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Abstract: Correlated data, such as multivariate or clustered data, arise commonly

in practice. Unlike analysis for independent data, valid inference based on such data

often requires proper accommodation of complex association structures among re-

sponse components within clusters. Semiparametric models based on generalized

estimating equations (GEE) methods, and their extensions, have become increas-

ingly popular. However, these inferential schemes are greatly challenged by the

complexity of such data features as missing observations, ubiquitous in applica-

tions. Moreover, existing methods mainly concern marginal mean parameters with

association parameters treated as nuisance. This treatment is inadequate to han-

dle clustered data for which estimation of association parameters can be a central

theme of the study. To address these problems, we develop a flexible semiparamet-

ric method that can handle correlated data with or without missing values. Our

discussion focuses on binary data that arise commonly. The proposed method en-

joys a number of attractive properties, including that the missing data process is

left unmodeled, yet model assumptions for the response process are kept to a min-

imum. It is robust in the sense that only the mean and association structures for

the response process are modeled. The proposed method is flexible because both

parametric and nonparametric structures are incorporated in modeling the mean

responses.
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1. Introduction

Correlated data, including clustered data, multivariate data, and longitudi-
nal data, arise commonly in applications. A number of inference methods have
been developed for handling such data. In particular, the generalized estimating
equations (GEE) approach is widely used for analysis of longitudinal or clustered
data (Liang and Zeger (1986)). This marginal approach is viewed as attractive
because it does not require complete specification of the joint distribution of
the correlated responses, but rather is based only on specification of their first
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two moments. While primary interest most frequently lies in making inference
about the parameters in regression models for the marginal means, there has
been increasing interest in estimation of association parameters (e.g., Connolly
and Liang (1988)). When the association parameters are of central importance,
second order generalized estimating equations can be constructed. With binary
data Prentice (1988) developed such equations and emphasized estimation of the
correlation parameters. Fitzmaurice and Laird (1993) proposed a model which
parameterizes the association in terms of conditional odds ratios, whereas Lip-
sitz, Laird, and Harrington (1991), Liang, Zeger, and Qaqish (1992) Carey, Zeger
and Diggle (1993), Molenberghs and Lesaffre (1994), Lang and Agresti (1994),
and Fitzmaurice and Lipsitz (1995) proposed models which parameterize the
association in terms of marginal odds ratios.

Those methods apply to data that contain no missing values. However, it is
often the case that missing observations are present with correlated data. When
data are missing completely at random (MCAR), the GEE approach based on
the observed data can still produce consistent estimators for the response param-
eters because missing data processes are not related to the processes generating
responses. In contrast, when data are missing at random (MAR) or missing not
at random (MNAR), the estimating equations are not unbiased and hence fail to
provide consistent estimates. The inverse probability weighted GEE (IPWGEE)
approach has been developed (Robins, Rotnitzky, and Zhao (1995)) to conduct
valid inference under MCAR or MAR mechanisms. The IPWGEE method and
its extensions have been discussed extensively in the literature, see Robins, Rot-
nitzky, and Zhao (1995), Fitzmaurice, Molenberghs, and Lipsitz (1995), and Yi
and Cook (2002a,b), for example.

The validity of the IPWGEE approach relies on correctly modeling the miss-
ing data process. In practice, however, it is generally difficult to tell from data
what missing data mechanism is reasonable and what model might correctly char-
acterize the missing data process. If the missing data process is incorrectly pos-
tulated, then the resulting inference on the response parameters may be seriously
biased. To overcome this problem, we may alternatively adopt the likelihood ap-
proach which leads to, under MAR mechanisms, valid inference by simply using
the observed data. The advantage of this approach is that the missing data pro-
cess is left unattended. However, this advantage is achieved at the price of fully
specifying the joint distribution of the response process which, in many cases,
and especially for multivariate discrete responses, is not a trivial task.

It is desirable to have a method that combines the advantages of both likeli-
hood and GEE approaches. To this end, we explore using the pairwise likelihood
approach (Lindsay (1988); Cox and Reid (2004)) to handle correlated binary data
that may be complete or incomplete. The proposed method preserves appealing
features of both likelihood and GEE approaches. Thus, our method requires only
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minimal model assumptions for the response process like the GEE approach, yet
it allows the missing data process to be left unspecified just as the likelihood
method does. In addition, the proposed method facilitates estimation of both
mean and association parameters.

To accommodate a richer class of mean structures, we allow flexibility in
modeling of the response process by using a semiparametric regression to postu-
late mean structures. Specifically, we employ generalized partially linear single-
index models to feature mean responses (e.g., Carroll et al. (1997); Yi, He, and
Liang (2009)). Such models are useful when the commonly adopted linear re-
lationship between the mean response and covariates, under a suitable link, be-
comes inadequate. However, such modeling flexibility induces considerable chal-
lenges in estimation procedures and the establishment of asymptotic properties.
The computing algorithm for usual estimating equations based on the Newton-
Raphson method cannot be employed directly due to the inclusion of nonlinear
functions whose forms are not known. To circumvent this problem, we use the
local polynomial smoothing technique (Fan, Heckman, and Wand (1995)) to per-
form estimation.

The remainder of the paper is organized as follows. In Section 2 we introduce
notation and model assumptions for the subsequent discussion. In Section 3 we
present the estimation and inference procedures for analyzing correlated data
with or without missing values. Empirical assessment of the proposed method is
reported in Section 4, along with an application. General remarks are made in
Section 5.

2. Notation and Framework

Suppose there are n clusters and mi subjects within cluster i, i = 1, . . . , n.
Let Yij be the binary response for subject j in cluster i, which may be missing;
xij and zij be the covariate vectors. Let Rij = I(Yij is observed) be the missing
data indicator, where I(.) is the indicator function. Let Yi = (Yi1, . . . , Yimi)

T ,
xi = (xi1, . . . ,ximi)

T , zi = (zi1, . . . , zimi)
T , and Ri = (Ri1, . . . , Rimi)

T . Take
µij = E(Yij |xi, zi), and let µi = (µi1, . . . , µimi)

T , i = 1, . . . , n. We consider the
regression model

g−1(µij) = xT
ijβ + θ(zT

ijα) with ‖α‖ = 1, (2.1)

where β and α are unknown parameter vectors, θ(·) is an unknown smooth
function, and g(·) is a known monotone link function. Common choices of g

include logit, probit, or complement log-log functions. The requirement ‖α‖ = 1
ensures the identifiability of α (Carroll et al. (1997)).

