = µ0}) ≥ 1 − α) = 0 (≤ α) for µ 6= µ0, and
Prµ (qX ({µ = µ0}) ≥ 1 − α) = α (≤ α) for µ = µ0. Hence, the resulting weak
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belief model specified by (3.4) leads to a modified posterior DSM that is credible
for the assertion {µ = µ0}.

A formal definition of weak belief is given in Section 3.3. The particular
choice of the above random interval is related to the concept of maximal belief
of Section 3.4, and is discussed further in Section 4.

3.3. Weak beliefs

For a given DSM B and an assertion A, a subset of the SSM for B, we
write the components of (p, q, r) for A as (pB (A), qB (A), rB (A)). This notation
is consistent with (1.4) in the sense that the observed data X in (1.4) indexes
different DSMs. Let S ∼ B, that is, S is the random set of B. Then

pB (A) = Pr (S ⊆ A) , qB (A) = Pr
(
S ⊆ A

)
, (3.5)

and rB (A) = 1 − pB (A) − qB (A). One more useful DS concept is the so-called
commonality function:

cB (A) = Pr (S ⊇ A) , (3.6)

which was introduced by Shafer (1976) and plays an important role in DS calcu-
lus.

For building credible DSMs, we consider beliefs that are weaker than the
BDSM.

Definition 3.2. Let B and B′ be two DSMs on a common SSM. The DSM B is
said to be weaker than the DSM B′ if pB (A) ≤ p

B′ (A) holds for every assertion
A.

For convenience, a belief is said to be weak if it is weaker than the corre-
sponding BDSM. Weak beliefs can be interpreted from different perspectives that
are summarized in the following three propositions, where all DSMs are assumed
to be on a common SSM. Proposition 3.1 serves as an alternative definition in
terms of commonality. Proposition 3.2 implies that weaker DSMs have a larger
probability of “don’t know”. Proposition 3.3 provides a sufficient condition for
comparing the weakness of two beliefs and suggests a way of creating weaker be-
liefs. The proofs of these results are straightforward and therefore omitted here
to save space.

Proposition 3.1. Suppose that B and B′ are two DSMs on a common SSM. If
cB (A) ≥ c

B′ (A) holds for every assertion A, then B is weaker than B′.

Proposition 3.2. If the DSM B is weaker than the DSM B′, then rB (A) ≥
r

B′ (A) for every assertion A.
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Proposition 3.3. Let S and S′ be the random sets of the DSMs B and B′,
respectively. If the random set S can be obtained via a mapping S = m(S′) in
such a way that S′ ⊆ S = m(S′), then B is weaker than B′.

Let U∗ be the realization of U that corresponds to the observed data X via
the a-equation X = a(θ, U∗). Let B0 denote the BDSM for predicting U∗. To
weaken B0, we make use of Proposition 3.3 and replace the PRV U with a subset
S(U) of U containing U , i.e., U ∈ S(U). Accordingly, the posterior DSM (1.3)
becomes the weak DSM that has the random set

MX,S(U) = {θ : θ ∈ Θ, X = a(θ, u) for some u ∈ S(U)}, (3.7)

where U ∼ U(U). Thus, the (p, q, r) output produced by the weakened DSM for
any assertion A ⊆ Θ has the p, q, r-components

pX,S (A) =
Pr

(
MX,S (U) ⊆ A

)
Pr

(
MX,S (U) 6= ∅

) , qX,S (A) =
Pr

(
MX,S (U) ⊆ A

)
Pr

(
MX,S (U) 6= ∅

) , (3.8)

and rX,S (A) = 1 − pX,S (A) − qX,S (A).

3.4. The method of maximal belief

Weak beliefs introduced in Section 3.3 are not unique. Assuming a class of
such weak beliefs of interest is available, we can seek a particular belief within
the class to balance between credibility and efficiency.

Let U∗ be an unobserved realization of U ∼ U(U) and let B be a DSM with
the random set S, called the predictive random set (PRS), for inference about
U∗. Let

mB (U∗) = Pr (S 63 U∗) . (3.9)

For credible inference, we want to bound the frequency of large values of mB (U∗).
This motivates the following definition of credibility of beliefs for predicting U∗.

