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Abstract: Composite likelihood may be useful for approximating likelihood based

inference when the full likelihood is too complex to deal with. Stemming from

a misspecified model, inference based on composite likelihood requires suitable

corrections. Here we focus on the composite likelihood ratio statistic for a mul-

tidimensional parameter of interest, and we propose a parameterization invariant

adjustment that allows reference to the usual asymptotic chi-square distribution.

Two examples dealing with pairwise likelihood are analysed through simulation.
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1. Introduction

A partially misspecified likelihood may prove useful in inference. Its useful-
ness is enhanced, as with composite likelihood (Lindsay (1988)), when the fully
specified likelihood is computationally cumbersome, or when a fully specified
model is out of reach. See Varin (2008) and Varin, Reid, and Firth (2011) for
recent reviews on composite likelihood methods.

Some effects of misspecification are easy to cope with. Under regularity con-
ditions, provided the misspecified score remains an unbiased estimating function,
asymptotic normality of the maximum likelihood estimator still holds with Go-
dambe information replacing expected information in the asymptotic covariance,
see e.g., Cox and Reid (2004). This allows the construction of Wald-type test
statistics and confidence regions. Score-type statistics, having the usual asymp-
totic null distribution, can also be defined (Molenberghs and Verbeke (2005,
Chap. 9)), but seem to suffer from numerical instability. As a consequence, most
routine statistical analyses employ Wald-type statistics.

As is well known, Wald-type statistics lack invariance under reparameteri-
zation, and force confidence regions to have an elliptical shape. In this respect
a likelihood ratio-type statistic would be more appealing. However, under the
form of misspecification we are considering, the asymptotic distribution of the
likelihood ratio statistic departs from the familiar likelihood result, and involves
a linear combination of independent chi-squared variates with coefficients given
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by the eigenvalues of a matrix related to Godambe information (Foutz and Sri-
vastava (1977, 1978); Kent (1982)).

We propose a parameterization invariant adjustment to the composite like-
lihood ratio statistic for a multidimensional parameter of interest that allows
reference to the usual asymptotic chi-square distribution.

The paper is organized as follows. In Section 2, notation and background
are given. Section 3 introduces the proposed adjustment and outlines its rela-
tion to alternative adjustments in the literature. Two examples dealing with
pairwise likelihood are analysed in detail in Section 4; the first deals with the
equicorrelated multivariate normal distribution, the second considers first-order
autoregression. In both examples the overall parameter is three-dimensional and
various cases of components of interest are considered. Simulation results indicate
that the proposed adjustment allows quite accurate inferences. Some concluding
remarks are given in Section 5.

2. Notation

Consider independent observations yi of a random vector Yi = (Yi1, . . . , Yiq),
i = 1, . . . , n, where Yi has density f(yi; θ), θ ∈ Θ ⊆ IRd, yi ∈ Y. Let y =
(y1, . . . , yn). We denote by `(θ; y) =

∑n
i=1 log f(yi; θ) the full log likelihood. The

corresponding score function and expected information are denoted by U(θ) =
U(θ; y) = (∂/∂θ)`(θ; y) and I(θ) = Eθ{−∂U(θ)/∂θ>}. The maximum likelihood
estimate is θ̂. The log likelihood ratio is w(θ) = 2{`(θ̂)− `(θ)}, and its Wald and
score variants are we(θ) = (θ̂ − θ)>I(θ)(θ̂ − θ) and wu(θ) = U(θ)>I(θ)−1U(θ),
respectively.