We assume that Yij and Yi′j′ are independent for different clusters i and i′,
but within the same cluster, may be correlated. Various measures have been
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proposed to quantify the association between binary outcomes. For example,
Prentice (1988) discussed using correlation coefficients for measuring association
for longitudinal binary data, and Zhao and Prentice (1990) discussed a measure
based on covariances. Odds ratios, on the other hand, have received increas-
ing interest partly due to the fact that there is no constraint associated with
such measures. Specifically, conditional odds ratios (e.g., Fitzmaurice and Laird
(1993)) and marginal odds ratios (e.g., Lipsitz, Laird, and Harrington (1991))
have been widely used. As conditional odds ratios may not have a convenient in-
terpretation independent of the cluster size, we focus our discussion on marginal
odds ratios. Let ψijk be the marginal odds ratio between responses Yij and Yik

in the same cluster i,

ψijk =
P (Yij = 1, Yik = 1|xi, zi) · P (Yij = 0, Yik = 0|xi, zi)
P (Yij = 1, Yik = 0|xi, zi) · P (Yij = 0, Yik = 1|xi, zi)

, j 6= k.

Regression models may be employed to characterize various association struc-
tures, with the dependence of the association on the covariates being explicitly
reflected. Typically, a log linear regression may be assumed with

log ψijk = uT
ijkφ, (2.2)

where uijk is a vector of covariates that specifies the form of the association be-
tween Yij and Yik, and φ is a vector of regression parameters. Letting uijk be the
scalar one, for example, leads to the exchangeable association between responses
within the same cluster, while setting uT

ijkφ = φ|j−k| results in autogressive cor-
relation among responses.

Let µijk = P (Yij = 1, Yik = 1|xi, zi) be the joint probability for the pair
(Yij , Yik), given the covariates xi and zi. This is determined by the marginal
means and the odds ratio, given by (e.g., Lipsitz, Laird, and Harrington (1991));
Yi and Thompson (2005)).

µijk =


aijk −

√
bijk

2(ψijk − 1)
, if ψijk 6= 1,

µijµik, if ψijk = 1,

where aijk = 1 − (1 − ψijk)(µij + µik) and bijk = a2
ijk − 4ψijk(ψijk − 1)µijµik.

3. Inference Procedures

3.1. Estimation algorithm

To estimate mean parameters (βT , αT )T and the association parameter φ,
one can employ the generalized estimating equations (GEE) approach as in, for
example, Prentice (1988) and Yi and Cook (2002a,b) when the mean structure
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is modeled parametrically, and in Yi, He, and Liang (2009, 2010) when the mean
structure is specified semi-parametrically. Typically, Prentice (1988) and Yi, He,
and Liang (2009) deal with complete data; while Yi and Cook (2002a,b) and Yi,
He, and Liang (2010) consider data with missing observations where a particular
model for the missing data process is required.

Alternatively, we propose a likelihood-related approach that can handle both
complete and incomplete data in a unified framework. Model assumptions for
the response process are the same as those required by the GEE approach, but
there is no need to specify a model for the missing data process. For j 6= k, let
Lijk = P (Yij = yij , Yik = yik|xi, zi) be the joint probability for paired responses
(Yij , Yik); this is determined by the marginal probability (2.1) and the odds ratio
(2.2). Let B = (βT ,αT ,φT )T and ηi = (ηi1, . . . , ηimi)

T , with ηij = θ(zT
ijα),

j = 1, . . . ,mi. Let Li(ηi,B) = log{
∏

j<k L
RijRik

ijk }, Lij(ηi,B) = ∂Li(ηi,B)/∂ηij ,
and LiB(ηi,B) = ∂Li(ηi,B)/∂B, j = 1, . . . ,mi. To incorporate varying numbers
of observed components in different clusters, let Oi =

∑mi
j=1 I(Rij = 1) denote

the number of the observed measurements in cluster i, and Wi = wiIr×r, where
wi = 1/(Oi − 1), and Ir represents a r × r identity matrix with r denoting the
dimension of parameter B. Set SiB = Wi · LiB(ηi,B) and Sij = wi · Lij(ηi,B).
In Appendix 1 we show the following.

Theorem 1.
(a) If the distributions f(ri|xi, zi) and f(ri|yij , yik,xi, zi) for the missing data

indicator vector Ri do not depend on the response parameters B for any
j, k = 1, . . . ,mi, then SiB has zero mean.

(b) If the distributions f(ri|xi, zi) and f(ri|yij , yik,xi, zi) for the missing data
indicator vector Ri do not depend on ηi for any j, k = 1, . . . ,mi, then Sij

has zero mean, j = 1, . . . ,mi.

If θ(·) is a known function, consistent estimators of α, β, and φ can be
obtained, as discussed in Yi, Zeng and Cook (2010), by solving

∑n
i=1 SiB = 0 for

B, due to Theorem 1 (a). Here, however, θ(·) is unknown, hence we need to use
nonparametric approaches to estimate it locally in order to estimate α, β, and φ.
Assuming θ(u) has a second derivative for any given u, we approximate θ(u) by
a linear function within the neighborhood of u0 via the Taylor series expansion

θ(u) ≈ θ(u0) + θ(1)(u0)(u − u0)

for a point u0 in the interior of the support of θ(·), where d(j)(·) denotes the
jth derivative for function d(·). Let K(u) be a kernel function (or a symmetric
density function) with a compact support, and h be a bandwidth. Write Kh(t) =
K(t/h)/h. Let a0(u0) = θ(u0), a1(u0) = hθ(1)(u0), a(u0) = (a0(u0), a1(u0))T ,
Uij = zT

ijα, and Gij(u) = {1, (Uij − u)/h}T .
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To estimate B, we propose the profile kernel method. That is, we first
estimate the values of θ(·) and θ(1)(·) over a selected grid for any given B using
the kernel method, then we obtain the profile estimator B̂p with θ(·) and its
derivative θ(1)(·) being fixed at their kernel estimates. To be specific, we proceed
with the following two-stage estimation procedure.

• Stage 1. Let η̂i(j)(B, u) = (θ̂(Ui1,B), . . . , θ̂(Ui,j−1,B), a0(u) + a1(u)(Uij −
u)/h, θ̂(Ui,j+1,B), . . . , θ̂(Uimi ,B))T , j = 1, . . . ,mi. Given B, for a given point
u in the selected grid find θ̂(u,B) = â0(u) and θ̂(1)(u,B) = â1(u)/h by solving

0 = n−1
n∑

i=1

mi∑
j=1

Kh(Uij − u)Gij(u, h) · wiLij(ηi,B)|ηi=
bηi(j)(B,u) (3.1)

with respect to a(u).
To solve (3.1), we may follow a routine iterative algorithm. If θ̂[t](u,B) and

θ̂
(1)
[t] (u,B) represents the estimates at the tth iteration, then we update to

θ̂[t+1](u,B) and θ̂
(1)
[t+1](u,B) by solving a(u) from the equation

0 = n−1
n∑

i=1

mi∑
j=1

Kh(Uij − u)Gij(u, h) · wiLij(ηi,B)|ηi=
bηi(j)[t](B,u),

where η̂i(j)[t](B, u) = (θ̂[t](Ui1, B), . . . , θ̂[t](Ui,j−1,B), a0(u)+a1(u)(Uij −u)/h,
θ̂[t](Ui,j+1, B), . . . , θ̂[t](Uim,B)), j = 1, . . . ,mi; t = 1, 2, . . .. At convergence,
with a given B we have the kernel estimator θ̂(u,B) and its derivative θ̂(1)(u,B)
for any u in the selected grid.