Definition 3.3. Given α ∈ (0, 1), a belief B for inferring (or predicting) U∗ is
said to be credible at level α if

Pr (mB (U∗) ≥ 1 − α) ≤ α, (3.10)

where U∗ ∼ U(U). A belief B for inferring (or predicting) U∗ is said to be
credible if it is credible at level α for all α ∈ [0, 1].

The following result relates the credibility of a PRS S(U), where U ∼ U(U),
for predicting U∗ and the credibility of the corresponding DS (p, q, r) output for
assertions about θ.
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Theorem 3.1. Suppose that the BDSM is defined by the focal elements (1.2)
with U ∼ U (U). If a random set S(U) with U ∼ U (U) is credible at α-level for
predicting U∗, a realization from U (U), and Pr (MX(U) = ∅) = 0, then the DS
(p, q, r) output (3.8) for every assertion A ⊆ Θ is credible at α-level.

Proof. Let A be any assertion of interest. Then the probability qX,S (A) against
the truth of A is smaller than the probability qX,S ({θ}) for every θ ∈ A, which
follows from

qX,S (A) = Pr
`

MX,S (U) ⊆ Θ \ A
´

≤ Pr
`

MX,S (U) ⊆ Θ \ {θ}
´

= qX,S ({θ}), (3.11)

where the two equalities in (3.11) follow the assumption Pr (MX(U) = ∅) = 0.
Note that the event MX,S (U) ⊆ Θ \ {θ} is equivalent to θ /∈ MX,S (U), that is,
there is no u ∈ S(U) such that a(θ, u) = X. This implies that U∗ /∈ S(U) because
U∗ is known to satisfy a(θ, U∗) = X. Thus, it follows from (3.11) that

qX,S (A) ≤ qX,S ({θ}) ≤ Pr (S(U) 63 U∗) .

That is, qX,S (A) is stochastically smaller than Pr (S(U) 63 U∗) in repeated ex-
periments. Making use of the condition that S(U) is credible for predicting
U∗ at α-level, (3.2) holds for qX,S ({θ}). The symmetry argument based on
pX,S (A) = qX,S (A) with θ ∈ A leads to the conclusion that (3.1) holds for
pX,S ({θ}). This completes the proof.

Among all beliefs credible at level α, some can be more efficient than others.
In general, the smaller the coverage probability Pr (S 3 U∗), the more efficient
the belief B with the PRS S. Note that Pr (S 3 U∗) = 1 − mB (U∗); See (3.9).
This motivates the definition of a maximal belief (MB) at level α with respect to
a class of beliefs.

Definition 3.4. Let Bα be a class of beliefs that are credible at level α. A belief
B ∈ Bα is said to be a maximal belief at level α with respect to the class Bα if

Pr (mB (U∗) ≥ 1 − α) = max
B′∈Bα

Pr
(
m

B′ (U
∗) ≥ 1 − α

)
. (3.12)

The following results are useful for constructing MBs.

Proposition 3.4. If a belief B on the SSM U satisfies

Pr (mB (U∗) ≥ 1 − α) = α (U∗ ∼ U (U)), (3.13)

then it is an MB. Furthermore, if (3.13) holds for all α ∈ (0, 1), then mB (U∗) ∼
U (0, 1).

The discussion in previous sections is on the credibility and efficiency of
DSMs and their weakened versions for all assertions. For a given assertion A of
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interest, we can find an assertion-specific belief B such that it is both credible
and efficient for inference about A. For example, for the assertion {µ ≤ µ0} in
the Gaussian model X ∼ N(µ, 1) with the observed data X, the BDSM is both
credible and efficient. Section 6 provides another example of using assertion-
specific WBs.

4. A Class of Predictive DSMs for Uniform Samples

In this section we present a particular class of PRSs, based on intuition
and geometric simplicity, for predicting an unobserved sample from the uniform
distribution U (0, 1). The corresponding class of weak beliefs is used in Sections
5 and 6 to illustrate the proposed MB method.

4.1. A class of predictive DSMs for a single uniform random variable

For each point U in [0, 1], we consider the subset of the form

Sw(U) = [U − wU, U + w(1 − U)] (w ∈ [0, 1]).