Let θ be partitioned as θ = (ψ, λ), where the d0 dimensional parameter ψ is
the component of interest. Let θ̂ψ = (ψ, λ̂ψ) denote the constrained maximum
likelihood estimate of θ with ψ fixed. Under regularity conditions, the profile
likelihood ratio statistic wP (ψ) = 2{`(θ̂) − `(θ̂ψ)} has an asymptotic null χ2

d0

distribution. In order to define its Wald and score variants, partition the score
vector as U(θ)> = (Uψ(θ)>, Uλ(θ)>), where Uψ(θ) = (∂/∂ψ)`(θ; y) and Uλ(θ) =
(∂/∂λ)`(θ; y), and consider the further partitions

I(θ) =
[

Iψψ Iψλ

Iλψ Iλλ

]
, I(θ)−1 =

[
Iψψ Iψλ

Iλψ Iλλ

]
,

where, for instance, Iψλ = Eθ{−∂Uψ(θ)/∂λ>}. The Wald statistic is we
P
(ψ) =

(ψ̂ − ψ)>(Iψψ)−1(ψ̂ − ψ) and the score variant is wu
P
(ψ) = Uψ(θ̂ψ)>IψψUψ(θ̂ψ).

Composite likelihood is defined through K marginal or conditional events
Ak(yi) on Y, k=1, . . . ,K, giving likelihood contributions Lk(θ; yi)=L(θ; Ak(yi)).
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Composite likelihood is then defined as

cL(θ; y) =
n∏

i=1

K∏
k=1

Lk(θ; yi)wk ,

where wk, k = 1, . . . ,K, are positive weights. We denote by c`(θ) = c`(θ; y) =
log cL(θ; y) the composite log likelihood.

When the events Ak(yi) are defined in terms of pairs of observations (yir, yis),
from the bivariate marginal density frs(yir, yis; θ), r, s = 1, . . . , q, r 6= s, compos-
ite log likelihood is called pairwise log likelihood and is denoted by

p`(θ; y) =
n∑

i=1

q∑
r,s=1
r 6=s

wrs log frs(yir, yis; θ) . (2.1)

Hereafter, regularity conditions as detailed e.g., in Molenberghs and Verbeke
(2005, Sec. 9.2.2) are assumed.

The composite score function (∂/∂θ)c`(θ; y) is denoted by cU(θ; y) and the
pairwise score (∂/∂θ)p`(θ; y) by pU(θ; y). More generally, when a pairwise likeli-
hood is considered as a special composite likelihood, the prefix c in the notation
for a given quantity is replaced by p.

Let H = H(θ) = Eθ{−∂cU(θ)/∂θ>} and J = J(θ) = Eθ{cU(θ)cU(θ)>}.
Godambe information matrix is given by G = G(θ) = H(θ)J(θ)−1H(θ). The
maximum composite likelihood estimate, i.e., the maximizer of cL(θ; y), is de-
noted by θ̂c. Similarly, θ̂p denotes the maximum pairwise likelihood estimate.
Asymptotically, the distribution of θ̂c is multivariate normal with covariance
matrix G(θ)−1, briefly θ̂c

·∼ Nd(θ,G(θ)−1). Therefore, the asymptotic distribu-
tion of the Wald-type statistic cwe(θ) = (θ̂c − θ)>G(θ)(θ̂c − θ) is chi-squared
on d degrees of freedom, χ2

d. The same result holds for the score-type statistic
cwu(θ) = cU(θ)>J(θ)−1cU(θ).

Let cw(θ) = 2{c`(θ̂c)− c`(θ)} be the composite likelihood ratio statistic. Its
asymptotic null distribution is the distribution of

∑d
a=1 µa(θ)Z2

a , where µ1(θ),
. . . , µd(θ) are eigenvalues of J(θ)H(θ)−1 = H(θ)G(θ)−1 and Z1, . . . , Zd are inde-
pendent standard normal variates.

With the partition θ=(ψ, λ), partition the composite score vector as cU(θ)>=
(cUψ(θ)>, cUλ(θ)>), where cUψ(θ) = (∂/∂ψ)c`(θ; y) and cUλ(θ) = (∂/∂λ)c`(θ; y),
and consider the further partitions

H =
[

Hψψ Hψλ

Hλψ Hλλ

]
, H−1 =

[
Hψψ Hψλ

Hλψ Hλλ

]
,

and similarly for G and G−1. Above, for instance, Hψλ = Eθ{−∂cUψ(θ)/∂λ>}.
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Denoting by θ̂cψ the constrained composite maximum likelihood estimate of
θ for fixed ψ, we have that the asymptotic distribution of the profile composite
likelihood ratio statistic for ψ,

cwP (ψ) = 2{c`(θ̂c) − c`(θ̂cψ)} , (2.2)

is
∑d0

a=1 νa(θ)Z2
a , where ν1(θ), . . . , νd0(θ) are the eigenvalues of (Hψψ)−1Gψψ .