• Stage 2. Given the estimate θ̂(u;B) = â0(u) and â1(u) for points u in the
selected grid, find the estimate of B by solving

0 = n−1
n∑

i=1

Wi · LiB(ηi,B)|ηi=(bθ(Ui1,B),...,bθ(Uim,B))
.

Repeat stages 1 and 2 until convergence. Denote by B̂p the resulting profile kernel
estimator for B.

3.2. Asymptotic distributions

Analogous to Lin and Carroll (2001a,b) and Wang (2003), we take mi ≡ m

for ease of exposition. Covariates xi and zi are allowed to be correlated, while
the triples (Yi,xi, zi), i = 1, . . . , n, are assumed independently identically dis-
tributed. For i = 1, . . . , n, j, k = 1, . . . ,m, let Lijk(ηi,B) = ∂2Li(ηi,B)/∂ηij∂ηik,
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LijB(ηi,B) = ∂2Li(η,B)/∂ηij∂B, and LiBB(ηi,B) = ∂2Li(ηi,B)/∂B∂BT . Let
B0 = (αT

0 , βT
0 , φT

0 )T be the true value of parameter B and θ0(·) be the true
function form of θ(·). Take Uij0 = zT

ijα0 and ηi0 = (Ui10, . . . , Uim0)T . Let
ε#
ij(θ,B) = Wi · LijB(ηi,B) +

∑m
k=1 Wi · Lijk(ηi,B) · θB(Uik,B), where θB(u,B0)

is the solution to

0 =
m∑

j=1

fj(u)E{ε#
ij(θ0,B0)|Uij0 = u} (3.2)

for a given u, where fj(u) is the marginal density of Uij0.
Let Ω(u) =

∑m
j=1 fj(u)E{Lijj(ηi0,B0)|Uij0 = u}. For a function h(·) and a

point u, take

Λ(h, u) =
m∑

j=1

∑
k 6=j

fj(u)
E{Lijk(ηi0,B0)h(Uik0)|Uij0 = u}

Ω(u)
,

and let function b(u) be the solution to

b(u) = θ
(2)
0 (u) − Λ(b, u).

Adapting the proof in Lin and Carroll (2006), we establish the asymptotic dis-
tribution of the kernel estimator θ̂(·).

Theorem 2. Let λ1 =
∫

u2K(u)du and λ2 =
∫

K2(u)du. Suppose the bandwidth
sequence satisfies nh2 → ∞ and nh6 → 0. Then, under regularity conditions
similar to those of Lin and Carroll (2006), we have

√
nh

{
θ̂(u) − θ0(u) − 1

2
h2λ1b(u)

}
→d N

{
0,

λ2

Ω2(u)

m∑
j=1

E(Djj |Uij0 = u)fj(u)

}
,

where Djj is the jth diagonal element of cov(εi), and εi = (εi1, . . . , εim)T with
εij = wiLij(ηi0,B0).

In the sequel, we establish the asymptotic distribution of the kernel pro-
file estimator B̂p. Define F1 = E{Wi · LiBB(ηi0,B0)},F2 = E{

∑m
j=1 Wi ·

LijB(ηi0,B0)θT
B(Uij ,B0)}, and F = F1 + F2. Let

V = cov{Wi · LiB(η0,B0) +
m∑

j=1

Wi · Lij(η0,B0) · θB(Uij0,B0)}.

In Appendix 2 we outline the proof of the following result.
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Theorem 3. Suppose that the bandwidth h ∝ n−c with 1/5 ≤ c ≤ 1/3. Then
under the conditions of Theorems 1 and 2, we have, as n → ∞,

√
n(B̂p − B0) →d N(0,F−1VF−1T ).

Inferences about parameters α, β, and φ can be based on Theorem 3, where
F and V are replaced by consistent estimates in which the associated terms
may be substituted by the empirical counterparts. Appendix 3 lists detailed
expressions of the relevant derivatives. However, direct implementation of these
estimates of F and V is complicated. Alternatively, one may apply the easily
implemented bootstrap method for a variance estimate. This practice is widely
invoked in settings with semiparametric models, see Lin and Carroll (2001a,b),
Liang et al. (2004), and Wang, Carroll, and Lin (2005), for example.

4. Numerical Studies

4.1. Empirical assessment

We conducted simulation studies to evaluate the performance of the pro-
posed method under two response models. In the first scenario we focused on
pairwise association with higher order association being constrained as 0, while
in the second scenario we included third order associations. To be specific, for
i = 1, . . . , n, we generated binary vectors yi = (yi1, . . . , yim)T from the joint
probability function

f(yi1, . . . , yim) =
m∏

j=1

µ
yij

ij (1 − µij)1−yij

{
1 +

∑
j<k

ρijk · yij − µij√
vijj

· yik − µik√
vikk

+
∑

j<k<l

ξ · yij − µij√
vijj

· yik − µik√
vikk

· yil − µil√
vill

}
, (4.1)

where ρijk is the pairwise correlation coefficient of Yij and Yik, given by ρijk =
(µijk − µijµik)/

√
vijjvikk, and vijj = µij(1 − µij) is the marginal variance for

Yij . A common third order association measure ξ was assumed among triples
(Yij , Yik, Yil). It was constrained to be 0 in Scenario I and set as 0.1 in Scenario
II, featuring, respectively, a case that the model used to fit data coincides with
or differs from the model of generating data.

The mean and association structures were respectively specified as

logit µij = βxij + θ(α1zi1 + α2zi2 + α3zi3),

log ψijk = φ,

where we took θ(t) = sin{π(t− 1.355
√

3/6)/(1.645
√

3/3)}, as considered in Car-
roll et al. (1997). Covariates xij were generated independently according to
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Table 1. Empirical assessment of the performance of the proposed method
with complete data.