Let U ∼ U (0, 1). Then we have a class of beliefs indexed by w ∈ [0, 1]:

B = {Bw : 0 ≤ w ≤ 1},

where the belief Bw has the random set Sw(U). Note that the interval length of
Sw(U) is w. Thus, B0(U) is the BDSM used for fiducial inference while B1(U)
represents the vacuous belief that has the entire space as the single focal element.
It can be shown that the MB for any level α is B1/2, which has the random set

S1/2(U) =
[U

2
,

U + 1
2

]
(U ∼ U(0, 1)).

Example 4.1. Consider again the Gaussian example of Section 3.2 with a
single observation X from N(µ, 1) with unknown mean µ. Here we conclude this
“running” example with some numerical results. The random interval of the MB
for µ can be written as

MX,1/2(U) = [X − Φ−1(U +
1
2
), X − Φ−1(U)] (U ∼ U(0,

1
2
)).

For the assertion A = {µ = µ0} with fixed µ0 ∈ R, the probability p for the truth
of A is 0 due to the fact that Pr

(
X − Φ−1(U + 1/2) = X − Φ−1(U) = µ0

)
= 0.

The probability q against the truth of A is q = 2Φ(|X −µ0|)− 1, the probability
that the random interval MX,1/2(U) does not contain µ0. For example, for µ0 = 0
with the observed X = 0 we have (p, q, r) = (0, 0, 1), which indicates no evidence
for or against the truth of the assertion that µ = 0. For µ0 = 0 with the
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observed X = 2 we have (p, q, r) = (0, 0.95, 0.05), which shows evidence with
q = 95% against the truth of the assertion that µ = 0. This demonstrates a nice
DS way of resolving the problem of significance testing with the null hypothesis
H0 : µ = 0 and the alternative hypothesis Ha : µ 6= 0. DS (p, q, r) outputs for
other assertions can also be computed similarly. For example, for the assertion
µ ≤ 0 we have (p, q, r) = (0, 0, 1) conditional on the observed data X = 0 and
(p, q, r) ≈ (0, .95, 0.05) conditional on X = 2.

4.2. A class of predictive DSMs for ordered uniforms

For a uniform sample U1, . . . , Un, we write ordered values as U(1) ≤ U(2) ≤
· · · ≤ U(n). A draw of U(1), . . . , U(n) from the BDSM for U(1), . . . , U(n) can be
obtained by taking a sample of n from U(0, 1) and sorting the sample in ascending
order. For large n, a more efficient method of generating U(1), . . . , U(n) is to
take a sample of n + 1, denoted by Z1, . . . , Zn+1, from the standard exponential
distribution Expo(1), with U(i) =

∑i
j=1 Zj/

∑n+1
j=1 Zj for i = 1, . . . , n.

It is known that the marginal distribution of U(i) is the Beta distribution
Beta(i, n − i + 1) for i = 1, . . . , n. To construct a random set for predicting an
unobserved realization, denoted by U∗

(1), . . . , U
∗
(n), we consider replacing U(i) of a

random draw U(1), . . . , U(n), with an interval. The upper end point of the interval
is set to the κ (0 ≤ κ ≤ 1) quantile of the truncated distribution Beta(i, n− i+1)
restricted to the interval from U(i) to 1. The lower end point of the interval is set
to the (1 − κ) quantile of the truncated distribution Beta(i, n − i + 1) restricted
to the interval [0, U(i)].

Let On = {(v1, . . . , vn) : 0 ≤ v1 ≤ · · · ≤ vn ≤ 1}. Formally, in terms of a
DSM we define the focal element as K(V, κ) = {v : v ∈ On and Ai(Vi, κ) ≤ vi ≤
Bi(Vi, κ) for all i = 1, . . . , n} where V ∈ On, κ ∈ [0, 1], Ai(Vi, κ) = qBeta(Pi(Vi)
−κPi(Vi), i, n−i+1) and Bi(Vi, κ) = qBeta(Pi(Vi)+κ(1−Pi(Vi)), i, n−i+1), with
Pi(Vi) = pBeta(Vi, i, n− i+1) for i = 1, . . . , n. The functions pBeta(·, i, n− i+1)
and qBeta(·, i, n − i + 1) stand for the CDF of Beta(i, n − i + 1) and the inverse
CDF of Beta(i, n − i + 1). We define a measure on the focal element space as
follows.

