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A Generalized Estimating Equations

When inferences focus on population averages, one can directly model all of

the marginal expectations E(Yij) = µij in terms of covariates of interest. This

is typically done via h(µij) = x′

ijβ, with h(·) some known link function, such

as the logit link for binary responses. The marginal variance depends on the

marginal mean according to Var(Yij) = v(µij)φ, where v(·) is a known variance

function and φ is a scale (overdispersion) parameter. The correlation between

Yij and Yik is expressed via a correlation matrix Ri(α) where α is a vector of

nuisance parameters. The covariance matrix Vi of Y i can then be written as

Vi = Vi(β,α) = φA
1/2
i RiA

1/2
i , with Ai the matrix with the marginal variances

on the main diagonal and zeros elsewhere.

Generalized estimating equations take the form

U(β) =
N∑

i=1

∂µi

∂β′ V
−1
i (yi −µi) = 0. (S.1)

The nuisance parameter α needs to be replaced by a consistent estimate; Liang

and Zeger (1986) proposed a moment-based estimator for this.

Assuming that the marginal mean µi has been correctly modeled, it can be

shown that, under mild regularity conditions, the estimator β̂ obtained from solv-
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ing (S.1) is asymptotically normally distributed with mean β and with covariance

matrix

var(β̂) = I−1
0 I1I

−1
0 , (S.2)

where

I0 =
N∑

i=1

∂µi
′

∂β
V −1
i

∂µi

∂β′ , I1 =
N∑

i=1

∂µi
′

∂β
V −1
i Var(yi)V

−1
i

∂µi

∂β′ . (S.3)

In practice, Var(yi) in (S.3) is replaced by (yi −µi)(yi −µi)
′, which is unbiased

on the sole condition, again, that the mean was correctly specified.

As stated earlier, GEE is not likelihood based and therefore ignorability

(Rubin 1976) cannot be invoked to establish the method’s validity under MAR.

Therefore, apart from special cases, GEE in its basic form will be valid only

under MCAR. In response to this, Robins, Rotnitzky, and Zhao (1995) proposed

a class of so-called weighted estimating equations.

The idea is then to weigh each subject’s contribution to the GEEs by the

inverse probability, either of being fully observed, or of being observed up to a

certain time. Let πi be the probability for subject i to be completely observed

and π′i the probability for subject i to drop out at occasion di. These can be

written as

πi =
ni∏

`=2

(1− pi`), (S.4)

π′i =




di−1∏

`=2

(1 − pi`)



 · pidi
, (S.5)

where pi` = P
(
Di = `|Di ≥ `, Yi ` , Xi `

)
are the component probabilities of drop-

ping out at occasion `, given the subject is still in the study, the covariate history

Xi ` and the outcome history Yi ` . In such a case, one can choose either for WGEE

based on the completers only:

U (β) =
N∑

i=1

R̃i
πi

∂µi
∂β′ V

−1
i (yi − µi) = 0, (S.6)

with R̃i = 1 if a subject is fully observed and 0 otherwise, or, upon using (6), for

WGEE using all subjects:

U(β) =
N∑

i=1

1

π′i

∂µoi
∂β′ (V

o
i )−1(yoi −µoi ) = 0. (S.7)
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Here, the superscript ’o’ indicates the portion corresponding to the observed

data in the corresponding matrix or vector. In (S.6), the incomplete subjects

contribute through the model for the dropout probabilities πi. The above de-

velopment only focuses on dropout but can be generalized to encompass non-

monotone missingness as well (Vansteelandt, Rotnitzky, and Robins 2007).

Estimators from WGEE enjoy robustness properties similar to the ones from

regular GEE, i.e., the correlation structure does not need to be correctly specified.

Applying WGEE is technically feasible and can be conducted using the SAS

procedure GENMOD. Of course, some extra programming is needed to construct

the weights.

As stated earlier, (S.6) has been extended towards so-called double robust-

ness (Scharfstein, Rotnitzky, and Robins 1999, Van der Laan and Robins 2003,

Bang and Robins 2005). We will focus on longitudinal data with monotone miss-

ingness on the one hand and on incomplete clustered data on the other, each

time under MAR. Double robustness is taken up in Section 4.1.

B Consistency and Asymptotic Normality of the

Pseudo-likelihood Estimator

We first list the required regularity conditions on the density functions fs(y
(s);β).

A0 The densities fs(y
(s);β) are distinct for different values of the parameter β.

A1 The densities fs(y
(s);β) have common support, which does not depend

on β.

A2 The parameter space Ω contains an open region ω of which the true param-

eter value β0 is an interior point.

A3 ω is such that for all s, and almost all y(s) in the support of Y (s), the

densities admit all third derivatives

∂3fs(y
(s);β)

∂θj∂θk∂θ`
.

A4 The first and second logarithmic derivatives of fs satisfy

Eβ

(
∂ ln fs(y

(s);β)

∂θk

)
= 0, k = 1, . . . , q,
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and

0 < Eβ

(
−∂2 ln fs(y

(s);β)

∂θk∂θ`

)
<∞, k, ` = 1, . . . , q.

A5 The matrix I0, defined in (S.8), is positive definite.