Bias SE MSE

ψijk β α1 α2 α3 φ β α1 α2 α3 φ β α1 α2 α3 φ

Ia 0.5 0.015 -0.036 -0.021 -0.026 0.112 0.203 0.188 0.173 0.166 0.149 0.203 0.189 0.174 0.166 0.162

1.0 0.001 -0.050 -0.023 -0.041 -0.007 0.204 0.223 0.208 0.183 0.197 0.204 0.225 0.208 0.185 0.197

2.0 0.014 -0.091 -0.067 -0.030 0.110 0.192 0.292 0.292 0.183 0.256 0.193 0.300 0.296 0.184 0.269

II 0.5 0.024 0.014 -0.065 -0.041 0.195 0.203 0.186 0.179 0.183 0.152 0.204 0.187 0.183 0.184 0.190

1.0 0.041 0.018 -0.062 -0.046 0.033 0.224 0.179 0.189 0.173 0.184 0.226 0.179 0.192 0.175 0.186

2.0 0.082 -0.011 -0.044 -0.031 0.137 0.211 0.170 0.193 0.174 0.251 0.217 0.170 0.195 0.175 0.269

a Scenarios I and II correspond to model (4.1) with ξ = 0 and 0.1, respectively.

the binomial distribution Bin(1, 0.5), and covariates zij were generated indepen-
dently from the uniform distribution U [0, 1]. We set β = 0.3 and α1 = α2 =
α3 = 1/

√
3. The odds ratio ψijk was set to be 1.0, 0.5 and 2.0 to reflect varying

strengths of association.
We considered a setting with m = 4 and n = 100. Two hundred simulations

were run for each parameter configuration. In the simulation result tables, we
report the average biases (Bias) of the differences between the true values and
the estimates, the empirical standard errors (SE), and the mean squared errors
(MSE) for the mean and association parameters.

First, we assess how the proposed method performed when data were com-
plete. The simulation results are summarized in Table 1. It is not surprising
that finite sample biases for parameter β tended to be the smallest. In Scenario
I the estimates for association parameter φ had larger finite sample biases when
association existed (i.e., ψijk 6= 1.0) than when it did not. It appears that the
standard errors and mean squared errors for the estimates of α and φ increased
as the value of ψijk increased; while this trend did not seem to exist for the esti-
mates of parameter β. In Scenario II, the model used to fit the data ignores the
third order association existing in the model of generating data. Yet the proposed
pairwise likelihood method still seems to produce fairly reasonable estimates.

Next, we evaluate the performance of the proposed method when missing ob-
servations were present. The missing data indicator was generated independently
from the logistic regression model

logitP (Rij = 1|yi) = γ0 + γ1yi,j−1 + γ2yij .

We took γ0 = 0.5 and γ1 = 0.1, and let γ2 be 0.5, 0, -0.5, yielding varying
missingness proportions that varied roughly between 25% and 50%.

To see the possible impact of different choices of the weight matrix Wi,
we considered the case with or without weights. That is, in implementing the
method discussed in Section 3, Wi was taken as the identity matrix I5×5 or
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Table 2. Empirical assessment of the performance of the proposed method
with incomplete data: No weight adjustments for varying numbers of missing
observations.

Bias SE MSE

γ2 ψijk β α1 α2 α3 φ β α1 α2 α3 φ β α1 α2 α3 φ

Ia 0.0 0.5 0.008 -0.067 -0.025 -0.067 0.108 0.219 0.256 0.222 0.247 0.214 0.219 0.260 0.222 0.251 0.225

1.0 -0.005 -0.042 -0.048 -0.054 0.001 0.205 0.257 0.237 0.196 0.268 0.205 0.259 0.239 0.199 0.268

2.0 0.011 -0.140 -0.107 -0.070 0.217 0.211 0.378 0.344 0.266 0.347 0.211 0.397 0.355 0.271 0.394

0.5 0.5 0.020 -0.058 -0.060 -0.057 0.119 0.208 0.277 0.249 0.233 0.221 0.208 0.281 0.253 0.236 0.235

1.0 0.007 -0.067 -0.065 -0.027 -0.020 0.198 0.234 0.248 0.240 0.276 0.198 0.239 0.252 0.241 0.277

2.0 -0.008 -0.163 -0.116 -0.046 0.170 0.228 0.406 0.314 0.265 0.302 0.228 0.432 0.328 0.267 0.331

-0.5 0.5 0.012 -0.087 -0.051 -0.043 0.082 0.209 0.308 0.236 0.218 0.251 0.209 0.316 0.238 0.219 0.257

1.0 0.001 -0.077 -0.055 -0.029 0.008 0.206 0.267 0.257 0.198 0.266 0.206 0.272 0.260 0.199 0.267

2.0 0.008 -0.099 -0.101 -0.028 0.198 0.210 0.299 0.329 0.215 0.313 0.210 0.308 0.339 0.215 0.352

II 0.0 0.5 0.015 0.007 -0.088 -0.020 0.208 0.272 0.175 0.204 0.192 0.232 0.272 0.175 0.212 0.192 0.275

1.0 -0.008 0.010 -0.091 -0.048 0.034 0.246 0.205 0.209 0.229 0.282 0.246 0.205 0.217 0.231 0.283

2.0 0.022 0.011 -0.117 -0.040 0.129 0.260 0.194 0.252 0.228 0.315 0.260 0.194 0.265 0.230 0.332

0.5 0.5 0.045 -0.006 -0.070 -0.071 0.229 0.242 0.178 0.225 0.282 0.290 0.244 0.178 0.230 0.287 0.342

1.0 0.004 -0.006 -0.094 -0.018 0.011 0.269 0.195 0.210 0.214 0.260 0.269 0.195 0.218 0.214 0.260

2.0 0.004 -0.002 -0.061 -0.031 0.155 0.277 0.178 0.184 0.199 0.298 0.277 0.178 0.188 0.200 0.322

-0.5 0.5 -0.003 0.024 -0.111 -0.040 0.189 0.257 0.192 0.217 0.221 0.246 0.257 0.193 0.229 0.222 0.281

1.0 0.025 -0.004 -0.089 -0.017 0.039 0.238 0.193 0.207 0.197 0.278 0.239 0.193 0.215 0.197 0.279

2.0 -0.003 -0.025 -0.096 -0.013 0.146 0.269 0.193 0.221 0.243 0.307 0.269 0.193 0.230 0.243 0.328

aScenarios I and II correspond to model (4.1) with ξ = 0 and 0.1, respectively.

diagonal matrix wiI5×5 with wi = 1/(Oi − 1). Table 2 displays the simulation
results corresponding to the case without weights. The same patterns as those in
Table 1 are observed here. Finite sample biases for the β pareameter tended to be
the smallest. Estimates of the φ parameter seemed to involve smaller biases for
φ = 0 than for φ 6= 0. Comparing the results in Scenarios I and II, we see that the
impact of third order association on the performance of the pairwise likelihood
appears to agree with the expectation. The pairwise likelihood method seems
fairly robust against misspecification of third order associations.

In Table 3 we report on the simulation results for the case with weights in-
corporated. The impact of adding weights seems to be more visible on estimation
of mean parameters than on estimation of association parameter φ. Again, the
trends revealed by Scenarios I and II are fairly comparable with those in Tables
1 and 2. In summary, the proposed method performed fairly satisfactorily un-
der various settings, with or without missing observations, with different missing
data proportions and with varying strengths of association measures.