1. V =(V1, . . . , Vn) and κ are independent,

2. V =(V1, . . . , Vn) follows the distribution of the ordered uniform (U(1), . . . , U(n)),
and

3. κ = 1/2 + L/2 with L ∼ Beta(wn, 1) and wn ≥ 0.

This results in a class of DSMs with the random set Swn indexed by wn.
The use of a distribution for κ is motivated by the fact that in the general

n case, there does not exist a constant κ ∈ [0, 1] that produces a satisfactory
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DSM for balancing credibility and efficiency. The particular choice of the class
of distributions for κ is ad hoc and based on both mathematical simplicity and
flexibility for finding a satisfactory MB model. For the n = 1 case, we take
w1 = 0, which gives the MB model discussed in Section 4.1.

Given a prespecified value α, e.g., α = 0.05, the MB is obtained by finding
a solution wn to

Pr
(
mwn(U∗

(1), . . . , U
∗
(n)) ≥ 1 − α

)
= α. (4.1)

For any fixed wn, mwn(U∗
(1), . . . , U

∗
(n)) can be simulated using Monte Carlo meth-

ods. Since the long-run frequency distribution of mwn(U∗
(1), . . . , U

∗
(n)) is monotone

in wn, the solution wn to (4.1) can be obtained via the Stochastic Approximation
(SA) algorithm of Robbins and Monro (1951). For example, with fixed α = 0.05,
the SA algorithm-based on simulated mwn(U∗

(1), . . . , U
∗
(n)) produced the following

results for a set of values of n

n 1 2 3 5 10 100 1,000 10,000
wn 0 0.33 0.57 0.98 1.8 6.6 13.7 22

It appears that wn for n in the range from 3 to 100 is approximately linear in
(lnn)2. This approximation is used in Section 6 for estimating the number of
outliers in the many-normal-means problem.

4.3. A class of predictive DSMs for unordered uniforms

For predicting an unobserved realization (U∗
1 , . . . , U∗

n) from U([0, 1]n), we
make use of the random set proposed in Section 4.2 for U∗

(1) ≤ U∗
(2) ≤ · · · ≤ U∗

(n),
the ordered values of U∗

1 , . . . , U∗
n. What is needed is a permutation π (∈ Pn) that

assigns (U∗
(1), ..., U

∗
(n)) to (U∗

1 , . . . , U∗
n), U∗

i = U∗
(πi)

(i = 1, . . . , n), where Pn is
the set of the n! permutations of (1, . . . , n). Mathematically, we need to specify
a DSM on the space Pn. In this paper, we consider the vacuous DSM that is, we
take the DSM with Pn as the single focal element. Care must be taken, however,
in computing (p, q, r) for certain assertions because there is one and only one
unknown assignment permutation. The use of this DSM is illustrated in Section
6 for the multiple testing example.

5. The Binomial Problem

Inference about the binomial proportion θ based the observed data X from
the binomial distribution Binomial(n, θ) with known size n and unknown θ ∈
[0, 1] is a fundamental problem of statistics (Pearson (1920); Clopper and Pearson
(1934); Brown, Cai, and DasGupta (2001); and references therein). DS inference
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Table 1. The (p, q, r) for the assertion A = {θ = 1.6%} based on the observed
data X with known n in the binomial example.

Data (X,n) (p, q, r) Fisher’s p-value
(24, 1,000) (0, 0.9290, 0.0710) 0.0438

(1,680, 100,000) (0, 0.9536, 0.0464) 0.0438

about θ (Dempster (1966)) provides the first classical example of DS parametric
inference. When conditioned on X, the posterior DSM for θ is the random
interval [U(X), U(X+1)], with the two end points U(X) and U(X+1) being the X-th
and (X + 1)-th order statistics of a sample of n from U (0, 1).

Here we consider WB models based on the a-equation

X = a(θ, U) (θ ∈ [0, 1], U ∼ U(0, 1)), (5.1)

where X = a(θ, U) is given the constraints

X−1∑
k=0

n!
k!(n − k)!

θk(1 − θ)n−k ≤ U <

X∑
k=0

n!
k!(n − k)!