A6 There exist functions Mklr such that

∑

s∈S

δsEβ

∣∣∣∣∣
∂3 ln fs(y

(s);β)

∂θk∂θ`∂θr

∣∣∣∣∣ < Mk`r(y)

for all y in the support of f and for all θ ∈ ω and mk`r = Eβ0
(Mk`r(Y )) <

∞.

Theorem 1, proven by Arnold and Strauss (1991), guarantees the existence of at

least one solution to the pseudo-likelihood equations, which is a consistent and

asymptotically normal estimator. Without loss of generality, we can assume β

is constant. Replacing it by βi, and modeling it as a function of covariates is

straightforward.

Theorem 1 (Consistency and Asymptotic Normality) Assume

that (Y 1, . . . ,Y N ) are i.i.d. with common density that depends on β0. Then

under regularity conditions (A1)–(A6):

1. the pseudo-likelihood estimator β̃N , defined as the maximizer of (9), con-

verges in probability to β0.

2.
√
N (β̃N − β0) converges in distribution to Np(0, I0(β0)

−1I1(β0)I0(β0)
−1)

with I0(β) defined by

I0,k`(β) = −
∑

s∈S

δsEβ

(
∂2 ln fs(y

(s);β)

∂θk∂θ`

)
(S.8)

and I1(β) by

I1,k`(β) =
∑

s,t∈S

δsδtEβ

(
∂ ln fs(y

(s);β)

∂θk

∂ ln ft(y
(t);β)

∂θ`

)
. (S.9)
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C Pairwise and Higher-order Marginal Pseudo-

likelihood

C.1 Pairwise Pseudo-likelihood

As stated earlier, marginal models for non-Gaussian data can become prohibitive

when subjected to full maximum likelihood inference, especially with large within-

unit replication. le Cessie and van Houwelingen (1991) and Geys, Molenberghs,

and Lipsitz (1998) replace the true contribution of a vector of correlated bi-

nary data to the full likelihood, written as f(yi1, . . . , yini
), by the product of

all pairwise contributions f(yij , yik) (1 ≤ j < k ≤ ni), to obtain a pseudo-

likelihood function. Also the term composite likelihood is encountered in this

context. Renard, Molenberghs, and Geys (2004) refer to this particular instance

of pseudo-likelihood as pairwise likelihood. Grouping the outcomes for subject i

into a vector Y i, the contribution of the ith cluster to the log pseudo-likelihood

then specializes to

p`i =
∑

j<k

ln f(yij, yik), (S.10)

if it contains more than one observation. Otherwise p`i = f(yi1). Extension to

three-way and higher-order pseudo-likelihood is straightforward. All of these are

special cases of (9).

C.2 Full Conditional Pseudo-likelihood

Some models lend themselves more easily to conditioning than to marginalization,

such as log-linear models (Molenberghs and Verbeke 2005, Ch. 12). Upon noting

that

f(yij |yik, k 6= j) =
f(yi1, . . . , yini

)

f(yi1, . . . , yi,j−1, yi,j+1, . . . , yini
)

=
f

1
(y

(1)
i )

fsj (y
(sj)
i )

,

a full conditional likelihood contribution becomes:

p`i = ni · ln f1
(y

(1)
i ) −

ni∑

j=1

ln fsj (y
(sj)
i ).

Here, 1 is a vector of ones and sj is a vector of ones, with a single 0 in the jth entry.

Evidently, alternative versions of conditional pseudo-likelihood are possible. For
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example, one could consider all pairs, conditioning upon the remaining ni − 2

outcomes. This setting has been considered by Geys, Molenberghs, and Ryan

(1999) for the analysis of the NTP data (Section 5.2). This particular setting,

focusing on the missing-data aspect, is taken up in Section G.4.

D Single-robustness Theorem 2

The following theorem establishes single robustness.

Theorem 2 (Single robustness of UIPWCC, UIPWAC, and UIPWAC,seq.)

Under MAR, and if pi` in (6)–(6) is non-parametrically or correctly parametri-

cally specified as pi`(ψ), then UIPWCC, UIPWAC, and UIPWAC,seq produce consistent

estimators.

In the above, and also in what follows, the same regularity conditions apply as

in Rotnitzky (2009). In particular, it is important that the probability of being

observed for a measurement be bounded away from zero.

Proof. This follows from their expectation being 0, as follows:

E(U IPWCC) = EY

{
N∑

i=1

ERi|Yi

[
R̃i
πi
U i(Y i)

]}

= EY

{
N∑

i=1

[
ERi|Yi

(R̃i)

πi
U i(Y i)

]}

= EY

[
N∑

i=1

Ui(Y i)

]
= 0. (S.11)

E(U IPWAC) = EY

{
N∑

i=1

ERi|Yi

[
R′
i

π′i
EYm|yoU i(Y i)

]}

= EY

{
N∑

i=1

[
ERi|Yi

(R′
i)

π′i
EYm|yoU i(Y i)

]}

=
N∑

i=1

EYEYm|yoU i(Y i) = EY

[
N∑

i=1

U i(Y i)

]
= 0. (S.12)

E(U IPWAC,seq) = EY






N∑

i=1

ERi|Yi




ni∑

j=1

Rij
πij

EYm|yoU i(Y ij|Y i j )









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= EY






N∑

i=1



ni∑

j=1

ERj |R j
Y
Rij
πij

EYm|yoU i(Y ij|Y i j )









= EY



N∑

i=1

ni∑

j=1

U i(Y i)


 = 0. (S.13)

Here, ERj|R j
Y is the expectation relative to Rj, given the missingness history

up to occasion j and given the outcomes Y . Note that, in the CC case, we used

ERi|Yi
(Ri) = ER|Y o(Ri) = πi, owing to MAR. A similar statement holds in the

AC case. This completes the proof.