This follows from Kent (1982, Thm. 3.1). It is possible to replace θ with θ̂cψ

when evaluating the eigenvalues of (Hψψ)−1Gψψ.
A Wald-type statistic for the ψ component based on c`(θ) may be defined

having an asymptotic χ2
d0

null distribution. In particular, denoting by ψ̂c the ψ

component of θ̂c, we have cwe
P
(ψ) = (ψ̂c − ψ)>(Gψψ)−1(ψ̂c − ψ).

Finally, using the asymptotic result (Rotnitzky and Jewell (1990)),

cUψ(θ̂cψ) ·∼ Nd0(0,Hψψ(θ̂cψ)−1Gψψ(θ̂cψ)Hψψ(θ̂cψ)−1) , (2.3)

we consider the score type statistic

cwu
P
(ψ) = cUψ(θ̂cψ)>Hψψ(θ̂cψ){Gψψ(θ̂cψ)}−1Hψψ(θ̂cψ)cUψ(θ̂cψ) , (2.4)

again with an asymptotic χ2
d0

null distribution. See Molenberghs and Verbeke
(2005, Sec. 9.3) for more details.

3. Adjustments to Composite Likelihood Ratio

The asymptotic null distribution of the composite likelihood ratio statistic
depends both on the statistical model and on the definition of the parameter
of interest. This calls for adjustments to cw(θ) and to cwP (ψ) such that the
reference sampling distributions depend only on the dimension of the parameter
of interest. Problems without nuisance parameters are addressed first. For a
scalar parameter of interest, most proposed adjustments agree and lead to the
exact asymptotic reference. Beyond the scalar parameter case, some adjustments
proposed in the literature are not parameterization invariant or only match some
moments of the asymptotic reference. The adjustment we propose, free of both
predicaments, is given at (3.8) and (3.9).

3.1. No nuisance parameters

In the special case d = 1, we have µ1(θ) = J(θ)/H(θ) in the asymptotic null
distribution of cw(θ), so that the adjusted likelihood ratio statistic

cw(θ)adj = (µ1(θ))−1 cw(θ) (3.1)

is asymptotically χ2
1.
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For d > 1 simple adjustments of cw(θ) based on moment conditions have
been considered by several authors. First order moment matching (Rotnitzky and
Jewell (1990); Molenberghs and Verbeke (2005, Sec. 9.3.3)) gives the adjustment

cw(θ)1 = (µ̄(θ))−1 cw(θ) , (3.2)

with µ̄(θ) =
∑d

a=1 µa(θ)/d = tr(J(θ)H(θ)−1)/d. A χ2
d approximation is used for

the null distribution of cw(θ)1 .
First and second moment matching gives the Satterthwaite type (Satterth-

waite (1946)) adjustment suggested in Varin (2008),

cw(θ)2 = κ−1 cw(θ) , (3.3)

where a χ2
ν approximation is used for the null distribution of cw(θ)2 . Here,

κ = κ(θ) =
∑d

a=1 µa(θ)2∑d
a=1 µa(θ)

,

ν = ν(θ) =
(
∑d

a=1 µa(θ))2∑d
a=1 µa(θ)2

.

Matching of moments up to higher order can also be considered, as in Wood
(1989). See also Lindsay, Pilla, and Basak (2000).