θk(1 − θ)n−k. (5.2)

The two bounds for U in (5.2) are the CDF values of Binomial(n, θ) evaluated at
X−1 and X. Formally, the SSM of the DSM concerning the pair of quantities X

and θ is {0, 1, ..., n} × [0, 1]. It is easy to show that (i) the sampling DSM gives
the sampling distribution Binomial(n, θ) for X given θ and n, and the posterior
DSM has the random set

MX(U) = {θ : qBeta(U,X, n − X + 1) ≤ θ ≤ qBeta(U,X + 1, n − X)}, (5.3)

where U ∼ U(0, 1) and qBeta(·, α, β) denotes the inverse CDF of the beta distri-
bution Beta(α, β). It is easy to see that (5.3) is an interval and that the marginal
distributions of the two end points of this random interval are the same as those
of the random interval in the DSM of Dempster (1966). For WB analysis, we
prefer the posterior DSM with the random set (5.3) to the DSM of Dempster
(1966) because we need to predict only the univariate random variable U in (5.3)
and have to predict the bivariate random variable (U(X), U(X+1)) in the DSM of
Dempster (1966).

Suppose that we use the PRS S(U) = [U/2, (U + 1)/2] discussed in Section
4. The WB model has the following random set

MX,S(U) =
{

θ : qBeta(u,X, n − X + 1) ≤ θ ≤
qBeta(u, X + 1, n − X) for some u ∈ S(U)

}
, (5.4)
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where U ∼ U(0, 1). For a numerical illustration, consider the two artificial data
sets (i) n = 1, 000 and X = 24, and (ii) n = 100, 000 and X = 1, 680, which
are similar to the two Poisson examples of Dempster (2008). Assume that the
assertion of interest is A = {θ = 1.6%} in the two cases. The probability for this
assertion is zero and the probability against this assertion is given by

Pr
(

qBeta(
U

2
, X, n−X+1)>1.6% or qBeta

(U+1
2

, X+1, n−X
)

<1.6%
)

,

where U ∼ U(0, 1). These probabilities are shown in Table 1, where the Fisher
p-values based on the normal approximation are also given. As discussed by
Dempster (2008), it is interesting to see that Fisher’s p-value should be inter-
preted as a part of r, the probability of “don’t know”. We note that for obtaining
sensible (p, q, r) output for assertions, Dempster (2008) considered a “dull” null,
which effectively increases the value of r. With MB, such a treatment seems to
be unnecessary, making MB attractive for hypothesis testing.

6. The Many-Normal-Means Problem

We consider the many-normal-means problem Xi
ind∼ N(µi, 1) with unknown

means µi, i = 1, . . . , n. This is an important problem that we call the second
fundamental problem of practical statistics, while referring the first fundamental
problem to the binomial population mean problem (Pearson (1920)). Here we
use it as an illustrative example by taking n = 100, and considering the sequence
of assertions concerning the number of “outliers” (µi 6= 0)

AK = {|{µi : µi 6= 0, i = 1, . . . , n}| < K} (6.1)

for K = 1, 2, . . ., where |S| denotes the number of elements in the set S.
To compute our (p, q, r) probabilities for AK in (6.1), we use the a-equation

Xi = µi + Φ−1(Ui) (Ui
i.i.d.∼ U(0, 1), i = 1, . . . , n).

One can use the predictive random set for U1, . . . , Un, as discussed in Section
4. The needed technique is essentially the same as what is described below for
an alternative MB method, where we are concerned with a predictive DSM for
a subset of U1, . . . , Un. The purpose here is to show that MB analysis can be
conducted at the assertion level, that is, the MB analysis can be tailored for the
assertion(s) of interest.

For each assertion AK , we have no evidence for the truth of the assertion
because the posterior probability for each µi being zero is zero. Thus, we have
p = 0 for all AK , K = 1, 2, . . . Note that the assertion AK can be stated as “there
are at most K−1 outliers” in µ1, . . . , µn. To compute the probability against the
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truth of AK for each K = 1, 2, . . . , we need only find evidence that there does
not exist Ui1 , . . . , Uin−K , a sample n − K from U(0, 1), such that

Xij = Φ−1(Uij ) (j = 1, . . . , n − K).