E Double-robustness Theorem 3

We now establish double robustness.

Theorem 3 (Double robustness of UIPWCC,dr and UIPWAC,dr.) Under

MAR, and (a) if pi` in (6)–(6) is non-parametrically or correctly parametrically

specified as pi`(ψ) and/or (b) if the predictive models in (17) and (18) are

correctly specified, then U IPWCC,dr and UIPWAC,dr are consistent.

Proof. If condition (a) holds, then the result trivially follows from Theorem 2

and the observation that the expectation of the first factors of the second terms

on the right hand sides equal zero. Under condition (b), write ERi|Yi
(Ri) =

ER|Y o(Ri) = λi. Then,

E(U IPWCC,dr) = EY

{
N∑

i=1

[
λi
πi
U i(Y i) +

(
1− λi

πi

)
EYm

i
|yo

i
U i(Y i)

]}

=
N∑

i=1

{
λi
πi
EYm

i
EYm

i
|Y o

i
[U i(Y i)]

+

(
1 − λi

πi

)
EYm

i
EYm

i
|Y o

i

[
EYm

i
|yo

i
U i(Y i)

]}

=
N∑

i=1

EYm
i
EYm

i
|Y o

i
[U i(Y i)] =

N∑

i=1

EY [U i(Y i)] = 0. (S.14)
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The AC case starts with similar logic for the case condition (a) holds. When (b)

holds, but not necessarily (a):

E(U IPWAC,dr) = EY





N∑

i=1




ni∑

j=1

λij
πij
U i(Yi|Y i j )

+

(
1− λij

πij

)
EYm

i
|yo

i
U i(Yi|Y i j )

]}

=
N∑

i=1

ni∑

j=1

{
λij
πij

EYm
i
EYm

i
|Y o

i

[
U i(Yi|Y i j )

]

+

(
1− λij

πij

)
EYm

i
EYm

i
|Y o

i

[
EYm

i
|yo

i
Ui(Yi|Y i j )

]}

=
N∑

i=1

ni∑

j=1

EYm
i
EYm

i
|Y o

i

[
Ui(Yi|Y i j )

]

=
N∑

i=1

EY [U i(Y i)] = 0. (S.15)

This completes the proof.

F Sandwich Estimator for UIPWCC and UIPWCC,dr with

Normal Data

Write a subject’s contribution to (S.26) as

V i =
R̃i
πi

∑

j<k

U i(yij , yik) =
R̃i
πi

∑

j<k

∂`ijk
∂β

=
R̃i
πi
U i. (S.16)

The model for missingness can be written in logistic form as:

πi =
ni∏

j=2

(
1 + ez

′
ijψ
)−1

,

where zij is a vector containing relevant covariates and outcomes from the history

prior to occasion j. Then,

∂V i

∂β
=

R̃i
πi

·K ′ ∂2`ijk
∂(µ,σ)∂(µ,σ)′

K, (S.17)

∂V i

∂ψ
=

R̃i
πi

·U i

ni∑

k=2

zikpik, (S.18)
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with

K =




∂µ
∂β

0

0 ∂σ
∂α


 , pik =

ez
′
ik
ψ

1 + ez
′
ik
ψ
.

Next, the estimating equation Wi for the ψ parameters follows from its

logistic structure, with data of the form (Rij, zij), for i = 1, . . . , N and j =

1, . . . , di, and Rij = 0 if j < di, and 1 otherwise. Following standard generalized

linear models theory, we have that

W i =
di∑

j=2

z′ij(Rij − pij). (S.19)

Hence,

∂W i

∂ψ
= −

di∑

j=2

(zij · z′ij)pij(1− pij). (S.20)

The sandwich estimator then follows from plugging the expressions (S.16) and

(S.19) for the scores, and (S.17), (S.18), and (S.20) for the second derivatives,

into (19) and (20). We still need an expression for

∂2`ijk
∂(β, α)∂(β, α)′

.

Define

H (2) =
∂h

∂σ
, Q(2) =

∂Q

∂σ
,

with h = (hjj , hjk, hkk)
′ and Q = (Qjj, Qjk, Qkk)

′. Then,

H (2) =
1

ϕ2




−1
2σ

2
kk σjjσkk

1
2σ

2
jk

−σkkσjk σjjσkk + σ2
jk −σjjσjk

1
2σ

2
jk σjjσkk −1

2σ
2
jj


 .

The generic element of Q(2) is

Qσ,τ = −1

2
(yi −µi)′Σ−1

(
SσΣ

−1Sτ + SτΣ
−1Sσ

)
Σ−1(yi −µi).