Chandler and Bate (2007) propose the vertical scaling of cw(θ),

cw(θ)CB =
(θ̂c − θ)>G(θ̂c)(θ̂c − θ)
(θ̂c − θ)>H(θ̂c)(θ̂c − θ)

cw(θ) , (3.4)

having the usual χ2
d asymptotic null distribution. The same result holds for the

asymptotically equivalent form

cw(θ)∗
CB

=
(θ̂c − θ)>G(θ)(θ̂c − θ)

(θ̂c − θ)>H(θ)(θ̂c − θ)
cw(θ) . (3.5)

When d = 1 adjustments (3.2), (3.3), and (3.5) coincide with (3.1) and are
parameterization invariant. Even (3.4) is parameterization invariant for a scalar
θ. When d > 1, among the above adjustments only those based on the eigenvalues
of J(θ)H(θ)−1 or of J(θ̂c)H(θ̂c)−1 are invariant under reparameterization.

Indeed, consider an alternative parameterization ω = ω(θ), i.e., a one to one
smooth function of θ with inverse θ(ω). Let θ′(ω) = (∂θ(ω)/∂ω>)>. Use the
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superscript Ω to denote composite likelihood quantities under the ω parameteri-
zation and get

c`Ω(ω) = c`(θ(ω)) ,

ω̂c = ω(θ̂c) ,

cwΩ(ω) = cw(θ(ω)) ,

cUΩ(ω) = θ′(ω)cU(θ(ω)) ,

HΩ(ω) = θ′(ω)H(θ(ω))θ′(ω)> ,

JΩ(ω) = θ′(ω)J(θ(ω))θ′(ω)> ,

GΩ(ω) = θ′(ω)G(θ(ω))θ′(ω)> ,

JΩ(ω)HΩ(ω)−1 = θ′(ω)J(θ(ω))H(θ(ω))−1θ′(ω)−1 .

The matrices JΩ(ω)HΩ(ω)−1 and J(θ(ω))H(θ(ω))−1 are similar, so that eigen-
values µa(θ), a = 1, . . . , d, are invariant under reparameterization.

On the other hand,

cwΩ(ω)CB =
(ω̂c − ω)>θ′(ω̂c)G(θ(ω̂c))θ′(ω̂c)>(ω̂c − ω)
(ω̂c − ω)>θ′(ω̂c)H(θ(ω̂c))θ′(ω̂c)>(ω̂c − ω)

cw(θ(ω)) , (3.6)

which does not, in general, coincide with cw(θ(ω))CB (see Section 4.1 for a nu-
merical example).

A parameterization invariant vertical scaling of cw(θ) can be obtained as
follows. Consider the expansion

θ̂c − θ = H(θ)−1cU(θ) + Op(n−1) . (3.7)

Substituting (3.7) into (3.5) we obtain the asymptotically equivalent version

cw(θ)INV =
cU(θ)>J(θ)−1cU(θ)
cU(θ)>H(θ)−1cU(θ)

cw(θ) , (3.8)

which is easily seen to be parameterization invariant, i.e., such that cwΩ(ω)INV =
cw(θ(ω))INV .

The denominator of the adjustment in (3.8) is a quadratic approximation
to cw(θ) such that cw(θ) = cU(θ)>H(θ)−1cU(θ) + Op(n−1/2). As cU(θ) ·∼
Nd(0, J(θ)), the numerator of the adjustment has an asymptotic χ2

d null dis-
tribution. The asymptotic χ2

d null distribution of cw(θ)INV is therefore directly
visible.

3.2. Nuisance parameter case

Adjustments cwP (ψ)1 and cwP (ψ)2 to cwP (ψ) analogous to (3.2) and (3.3),
respectively, can be defined with eigenvalues νa(θ) of (Hψψ)−1Gψψ evaluated at
θ̂cψ.
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The extension of (3.8) to the nuisance parameter case is obtained by modify-
ing cwP (ψ) using a factor defined as the ratio of an asymptotically χ2

d0
quadratic

form in the profile composite score cUψ(θ̂cψ) to a quadratic approximation of
cwP (ψ) expressed as a quadratic form in cUψ(θ̂cψ). Using the asymptotic result
(2.3), leading to (2.4), and the expansion

cwP (ψ) = cUψ(θ̂cψ)>Hψψ(θ̂cψ)cUψ(θ̂cψ) + Op(n−1/2) ,

we obtain

cwP (ψ)INV =
cwu

P
(ψ)

cUψ(θ̂cψ)>Hψψ(θ̂cψ)cUψ(θ̂cψ)
cwP (ψ) . (3.9)