4.2. An application

In this subsection we apply the proposed method to analyze a family data
set of the Genetic Analysis Workshop (GAW13) arising from the Framingham
Heart Study. The Framingham Heart Study is an ongoing prospective study of
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Table 3. Empirical Assessment of the Performance of the Proposed Method
with Incomplete Data: Inclusion of Weight Adjustments for Varying Num-
bers of Missing Observations

Bias SE MSE

γ2 ψijk β α1 α2 α3 φ β α1 α2 α3 φ β α1 α2 α3 φ

Ia 0.0 0.5 -0.007 0.026 -0.080 -0.046 0.108 0.277 0.183 0.201 0.181 0.244 0.277 0.184 0.207 0.184 0.255

1.0 0.017 0.011 -0.076 -0.050 -0.020 0.281 0.188 0.230 0.191 0.322 0.281 0.188 0.235 0.194 0.323

2.0 0.009 -0.003 -0.105 -0.028 0.114 0.277 0.186 0.221 0.250 0.335 0.277 0.186 0.232 0.251 0.348

0.5 0.5 0.016 -0.013 -0.056 -0.040 0.087 0.252 0.203 0.202 0.200 0.271 0.252 0.203 0.205 0.202 0.278

1.0 0.043 0.008 -0.114 -0.027 -0.004 0.240 0.188 0.236 0.220 0.272 0.242 0.188 0.249 0.221 0.272

2.0 -0.005 0.007 -0.108 -0.059 0.187 0.283 0.194 0.257 0.257 0.320 0.283 0.194 0.269 0.260 0.355

-0.5 0.5 0.006 0.006 -0.076 -0.060 0.064 0.261 0.180 0.238 0.229 0.260 0.261 0.180 0.244 0.233 0.265

1.0 0.045 0.018 -0.082 -0.032 -0.011 0.267 0.185 0.195 0.176 0.286 0.269 0.186 0.202 0.177 0.286

2.0 0.035 -0.019 -0.085 0.002 0.179 0.281 0.194 0.198 0.185 0.333 0.282 0.195 0.205 0.185 0.365

II 0.0 0.5 0.002 -0.126 -0.085 0.016 0.243 0.232 0.287 0.258 0.232 0.273 0.232 0.302 0.265 0.232 0.332

1.0 0.006 -0.147 -0.045 0.010 0.035 0.261 0.272 0.249 0.226 0.273 0.261 0.293 0.251 0.226 0.274

2.0 0.011 -0.145 -0.038 0.008 0.082 0.253 0.261 0.234 0.239 0.307 0.253 0.282 0.236 0.239 0.314

0.5 0.5 0.003 -0.174 -0.057 0.028 0.222 0.263 0.296 0.244 0.230 0.255 0.263 0.326 0.247 0.231 0.305

1.0 0.002 -0.145 -0.055 0.020 0.039 0.249 0.267 0.230 0.244 0.271 0.249 0.288 0.233 0.245 0.273

2.0 0.013 -0.123 -0.062 0.006 0.125 0.264 0.270 0.239 0.239 0.299 0.264 0.286 0.243 0.239 0.314

-0.5 0.5 -0.017 -0.155 -0.057 0.021 0.239 0.233 0.278 0.246 0.238 0.275 0.233 0.302 0.249 0.238 0.332

1.0 -0.011 -0.167 -0.077 0.042 0.015 0.261 0.279 0.241 0.249 0.266 0.261 0.307 0.247 0.251 0.266

2.0 0.027 -0.144 -0.02 -0.018 0.085 0.296 0.265 0.243 0.245 0.297 0.297 0.285 0.244 0.246 0.304

aScenarios I and II correspond to model (4.1) with ξ = 0 and 0.1, respectively.

risk factors for cardiovascular disease (CVD). The objective of the Framingham
Heart Study was to identify common factors or characteristics that contribute
to CVD by following its development over a long period of time in a large group
of participants who had not yet developed overt symptoms of CVD or suffered a
heart attack or stroke. The family data from the Framingham Heart Study were
collected across two cohorts. The original Framingham participants were between
29-62 years of age at the start of the study, and data on these participants were
available for 21 examination periods at 2-year intervals between 1948-1988. A
second cohort, the Framingham Offspring Study, composed of children of mem-
bers of the first cohort, was followed from 1971-1991, with five examinations over
this 20-year period. A full description of the GAW13 Framingham Heart Study
data set is provided by Cupples et al. (2003).

There were 326 families of 1672 individuals in the Framingham Offspring Co-
hort Data provided for GAW13. For illustration we apply the method discussed
in Section 3 to a subset to ease computation. There were 126 families which
had more than four individuals. We include the first four individuals for those
families in our analysis. Baseline measurements are used in the analysis here.

High blood pressure is an important risk factor for cardiovascular disease
and is a leading cause of mortality in industrialized countries. However, it is a
complex disorder that results from environmental and genetic factors and their
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Table 4. Analyses of a family data set from the framingham heart study.

Gender Age HDL BMI Association
Est. 0.915 0.642 0.369 0.672 1.679
SE 0.260 0.209 0.142 0.166 0.425

interactions (Kraft et al. (2003)). It is of interest to study what risk factors
may be associated with blood pressure and whether or not individuals within
the same family are correlated in terms of responses. The covariates of interest
include age, gender, high density lipoprotein (HDL), and body mass index (BMI)
(BMI=weight (kg)/height2 (m2)). Let Yij = 1 if subject j in family i has high
blood pressure, and Yij = 0 otherwise.

We consider a semiparametric regression model for the mean response, spec-
ified as

logit µij = βxij + θ(α1zij1 + α2zij2 + α3zij3),

where xij is gender, taking value 1 for male and 0 otherwise, zij1 is age, zij2 is
HDL, and zij2 is BMI. zij1, zij2 and zij3 are standardized as Φ((zijk − z̄..k)/s..k),
where z̄..k and s..k represent the sample mean and standard deviation of z′ijks,
respectively, k = 1, 2, 3, and Φ(·) is the cumulative distribution function of the
standard normal distribution. Exchangeable association structure is modeled
here with log ψijk = φ, j 6= k.

To conduct estimation we take the standard normal density as the kernel,
and a data-driven bandwidth h is used. Table 4 reports the parameter estimates
and their bootstrap standard errors, and Figure 1 shows the estimates of single
index curve θ(·) evaluated for the female and male data. The estimates of the
single index curve θ(·) show clear nonlinear curvatures, and this suggests that the
data may not be fitted well by an ordinary logistic regression model. Inclusion
of the nonlinear single index term θ(·) in the model allows more flexibility to
capture the nonlinear trend of the data. The interpretation of nonparametric
covariate effects α is not as transparent as that for parametric coefficients. In
principle, as suggested in Carroll et al. (1997), non-zero estimates of α often
indicate significant effects. The estimates of the α parameters suggest that age,
HDL, and BMI are “significant” predictors for blood pressure. The analysis finds
evidence for a positive association of high blood pressure existing among family
members.