Finally,

∂2`ijk
∂(β, α)∂(β, α)′

=


 −Σ−1 T (2)

T (2)′ H (2) +Q(2)


 ,

where T (2) is a 2 × 3 matrix with columns −Σ−1SσΣ
−1(yi −µi).
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We now consider the doubly robust version (S.29). Evidently, W i and

∂W i/∂ψ remain as before, with the same holding true for the form of Si and

Ai. However, the contribution V i of subject i changes and can also be written

as

V i = V
(1)
i +

(
1 − R̃i

πi

)
V

(2)
i ,

V
(1)
i =

∑

j<k<di

U i(yij, yik),

V
(2)
i =

di−1∑

j=1

(ni − di + 1)U i(yij) +
∑

j<di≤k

E [U i(yik|yij)] +
∑

di≤j<k

E [U i(yij, yik)] .

We need only the derivatives with respect to β and ψ. Regarding the latter, we

obtain:
∂V i

∂ψ
= −R̃i

πi
V

(2)
i

ni∑

k=2

zikpik,

while for the former, the general form is

∂V i

∂β
=
∂V

(1)
i

∂β
+

(
1 − R̃i

πi

)
∂V i(2)

∂β
.

Now, denote by µ = (µ1, . . . , µni
)′, the entire mean vector and by σ = vech(Σ),

the vector of unique variance-covariance matrix elements. It then easily follows

that

∂V
(1)
i

∂β
= K ′




∑

j<k<di

∂2`ijk
∂(µ,σ)∂(µ,σ)′


K, (S.21)

∂V
(2)
i

∂β
= K ′




∑

j<di

(ni − di + 1)
∂2`ij

∂(µ,σ)∂(µ,σ)′
+

∑

j<di≤k

∂

∂(µ,σ)
E

(
∂`ik|j

∂(µ,σ)′

)

+
∑

di≤j<k

∂

∂(µ,σ)
E

(
∂`ijk

∂(µ,σ)′

)

K. (S.22)

The derivatives in (S.21)–(S.22) follow in the same fashion as in the single robust

case, starting from explicit expressions (S.36)–(S.39).
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G Details for Pairwise and Full Conditional Pseudo-

likelihood

G.1 Pairwise Likelihood

While in principle general missingness could be considered, we focus on the im-

portant special case of dropout, to streamline mathematical development. The

forms (21)–(29) take the following form for the specific case of pairwise likelihood:

Unaive, CC =
N∑

i=1

Ri
∑

j<k

U i(Yij, Yik), (S.23)

Unaive, CP =
N∑

i=1

∑

j<k<di

U i(Yij, Yik), (S.24)

Unaive, AC =
N∑

i=1



∑

j<k<di

U i(Yij , Yik) +
di−1∑

j=1

(ni − di + 1)U i(Yij)


 , (S.25)

U IPWCC =
N∑

i=1

R̃i
πi



∑

j<k

U i(Yij, Yik)


 , (S.26)

U IPWCP =
N∑

i=1

∑

j<k<di

Rijk
πijk

·U i(Yij , Yik), (S.27)

U IPWAC =
N∑

i=1

∑

j<k

[
Rij
πij

·U i(Yij) +
Rik
πik

·U i(Yik|Yij)
]
, (S.28)

U IPWCC,dr =
N∑

i=1





R̃i
πi




∑

j<k

U i(Yij , Yik)





+

(
1 − R̃i

πi

)
EY m

i |Y
o

i




∑

j<k

U i(Yij, Yik)








 , (S.29)

U IPWCP,dr =
N∑

i=1

∑

j<k<ni

[
R′
ijk

π′ijk
·U i(Yij, Yik)

+

(
1 −

R′
ijk

π′ijk

)
· EY m

i |Y
o

i
U i(Yij, Yik)

]
, (S.30)

U IPWAC,dr =
N∑

i=1

∑

j<k

[
Rij
πij

·U i(Yij) +
Rik
πik

·U i(Yik|Yij)
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+

(
1 − Rij

πij

)
· EY m

i |Y
o

i
U i(Yij)

+

(
1 − R′

ik

π′ik

)
· EY m

i |Y
o

i
U i(Yik|Yij)

]
. (S.31)

Here, R′
i = di if subject i drops out at occasion di. We can now write πi =

∏ni

`=2(1− pi`), where still pi` = P
(
Di = `|Di ≥ `, Yi ` , Xi `

)
. The second term in

(S.25) results from all pairs with the first component observed and the second

one unobserved.

It is interesting, and easy to show, that all three of the doubly robust versions

coincide in this case, which adds to their attraction:

U IPWCC,dr = U IPWCP,dr = U IPWAC,dr

=
N∑

i=1





∑

j<k<di

U i(Yij, Yik) +
di−1∑

j=1

(ni − di + 1) ·U i(Yij)

+
∑

j<di≤k

E[U i(Yik|Yij)] +
∑

di≤j<k

E[U i(Yij , Yik)]



 . (S.32)

A key feature in (S.32) is that the need to model the missing-data mechanism

is avoided. Note that this expression is related to (S.25) in the sense that both

terms of the latter expression occur here as well, with in addition the predictive

terms. There are two types of predictive terms, corresponding to: (a) a pair with

the first component observed and the second one missing; (b) a pair with both

components missing.