Computationally, one way of doing this is to first generate a predictive random
set for the ordered (n − K), instead of n, uniforms and then to assign each of
the n − K intervals, denoted by [aj , bj ], for Ui1 , . . . , Uin−K to at most one of the
observed data {Xi}n

i=1 in such a way that the number of matched interval-data
assignments is maximized. The required maximization is due to the fact that
we use the vacuous DSM for the unknown assignment permutation discussed
in Section 4.3. The cases with unmatched intervals provide evidence against
the truth of AK . This matching problem is a simple version of the maximum
assignment problem. It can be solved in a straightforward manner by assigning
[aj , bj ] to the smallest Xi values that satisfy aj ≤ Φ(Xi) ≤ bj in the order
j = 1, . . . , n−K. This method creates greedy matching and is known as Glover’s
algorithm (Glover (1967); Soares and Stefanes (2007)).

To see performance, we conducted a simulation study. To create the observed
data, four types of µis were considered:

(a) µi = 0 for all i = 1, . . . , 100;

(b) 90 of µi are zero and the other 10 were generated from 2 + Expo(1);

(c) 90 of µi are zero and the other 10 were generated from 4 + Expo(1); and

(d) 90 of µi are zero and the other 10 were generated from 6 + Expo(1).

Each case was replicated 10 times, resulting in 10 sequences of probabilities for
the truth of the assertion that there are at least K outliers for K = 1, 2, . . .. These
probabilities are shown in Figure 1(a)−(d). The fact that the probabilities for
the assertion that there is at least one outlier are spread quite evenly along the
vertical axis in Figure 1(a) shows that the MB posterior probability is approxi-
mately frequency-calibrated, which is supported by Figure 2, the histogram of the
MB posterior probability obtained from a separate simulation study with 1,000
replicates of case (a). This can also be seen to some extent in Figure 1(d). Case
(b) is relatively difficult for detecting outliers because intuitively, observed val-
ues in the interval, say, from 1 to 2, would cause problems. Even in this difficult
case, using both large probability values and their sequential changes/differences
would result in a good estimate of the number of outliers, considering that the
probabilities are intended to be used only for a kind of lower bound on the num-
ber of outliers. Case (b) contains an interesting simulated data set, where all the
observed values in the data set are above -1.00. Here the large probability values
are quite large and decrease very slowly in the entire displayed range for K from
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Figure 1. MB results for detecting outliers in 100 normal means. Each
plot shows the posterior probability Pr (there are at least K outliers) given
each of 10 replicates of simulated data based on generated normal means
µ1, . . . , µ100 having (a) no outliers; (b) 10 outliers generated from 2 +
Expo(1); (c) 10 outliers generated from 4 + Expo(1); and (d) 10 outliers
generated from 6 + Expo(1). The case in (b) with large probabilities in the
displayed range corresponds to a simulated data having all the observed data
values larger than -1.00.

1 to 21. This is not surprising because the MB analysis here tries to find a subset
of data that consists of as many as possible data values under the condition that
the subset looks like a typical sample from N(0, 1). This phenomenon can be
seen for some cases in Figure 1(c) and (d), where MB would do a pretty good
job for detecting outliers.

We note that finding the number of “outliers” is important in the context of
multiple testing. The MB method provides a new approach to inference about
the fraction of µi that are zero (see, e.g., Efron (2004)). We are currently inves-
tigating MB methods, including MB approaches to statistical deconvolution, for
multiple testing.
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Figure 2. The histogram of the probability against the assertion that “there
are no outliers (µi 6= 0)” (or for the assertion that “there is at least one
outlier”) based on 1,000 simulated data sets from the model Xi

i.i.d.∼ N(µi, 1)
with µi = 0 for i = 1, . . . , n = 100.

7. Discussion

For credible and efficient fiducial and DS parametric inference or building
belief functions that have desired frequency properties, we have proposed WB and
MB methods. Examples show that MB has the potential to resolve challenging
statistical inference problems. The idea of WB can also be used to resolve non-
uniqueness problems with DS (and fiducial) for a given sampling model. When
a class of a-equations is under consideration, the fact that we “don’t know”
which a-equation is to be used would lead us to using WB models to capture the
uncertainty about the choice of the a-equation.

We presented the work in the DS framework to build WB and MB models
by modifying BDSMs. Nevertheless, WB and MB-DSMs are indeed pure DSMs,
where the conditional DSMs for X given θ in the context of a-equation (1.1)
should be interpreted as for situation-specific prediction rather than for data-
generation. We plan to make more detailed argument for this view elsewhere.
Also, more research is needed on defining efficient classes of weak beliefs from
which MB at both belief level and assertion level can be sought.
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