5. Discussion

Modeling association parameters simultaneously, with regression coefficients
for marginal means, has been advocated for use on the grounds of improved
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Figure 1. Estimated nonlinear curves for the family data from the Fram-
ingham Heart Study. Solid curve is the estimate of logit{P (high blood
pressure)} for females, and the dotted curve is the estimate of logit{P (high
blood pressure)} for males.

efficiency for parameter estimation under a parametric setup (Liang, Zeger, and
Qaqish (1992)). Relatively little attention has been directed to semiparametric
settings. Recently, with correlated binary data, Yi, He, and Liang (2009, 2010)
developed simultaneous inference strategies for mean and association parameters
under generalized partially linear single-index models. However, those methods
mainly apply to complete data as they are based on the GEE formulation. In
the presence of missing observations, those methods may not yield valid inference
unless proper weights are included to adjust for the missingness effects. In this
paper, we consider the same model setup for the response process, and exploit
an inference method that is flexible to handle either complete or incomplete data
under a unified framework. An appealing feature of the proposed method is
that the missing data process is left unspecified when missing observations are
present, yet model assumptions for the response process are kept minimal. The
simulation study demonstrates reasonable performance of the proposed method.

The method we describe here has applications in a wide variety of settings.
They can also be generalized to accommodating data with more complex asso-
ciation structures. For example, in many situations longitudinal data arise in
clusters for which both a cross-sectional and a longitudinal correlation exist, and
interest may reside on the strengths of both types of association (Yi and Cook
(2002a,b)). To handle such data, a single model is often inadequate to facili-
tate complex association structures, but different types of regression models are
normally required. The proposed method can be modified to accommodate such
cases.
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Appendix 1: Proof of Theorem 1

In the following derivations, we let f(·) and f(·|·) denote the probability
function and the conditional probability function for the random vectors that
are indicated by the arguments. Dependence on the corresponding parameters
is suppressed in the notation. Write the realization vector ri of the missing data
indicator vector Ri as ri = (rij , rik, r(i;jk)), where r(i;jk) denotes the subvector
of ri with components rij and rik excluded. Similar notation y(i;jk) is defined
for the response subvector. Let |r(i;jk)| denote the sum of the elements of the
subvector r(i;jk).

The proof is similar to that of Yi, Zeng and Cook (2010), except that a
nonlinear unknown vector ηi is involved here. It suffices to show that E{

∑
j<k

[1/(Oi−1)](∂/∂B) log(LRijRik

ijk )} = 0. The proof for E[Sij ] = 0 follows analo-
gously. Indeed,

E

{∑
j<k

1
Oi − 1

· ∂

∂B
log(LRijRik

ijk )

}

=
∑
j<k

E

{
RijRik∑
s Ris − 1

· ∂ log f(yij , yik|xi, zi)
∂B

}

=
∑
j<k

∑
ri

∑
yi

rijrik∑
s ris − 1

· ∂ log f(yij , yik|xi, zi)
∂B

· f(ri,yi|xi, zi)

=
∑
j<k

∑
ri

∑
yij ,yik

∑
y(i;jk)

rijrik∑
s ris − 1

· ∂ log f(yij , yik|xi, zi)
∂B

·f(ri, yij , yik,y(i;jk)|xi, zi)

=
∑
j<k

∑
yij ,yik

∑
ri

rijrik∑
s ris − 1

· ∂ log f(yij , yik|xi, zi)
∂B

· f(ri, yij , yik|xi, zi)
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=
∑
j<k

∑
yij ,yik

∑
r(i;jk)

1
|r(i;jk)|+1

· ∂ log f(yij , yik|xi, zi)
∂B

·f(rij = rik = 1, r(i;jk), yij , yik|xi, zi)

=
∑
j<k

∑
yij ,yik

∑
r(i;jk)

1
|r(i;jk)|+1

· ∂f(yij , yik|xi, zi)
∂B

·f(rij = rik = 1, r(i;jk)|yij , yik,xi, zi)

=
∑
j<k

∑
r(i;jk)

1
|r(i;jk)| + 1

·
∑

yij ,yik

{
∂f(yij , yik|xi, zi)

∂B
· f(rij = rik = 1, r(i;jk)|yij , yik,xi, zi)

}

=
∑
j<k

∑
r(i;jk)

1
|r(i;jk)| + 1

· ∂

∂B

{ ∑
yij ,yik

f(yij , yik|xi, zi) · f(rij = rik = 1, r(i;jk)|yij , yik,xi, zi)

}

=
∑
j<k

∑
r(i;jk)

1
|r(i;jk)| + 1

· ∂

∂B

{ ∑
yij ,yik

f(rij = rik = 1, r(i;jk), yij , yik|xi, zi)

}

=
∑
j<k

∑
r(i;jk)

1
|r(i;jk)| + 1

· ∂

∂B

{
f(rij = rik = 1, r(i;jk)|xi, zi)

}
= 0

where, in the fourth last step, we impose the assumption that f(ri|yij , yik,xi, zi)
does not depend on the response parameter B, and in the last step we apply the
assumption that the distribution of f(ri|xi, zi) is free of the response parameter
B.

Appendix 2: Proof of Theorem 3

The proof of this theorem shares the same spirit as A.4 concerning the pro-
filing estimator discussed in Lin and Carroll (2006). However, the development
here cannot simply be treated as a particular application of the results of Lin
and Carroll (2006). There are a couple of important features that distinguish the
current development from settings considered in Lin and Carroll (2006) First, the
nonlinear component in the model is more complex here with additional parame-
ters α to be estimated. Secondly, extra association parameters φ are required to
be estimated. Finally, and most importantly, the current development is flexible
with missingness accommodated.
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In the following derivations, Uij0 = zT
ijα0 plays a similar role to that of

Zij in Lin and Carroll (2006). Let fjk(u, v) be the joint density of Uij0 and
Uik0, j 6= k. Write θ̂B(u,B) = ∂θ̂(u,B)/∂B. Denote by θBB(u,B) the limit of
∂2θ̂(u,B)/∂B∂BT as n → ∞. Adapting the arguments in A.3 and A.4 of Lin and
Carroll (2006), with Uij0 and u replacing Zij and z respectively, we can show
that