All predictive models involve two types of contributions: for E[U i(Yik|Yij)]
where Yij is observed but Yik is not, and for E[U i(Yij , Yik)] with both unobserved.

These will be considered for the special but important cases that follow next.

It is very easy to derive an exchangeable form, starting from (S.31), because

then, in this expression, the expectations vanish. Hence, clearly, the exchangeable

form is equal to (S.25), making the naive available case version not only valid, but

actually doubly robust. Of course, this is the case only under exchangeability.

An important observation is that in the doubly robust versions (S.32), the

need to specify the missing-data model is avoided, even though the predictive

model for the unobserved outcomes is needed.
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G.2 Multivariate Normal

Assume Y i ∼ N (µ,Σ). Then first, suppressing the index i from notation, and

writing down the expressions for observed values, we find:

U (yk|yj) =
∂(µk|j, σkk|j)

∂(µj, µk, σjj, σjk, σkk)
·
∂ lnφ(yk|yj; µk|j, σkk|j)

∂(µk|j, σkk|j)

=




−σjk

σjj
0

1 0

−σjk

σ2
jj

(yj − µj)
σ2

jk

σ2
jj

yj−µj

σjj
−2σjk

σjj

0 1







yk−µk|j

σkk|j

− 1
2σkk|j

+ 1
2

(yk−µk|j )2

σ2
kk|j


 ,(S.33)

where φ(·) is the normal density with mean and variance given by:

µk|j = µk +
σjk
σjj

(yj − µj) and σkk|j =
σjjσkk − σ2

jk

σjj
.

The only stochastic elements in (S.33) are the conditional residual and its square.

We need to take their expectation conditional upon the observed outcomes, pro-

ducing for the second factor in (S.33):




σjjΣk d
Σ−1

d d
(Y

d
−µ

d
)−σjk(yj−µj )

σjjσkk−σ
2
jk

σjj

(
σ2

jk
−σjjΣ

k d
Σ−1

d d
Σ

d k

)
+

[
σjjΣk dΣ−1

d d
(Y

d
−µ

d
)−σjk(yj−µj)

]2

2(σjjσkk−σ
2
jk

)2


 . (S.34)

Here, d refers to the set of indices (1, 2, . . . , d−1), corresponding to the observed

portion of Y .

Turning to the other expectation, we find:

U (yj, yk) =
∂ lnφ(yj, yk; µj, µk, σjj, σjk, σkk)

∂(µj, µk, σjj, σjk, σkk)

=




Σ−1(y − µ)

hjj +Qjj

hjk +Qjk

hkk +Qkk



, (S.35)
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where

hjj = −1

2

σkk
ϕ
, hjk =

σjk

ϕ , hkk = −1

2

σjj
ϕ
,

ϕ = σjjσkk − σ2
jk,

Qσ = 1
2 (y −µ)′Σ−1SσΣ

−1(y − µ),

Sjj =



 1 0

0 0



 , Sjk =



 0 1

1 0



 , Skk =



 0 0

0 1



 .

Here, Sσ is generic notation for either one of the three pairs (j, j), (j, k), and

(k, k).

To calculate the expectation of (S.35), we need:

E(Y |y d ) = µcjk = µ+ Σjk, dΣ−1

d , d
(y d −µ d ), (S.36)

var(Y |yi d ) = Σjk,jk − Σjk, dΣ−1

d , d
Σ d ,jk. (S.37)

It now follows that

E
[
U(yj, yk)|y d

]
=




Σ−1
jk,jkΣjk, dΣ−1

d , d
(y d −µ d )

hjj + E[Qjj|y d ]

hjk + E[Qjk|y d ]

hkk + E[Qkk|y d ]



, (S.38)

where some straightforward algebra produces:

E[Qσ|y d ] =
1

2
tr
{
Σ−1
jk,jkSσΣ

−1
jk,jk

[
Σjk,jk + Σjk, dΣ−1

d , d
×

×
(
(y d −µ d )(y d −µ d )′ − Σ d , d

)
Σ−1
d , d

Σ d ,jk

]}
. (S.39)

In the special case of two measurements, the first of which always observed,

d = 1 in (S.34), i.e., it refers to the first measurement. Hence, both expec-

tations in (S.34) reduce to 0, implying in turn that then Eym|yoU(y2|y1) =

Ey2|y1U(y2|y1) = 0, as it should because in this simple case pseudo-likelihood

coincides with full likelihood.

For each of the estimators, the sandwich estimator can be computed. For

the case of IPWCC and its doubly robust version, Appendix F provides generic

expressions.
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G.3 Marginal Pseudo-likelihood for Binary Data

Let us assume that we have a model for multivariate and hence also for bivariate

binary data. For example, using the notation νij = P (Yij = 1), νijk = P (Yij =

1, Yik = 1), and νik|j(`) = P (Yik = 1|yij = `) (` = 0, 1), pairwise Plackett (1965)

probabilities take the form

νijk =






1+(νij+νik)(ψijk−1)−S(νik ,νij ,ψijk)
2(ψijk−1)

if ψijk 6= 1,

νijνik if ψijk = 1,
(S.40)

with

S(νij, νik, ψijk) =
√

[1 + (νij + νik)(ψijk − 1)]2 + 4ψijk(1 − ψijk)νijνik

and the pairwise odds ratio, also termed global cross ratio (Dale 1986):

ψijk =
P (Yij = 1, Yik = 1)P (Yij = 0, Yik = 0)

P (Yij = 1, Yik = 0)P (Yij = 0, Yik = 1)
.

When the Bahadur (1961) model is used instead, (S.40) is replaced by

νijk = νijνik


1 + ρijk

1 − νij√
νij(1 − νij)

· 1 − νik√
νik(1− νik)


 . (S.41)

In both cases, expressions for the multivariate probabilities exist as well. In the

odds ratio case, this leads to the so-called multivariate Dale model (Molenberghs

and Lesaffre 1994, Molenberghs and Verbeke 2005). The expressions are implicit

and fitting the model is computationally very demanding. The multivariate Ba-

hadur model can be written as f(yi) = f1(yi) · c(yi), where

f1(yi) =
ni∏

j=1

ν
yij

ij (1 − νij)
1−yij ,

c(yi) = 1 +
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3 + . . .

+ρi12...ni
ei1ei2 . . . eini

,

eij =
yij − νij√
νij(1 − νij)

.

Here, the ρ parameters are pairwise and higher-order correlations. Even though

the model admits a convenient and concise closed form, its fitting is less than triv-

ial, owing to strong and intractable constraints on the parameter space, be it in
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fully general or second-order form (where the third- and higher-order correlations

are set equal to zero). This makes pseudo-likelihood attractive.

A generic contribution to the pairwise log-likelihood takes the form:

p`ijk = yijyik ln νijk + yij(1− yik) ln(νij − νijk) + (1− yij)yik ln(νik − νijk)

+(1− yij)(1 − yik) ln(1− νij − νik + νijk).

As before, let β = (β′,α′)′, where νij = νij(β) and the association parameters are

functions of α. Hence, νijk = νijk(β,α). Pairwise and conditional contributions

to the score take the form:

U ijk =
yijyik
νijk

∂

∂β
νijk +

yij(1 − yik)

νij − νijk

∂

∂β
(νij − νijk)

+
(1− yij)yik
νik − νijk

∂

∂β
(νik − νijk)

+
(1 − yij)(1− yik)

1 − νij − νik + νijk

∂

∂β
(1 − νij − νik + νijk), (S.42)

U ik|j =
yijyikνij
νijk

∂

∂β

(
νijk
νij

)
+
yij(1 − yik)νij
νij − νijk

∂

∂β

(
νij − νijk

νij

)

+
(1− yij)yik(1− νij)

νik − νijk

∂

∂β

(
νik − νijk
1 − νij

)

+
(1− yij)(1 − yik)(1− νij)

1 − νij − νik + νijk

∂

∂β

(
1 − νij − νik + νijk

1 − νij

)
. (S.43)

In addition, we need expectations of these over the conditional distribution of the

unobserved outcomes given the observed ones. Evidently, because (S.42)–(S.43)

are linear in the triplet yij, yik, and yijyik, it suffices to calculate the expectations

over these. Their corresponding probabilities are

νij| d =
νi d j
νi d

, νijk| d =
νi d jk
νi d

. (S.44)

Combining (S.42)–(S.43) with (S.44) leads to:

E (U ijk) =
νi d jk
νi d νijk

∂

∂β
νijk +

νi d j − νi d jk
νi d (νij − νijk)

∂

∂β
(νij − νijk)

+
νi d k − νi d jk
νi d (νik − νijk)

∂

∂β
(νik − νijk)
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+
νi d − νi d j − νi d k + νi d jk
νi d (1− νij − νik + νijk)

∂

∂β
(1− νij − νik + νijk), (S.45)

E(U ik|j) =
yijνi d kνij

νi d νijk

∂

∂β

(
νijk
νij

)
+
yij(νi d − νi d k)νij

νi d (νij − νijk)

∂

∂β

(
νij − νijk

νij

)

+
(1 − yij)νi d k(1 − νij)

νi d (νik − νijk)

∂

∂β

(
νik − νijk
1 − νij

)

+
(1 − yij)(νi d − νi d k)(1− νij)

νi d (1− νij − νik + νijk)

∂

∂β
×

×
(

1 − νij − νik + νijk
1 − νij

)
. (S.46)

As already mentioned at the end of Section 4.1, all probabilities involving d

are potentially high-dimensional; they would follow from the multivariate Dale

model, the multivariate Bahadur model, etc. We have seen, however, that sev-

eral alternative routes are open. For example, here, one could simply resort to

the singly robust version. Alternatively, the expectations could be replaced by

simple, e.g., logistic, models: EY m

i |yo
i

(yij) could be written as a standard lo-

gistic model where the existing covariates are supplemented with yi d , whereas

for EY m

i |yo
i

(yijyik) the pairwise model under consideration can be used, again

supplementing the covariate information with yi d .

Further, (S.42)–(S.46) require derivatives with respect to the univariate and

pairwise probabilities. For most pairwise models, such as the Bahadur and Dale

models, they are reasonably straightforward and have been derived by various

authors. See Molenberghs and Verbeke (2005) for details.

The derivation of the sandwich estimator follows from logic similar to that

laid out in Section G.2.