θ̂B(u,B0) = θB(u,B0) + op(1),

θ̂BB(u,B0) = θBB(u,B0) + op(1),
(A.1)

i.e., θB(u,B0) defined by (3.2) can be viewed as the limit of θ̂B(u,B0) as n → ∞.
Let Hj(u) = E{ε#

ij(θ0,B0)|Uij0 = u}, then for any function B(·), we have

E{
m∑

j=1

B(Uij0) · Hj(Uij0)} =
m∑

j=1

E{B(Uij0) · Hj(Uij0)}

=
m∑

j=1

∫
B(u) · Hj(u)fj(u)du =

∫
B(u) · {

m∑
j=1

Hj(u)fj(u)}du

= 0, (A.2)

where the last step is due to (3.2). If F3 = E{
∑m

j=1

∑m
k=1 Wi · Lijk(ηi0,B0)

θB(Uij ,B0)θT
B(Uij ,B0)} then, by (A.2), we have F2 + F3 = 0, hence F = F1 +

2F2 + F3.
Now we show the asymptotic distribution for the profile estimator B̂p. Let

A1(B̂p, θ̂)=n−1/2
n∑

i=1

Wi · LiB(η,B)|
(η,B)=((bθ(Ui1, bBp),...,bθ(Uim, bBp)), bBp)

,

A2(B̂p, θ̂)=n−1/2
n∑

i=1

m∑
j=1

Wi ·Lij(η,B)|
(η,B)=((bθ(Ui1, bBp),...,bθ(Uim, bBp)), bBp)

·θ̂B(Uij , B̂p).

Then the profile estimator B̂p sovles the equation

0 = A1(B̂p, θ̂) + A2(B̂p, θ̂).

To sort out the leading terms from the higher order terms, we apply Taylor
series expansions to A1(B̂p, θ̂) and A2(B̂p, θ̂). Specifically, we expand A1(B̂p, θ̂)
around the true (B0, θ0) and use θ̂(Uij , B̂p) − θ0(Uij0) = θ̂(Uij ,B0) − θ0(Uij0) +
op(1):

A1(B̂p, θ̂) = n−1/2
n∑

i=1

Wi · LiB(ηi0,B0)
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+n−1/2
n∑

i=1

m∑
j=1

Wi · LijB(ηi0,B0) · {θ̂(Uij ,B0) − θ0(Uij0)}

+(F1 + F2)n1/2(B̂p − B0) + op(1). (A.3)

For A2(B̂p, θ̂), we first treat it as a function of B and expand it around B0 by
using (A.1):

A2(B̂p, θ̂) = n−1/2
n∑

i=1

m∑
j=1

Wi ·Lij(θ̂(Ui1,B0), . . . , θ̂(Uim,B0),B0)·θ̂B(Uij ,B0)

+n−1
n∑

i=1

m∑
j=1

Wi ·LijB(ηi,B0)·θT
B(Uij ,B0)n1/2(B̂p − B0)

+n−1
n∑

i=1

m∑
j=1

Wi ·Lij(ηi,B0)·θT
BB(Uij ,B0)n1/2(B̂p − B0)

+n−1
n∑

i=1

m∑
j=1

m∑
k=1

Wi ·Lijk(ηi,B0)·θB(Uij ,B0)θT
B(Uik,B0)n1/2(B̂p−B0)

+op(1).

It is easily seen that the second and last terms sum to (F2 + F3)n1/2(B̂p −
B0) + op(1). Adapting the arguments in Appendix 1, we can show that E{Wi ·
Lij(ηi,B0)|Ui10, . . . , Uim0} = 0, hence the third term is op(1). Now further de-
composing the first term around (ηi0,B0) leads to

A2(B̂p, θ̂)

= (F2 + F3)n1/2(B̂p − B0) + n−1/2
n∑

i=1

m∑
j=1

Wi · Lij(ηi0,B0) · θB(Uij0,B0)

+n−1/2
n∑

i=1

m∑
j=1

m∑
k=1

Wi · Lijk(ηi0,B0) · θB(Uij0,B0) · {θ̂(Uik0,B0)−θ0(Uik0)}

+n−1/2
n∑

i=1

m∑
j=1

Wi · Lij(ηi0,B0) · {θ̂B(Uij0,B0) − θB(Uij0,B0)} + op(1). (A.4)

Let Pij = Wi · LijB(ηi0,B0) +
∑m

k=1 Wi · Lijk(ηi0,B0) · θB(Uik0,B0), then
combining (A.3) and (A.4) gives

−Fn1/2(B̂p − B0)

= n−1/2
n∑

i=1

{Wi · LiB(ηi0,B0) +
m∑

j=1

Wi · Lij(ηi0,B0) · θB(Uij0,B0)}



224 WENQING HE AND GRACE Y. YI

+n−1/2
n∑

i=1

m∑
j=1

Hj(Uij0) · {θ̂(Uij0,B0) − θ0(Uij0)}

+n−1/2
n∑

i=1

m∑
j=1

{Pij − Hj(Uij0)} · {θ̂(Uij0,B0) − θ0(Uij0)}

+n−1/2
n∑

i=1

m∑
j=1

Wi · Lij(ηi0,B0) · {θ̂B(Uij0,B0) − θB(Uij0,B0)}

+op(1). (A.5)

We can show the last three terms of (A.5) are all op(1) by adapting the
arguments in Lin and Carroll (2006). Therefore, by the Central Limit Theorem,
the asymptotic distribution of n1/2(B̂p − B0) is N(0,F−1VF−1T ).

Appendix 3: Computation Details

Here we present the detailed expressions for the derivatives that may be used
in the estimation and inferential procedures. For j 6= k, let δ = (BT , ηij , ηik)T ,
ζ = (βT , αT , ηij , ηik)T , and let

Lijk = P (Yij = yij , Yik = yik|xi, zi) = µ
yijyik

ijk · (µij − µijk)yij(1−yik)

·(µik − µijk)(1−yij)yik · (1 − µij − µik + µijk)(1−yij)(1−yik)

be the pairwise likelihood.
First, we record the first derivatives:

∂ log Lijk

∂δ
=

yijyik

µijk
·
∂µijk

∂δ
+

yij(1 − yik)
µij − µijk

·
(

∂µij

∂δ
−

∂µijk

∂δ

)
+

(1 − yij)yik

µik − µijk
·
(

∂µik

∂δ
−

∂µijk

∂δ

)
− (1 − yij)(1 − yik)

1 − µij − µik + µijk
·
(

∂µij

∂δ
+

∂µik

∂δ
−

∂µijk

∂δ

)
.

More specifically, the first derivatives of µij and µijk are given as follows.

(1) For the marginal probability, we have the derivatives:

∂µij

∂β
= xijg

(1)(xT
ijβ + θ(zT

ijα)),
∂µij

∂α
= zijθ

(1)(zT
ijα)g(1)(xT

ijβ + θ(zT
ijα)),

∂µij

∂φ
= 0,

∂µij

∂ηij
= g(1)(xT

ijβ + θ(zT
ijα)), and

∂µij

∂ηik
= 0, j 6= k.
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(2) For the pairwise probability, the derivatives are given by

∂µijk

∂ζ
=


1

2(ψijk−1)

[
∂aijk

∂ζ
− 1

2
√

bijk

∂bijk

∂ζ

]
, ψijk 6= 1,

∂µij

∂ζ
µik + µij

∂µik

∂ζ
, ψijk = 1,

∂µijk

∂φ
=


1

(ψijk−1)

[
− µijk

∂ψijk

∂φ
+ 1

2

(
∂aijk

∂φ
− 1

2
√

bijk

∂bijk

∂φ

)]
, ψijk 6= 1,

0, ψijk = 1,

where

∂aijk

∂ζ
= −(1 − ψijk)

(
∂µij

∂ζ
+

∂µik

∂ζ

)
,

∂aijk

∂φ
=

∂ψijk

∂φ
(µij + µik),

∂bijk

∂ζ
= 2aijk

∂aijk

∂ζ
− 4ψijk(1 − ψijk)

(
∂µij

∂ζ
µik + µij

∂µik

∂ζ

)
,

∂bijk

∂φ
= 2aijk

∂aijk

∂φ
− 4(2ψijk − 1)µijµik

∂ψijk

∂φ
.

Secondly, we display the second derivatives:

∂2 log Lijk

∂δ∂δT

= −yijyik

µ2
ijk

·
∂µijk

∂δ
·
∂µijk

∂δT
+

yijyik

µijk
·

∂2µijk

∂δ∂δT

− yij(1 − yik)
(µij − µijk)2

·
(

∂µij

∂δ
−

∂µijk

∂δ

)
·
(

∂µij

∂δT
−

∂µijk

∂δT

)

+
yij(1 − yik)
µij − µijk

·
(

∂2µij

∂δ∂δT
−

∂2µijk

∂δ∂δT

)

− (1 − yij)yik

(µik − µijk)2
·
(

∂µik

∂δ
−

∂µijk

∂δ

)
·
(

∂µik

∂δT
−

∂µijk

∂δT

)

+
(1 − yij)yik

µik − µijk
·
(

∂2µik

∂δ∂δT
−

∂2µijk

∂δ∂δT

)
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− (1 − yij)(1 − yik)
(1 − µij − µik + µijk)2

·
(

∂µij

∂δ
+

∂µik

∂δ
−

∂µijk

∂δ

)
·
(

∂µij

∂δT
+

∂µik

∂δT
−

∂µijk

∂δT

)

− (1 − yij)(1 − yik)
1 − µij − µik + µijk

·
(

∂2µij

∂δ∂δT
+

∂2µik

∂δ∂δT
−

∂2µijk

∂δ∂δT

)
.

More specifically, the second derivatives of µij and µijk are given as follows.

(a) The second derivatives of µij are:

∂2µij

∂α∂αT
= zijzT

ijθ
(2)(zT

ijα)g(1)(xT
ijβ + θ(zT

ijα))

+zijzT
ij{θ(1)(zT

ijα)}2g(2)(xT
ijβ + θ(zT

ijα)),

∂2µij

∂α∂βT
= zijxT

ijθ
(1)(zT

ijα)g(2)(xT
ijβ + θ(zT

ijα)),

∂2µij

∂α∂ηij
= zijθ

(1)(zT
ijα)g(2)(xT

ijβ + θ(zT
ijα)),

∂2µij

∂β∂βT
= xijxT

ijg
(2)(xT

ijβ + θ(zT
ijα)),

∂2µij

∂β∂ηij
= xijg

(2)(xT
ijβ + θ(zT

ijα)),

and other second (mixed) derivatives are zero.

(b) The second derivatives of µijk are

∂2µijk

∂ζ∂ζT
=


1

2(ψijk−1)

[
∂2aijk

∂ζ∂ζT − 1

2
√

bijk

∂2bijk

∂ζ∂ζT

]
, ψijk 6= 1,

∂2µij

∂ζ∂ζT µik + 2∂µij

∂ζ
∂µik

∂ζT + µij
∂2µik

∂ζ∂ζT , ψijk = 1,

∂2µijk

∂ζ∂φT
=



− 1
2(ψijk−1)2

∂ψijk

∂φT

[
∂aijk

∂ζ
− 1

2
√

bijk

∂bijk

∂ζ

]

− 1

2(ψijk−1)
√

bijk

[
∂2aijk

∂ζ∂φT + 1
4bijk

· ∂bijk

∂φT · ∂bijk

∂ζ
− 1

2 · ∂2bijk

∂ζ∂φT

]
, ψijk 6=1,

0, ψijk =1,

and
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∂2µijk

∂φ∂φT
=



− 1
(ψijk−1)2

∂ψijk

∂φT

[
− µijk

∂ψijk

∂φ
+ 1

2

(
∂aijk

∂φ
− 1

2
√

bijk

∂bijk

∂φ

)]

+ 1
(ψijk−1)

[
− ∂µijk

∂φT

∂ψijk

∂φ
− µijk

∂2ψijk

∂φ∂φT

+1
2

(
∂2aijk

∂φ∂φT + 1

4bijk

√
bijk

∂bijk

∂φ
∂bijk

∂φT − 1

2
√

bijk

∂2bijk

∂φ∂φT

)]
, ψijk 6= 1,

0, ψijk = 1,

where

∂2aijk

∂ζ∂ζT
= −(1 − ψijk)

(
∂2µij

∂ζ∂ζT
+

∂2µik

∂ζ∂ζT

)
,

∂2aijk

∂ζ∂φT
=

∂ψijk

∂φ

(
∂µij

∂ζT
+

∂µik

∂ζT

)
,

∂2aijk

∂φ∂φT
=

∂2ψijk

∂φ∂φT
(µij + µik),

∂2bijk

∂ζ∂ζT
= 2

∂aijk

∂ζ

∂aijk

∂ζT
+ 2aijk

∂2aijk

∂ζ∂ζT

−4ψijk(1 − ψijk)

(
∂2µij

∂ζ∂ζT
µik + 2

∂µij

∂ζ

∂µik

∂ζT
+ µij

∂µT
ik

∂ζ∂ζT

)
,

∂2bijk

∂ζ∂φT
= 2

∂aijk

∂φT

∂aijk

∂ζ
+ 2aijk

∂2aijk

∂ζ∂φT

−4(1 − 2ψijk)
∂ψijk

∂φT

(
∂µij

∂ζ
µik + µij

∂µik

∂ζ

)
,

∂2bijk

∂φ∂φT
= 2

∂aijk

∂φT
·
∂aijk

∂φ
+ 2aijk

∂2aijk

∂φ∂φT
− 8µijµik

∂ψijk

∂φ

∂ψijk

∂φT

−4(2ψijk − 1)µijµik
∂2ψijk

∂φ∂φT
.
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