G.4 Conditional Pseudo-likelihood for Binary Data

Consider a single clustered outcome, such as in the National Toxicology Program

Data (Section 5.2) and assume the model (Molenberghs and Ryan 1999, Aerts et

al 2002, Molenberghs and Verbeke 2005):

fi(yi; Θi) = (S.47)
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exp






ni∑

j=1

θijyij +
∑

j<j′

δ∗ijj′yijyij′ + . . .+ ωi1...ni
yi1 . . . yini

−A(Θ∗
i )




 .

or its quadratic simplification (Zhao and Prentice 1990, Thélot 1985, Molen-

berghs and Ryan 1999):

fi(yi; Θi
∗, ni) = exp






ni∑

j=1

θ∗i yij +
∑

j<j′

δ∗i yijyij′ − A(Θ∗
i )




 , (S.48)

with δ∗i describing the association between pairs of measurements within the

ith unit. It is useful to code the outcomes as 1 and −1, rather than 1 and

0, whenever the number of measurements per unit is variable, to ensure cod-

ing invariance. Focusing on an exchangeable situation, define the number of

measurements from unit i with a positive response to be Zi. Model (S.48) then

becomes, upon absorbing constant terms into the normalizing constant and using

the re-parameterization θi = 2θ∗i and ξi = 2δ∗i :

fi(yi; Θi, ni) = exp
{
θiz

(1)
i + ξiz

(2)
i − A(Θi)

}
, (S.49)

with z
(1)
i = zi and z

(2)
i = −zi(ni − zi). The normalizing constant takes the form:

A(Θi) = ln




ni∑

k=0



 ni

k



 exp
{
θik

(1) + ξik
(2)
}


 ,

where k(1) = k and k(2) = −k(ni − k). For model (S.49), independence corre-

sponds to ξi = 0. A positive δi corresponds to classical clustering or overdisper-

sion, whereas a negative parameter value occurs in the under-dispersed case. As

such, estimation of the association parameter can be of interest.

Fitting the model is awkward for long sequences, owing to the presence of the

normalizing constant. Therefore, it is convenient to replace the corresponding

likelihood function by a pseudo-likelihood alternative, found by replacing the

joint density fi(yi; Θi) by the product of univariate full conditional densities

f(yij|{yij′}, j ′ 6= j; Θi) for j = 1, . . . , ni. This idea can be put into the framework

(9) by choosing δ1ni
= ni and δsj = −1 for j = 1, . . . , ni where 1ni

is a vector

of ones and sj consists of ones everywhere, except for the jth entry. For all

other vectors s, δs equals zero. This pseudo-likelihood has the effect of replacing
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a joint mass function with a complicated normalizing constant by ni univariate

functions of logistic type.

If we can assume that outcomes within a unit are exchangeable, then there

are merely two types of contribution: (1) the conditional probability of an addi-

tional success, given there are zi−1 successes and ni−zi failures (this contribution

occurs with multiplicity zi):

pis =
exp [θi − δi(ni − 2zi + 1)]

1 + exp [θi − δi(ni − 2zi + 1)]
,

and (2) the conditional probability of an additional failure, given there are zi

successes and ni − zi − 1 failures (with multiplicity ni − zi):

pif =
exp [−θi + δi(ni − 2zi − 1)]

1 + exp [−θi + δi(ni − 2zi − 1)]
.

The log PL contribution for unit i can then be expressed as

p`i = zi ln pis + (ni − zi) lnpif . (S.50)

The contribution of unit i to the pseudo-likelihood score vector takes the form


 zi(1 − pis) − (ni − zi)(1 − pif )

−zi(ni − 2zi + 1)(1− pis) + (ni − zi)(ni − 2zi − 1)(1− pif )



 .

Note that, if δi ≡ 0, then pis ≡ 1−pif and the first component of the score vector

is a sum of terms zi − nipis, i.e., standard logistic regression follows.

Data can be incomplete, for example, because some litter mates die or get

resorbed into the uterus line. Let there be mi litter mates, ni of which are viable

and assessed for success/failure. This then means that (S.50) would pertain to

the observed data only, whereas there are an additionalmi−ni missing outcomes.

The general expressions (21)–(29) now take the form:

U naive, CC =
N∑

i=1

RiU i(zi, ni − zi) =
N∑

i=1

RiU i(zi, mi − zi), (S.51)

U naive, AC =
N∑

i=1

U i(zi, ni − zi), (S.52)

U IPWCC =
N∑

i=1

R̃i
πi(mi|mi)

U i(zi, ni − zi), (S.53)
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U IPWAC =
N∑

i=1

I(ni|mi)

πi(ni|mi)
Uo
i (zi, ni, mi), (S.54)

U IPWCC,dr =
N∑

i=1

{
R̃i

πi(mi|mi)
U i(zi, ni − zi)

+

[
1 − R̃i

πi(mi|mi)

]
Ek|zi,ni

[U i(zi + k,mi − zi − k)]

}
(S.55)

U IPWAC,dr =
N∑

i=1

{
I(ni|mi)

πi(ni|mi)
Uo
i (zi, ni, mi)

+

[
1− I(ni|mi)

πi(mi|mi)

]
Ek|zi,ni

[U i(zi + k,mi − zi − k)]

}
(S.56)

Here, Ri is the usual indicator for a complete cluster, and I(ni|mi) is an indicator

for observing ni out of mi litter mates. Furthermore, πi(ni|mi) is the probability

of observing ni out of mi litter mates. Evidently, π(mi|mi) is the special case

of observing a complete cluster. Result (S.56) follows from observing that the

observed version of the score and the expectation over the incomplete data follow,

in this case, in exactly the same way.

The quantity Uo
i (zi, ni, mi) in (S.54) and (S.56) follows from

p`oi = ln





mi−ni∑

k=0



 mi − ni

k



 pis(zi, k)zi+k[1− pif(zi, k)]
mi−zi−k



 , (S.57)

and then constructing

U o
i =

∂p`oi
∂(θi, δi)

, (S.58)

where

logit[pis(zi, k)] = θi − δi[mi − 2(zi + k) + 1],

logit[pif(zi, k)] = −θi + δi[mi − 2(zi + k) − 1].

Note the difference between (S.50) and (S.57). In the former only the observed

data are included, while in the latter there is summation over the missing out-

comes.

In the NTP data, especially for the higher dose groups, complete clusters

may be rare, thence the AC versions become not only attractive, but actually

necessary to make progress.
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Overall, the AC forms are slightly more cumbersome, owing to somewhat

less tractable expressions, such as (S.57). Consider full exchangeability, whence

form (30) can be used, we obtain:

U IPWAC,exch =
N∑

i=1

U o
i (zi, ni, mi). (S.59)

Even though the missing-data mechanism is removed, as follows from (30) in

general, construction (S.57)–(S.58) needs to be used. This is different from the

pairwise likelihood case, thanks to the marginal specification of the latter. Of

course, (S.59) can be used with a numerical optimizer or equation solver, thanks

to the explicit expression (S.57).

Now, using (S.49), the expectations can be written as:

Ek|zi,ni
[U i(zi + k,mi − zi − k)] =

mi−ni∑

k=0

eθik−δik(mi−2zi−k)U i(zi + k,mi − zi − k)

mi−ni∑

k=0

eθik−δik(mi−2zi−k)

.

To formulate a sensible missingness model in this case, write the indi-

vidual responses as (yi1, . . . , yini
, yi,ni+1, . . . , yimi

), with the first ni observed

and the later mi − ni missing. Likewise, the missingness indicators are

(ri1, . . . , rini
, ri,ni+1, . . . , rimi

), the first set being 1 and the second part 0. Let xi

indicate the dose administered to litter i. Now, the joint distribution of Y i and

Ri factors as

f(yi1, . . . , yini
, yi,ni+1, . . . , yimi

|xi)×
×f(ri1, . . . , rini

, ri,ni+1, . . . , rimi
|yi1, . . . , yini

, yi,ni+1, . . . , yimi
, xi).

Here, the first factor is the one for which pseudo-likelihood is considered, whereas

the second one can be written in summary-statistics form, thanks to exchange-

ability: f(ni, mi − ni|zi, ni − zi, xi). To explicitly acknowledge within-cluster

correlation, a beta-binomial model (Skellam 1948, Kleinman 1973, Molenberghs

and Verbeke 2005), for example, would be a reasonable choice:

pi =
B[ni + νi(ρ

−1 − 1), mi − ni + (1 − νi)(ρ
−1 − 1)]

B[νi(ρ−1 − 1), (1− νi)(ρ−1 − 1)]
, (S.60)
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in terms of the mean parameter νi and correlation ρ, and then

fi(ni, mi − ni|νi, ρ) =


 mi

ni


pmi−ni

i (1− pi)
ni . (S.61)

Here, B(·, ·) is the beta function. One might write, for example:

logit(νi) = ψ0 + ψ1ni + ψ2(zi/ni). (S.62)

Fitting the model and other manipulation is straightforward (Molenberghs and

Verbeke 2005), even though it is not commonly implemented in standard statis-

tical software. Alternatively, one might choose to simplify matters and simply

replace (S.60) by a logistic regression, in which case (S.61) and (S.62) would be

retained.

For the sandwich estimator, take for example IPWCC, which can be written

in shorthand as

U IPWCC =
N∑

i=1

Vi =
N∑

i=1

R̃i
πi
U i.

Then,
∂V i

∂(θ, δ)
=
R̃i
πi
Qi,

∂V i

∂ψ
= −R̃i

π2
i

∂πi
∂ψ

U i.

Here, Qi has elements:

qi,11 = −zipis(1− pis) − (ni − zi)pif(1 − pif ),

qi,12 = qi,21 = zi(ni − 2zi + 1)pis(1− pis) + (ni − zi)(ni − 2xi − 1)pif(1− pif),

qi,22 = −zi(ni − 2zi + 1)2pis(1− pis)

−(ni − zi)(ni − 2zi − 1)2pif(1 − pif ).

The derivative w.r.t. ψ evidently depends on whether the beta-binomial model, or

rather simpler logistic regression is chosen. Finally, let W i be the beta-binomial

score equation contribution of litter i. From this, the derivative ∂W i/∂ψ follows

immediately. For the other forms, similar calculations apply.
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