It is straightforward to check that cwP (ψ)INV is invariant under interest-
preserving reparameterizations, that is one-one functions that map θ = (ψ, λ) to
ω = (η(ψ), ζ(ψ, λ)). When d0 = 1 expression (3.9) simplifies as

cwP (ψ)INV =
Hψψ(θ̂cψ)

Gψψ(θ̂cψ)
cwP (ψ)

and coincides with the nuisance parameter version of (3.2) and (3.3).

4. Examples

In this section we provide simulation results to assess coverage probabilities
of confidence regions based on the adjustments considered in Section 3. Two
examples are studied, both dealing with multivariate normal distributions with
structured covariance matrix. They are chosen so that we can easily do closed
form calculations both of complete and pairwise likelihood quantities, not for
their direct interest in application of composite likelihood. In both examples we
have d = 3 and situations with d0 = 1 and d0 = 2 are considered.

4.1. Equicorrelated multivariate normal data

Consider a one-way normal-theory random effects model in which a compo-
nent Yir of the ith vector has the form Yir = µ+ξi+εir, i = 1, . . . , n, r = 1, . . . , q,
where ξi and εir are independently normally distributed with zero mean and vari-
ances respectively σ2

ξ and σ2
ε . The model can be reparameterized in various ways.

For instance, the problem can be reformulated by writing Yi as a multivariate
normal with components having mean µ and variance σ2 = σ2

ξ + σ2
ε , and with

correlation ρ = σ2
ξ/(σ2

ξ + σ2
ε) between any two components of the same vector.

The special case with µ = 0 and σ2 = 1, where θ = ρ, has been treated in
detail by Cox and Reid (2004). Here we examine the case with θ = (µ, ρ, σ2).
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The model is a full exponential family with log likelihood given by

`(θ) = −nq

2
log σ2 − n(q − 1)

2
log(1 − ρ) − n

2
log{1 + ρ(q − 1)} − SSW

2σ2(1 − ρ)

−qSSB + nq(ȳ − µ)2

2σ2{1 + ρ(q − 1)}
, (4.1)

where, denoting by ȳi =
∑q

r=1 yir/q,

ȳ =
1
nq

n∑
i=1

q∑
r=1

yir, SSB =
n∑

i=1

q∑
r=1

(yir − ȳi)2, SSW =
n∑

i=1

(ȳi − ȳ)2

give the sufficient statistic.
Given the equicorrelation within any possible pair of components of Yi, we

consider the pairwise log likelihood (2.1) with all weights equal to 1. The generic
pair (Yir, Yis), r 6= s, has a bivariate normal distribution with the two components
having mean µ, variance σ2, and correlation ρ. Therefore,

p`(θ) = −nq(q − 1)
2

log σ2 − nq(q − 1)
4

log(1 − ρ2) − q − 1 + ρ

2σ2(1 − ρ2)
SSW

−q(q − 1)SSB + nq(q − 1)(ȳ − µ)2

2σ2(1 + ρ)
. (4.2)

This model is rather peculiar in the sense that the estimate from the pairwise
likelihood coincides with full maximum likelihood estimate, θ̂p = θ̂ (Mardia et
al. (2009)). Moreover E. C. Kenne Pagui, in an unpublished work, showed that
pU(θ) = J(θ)H(θ)−1U(θ). Hence, even though H(θ) 6= J(θ), we have that
I(θ) = G(θ). The two score functions, U(θ) and pU(θ), and the matrices I(θ),
J(θ), and H(θ) are reported in the Appendix.

As a consequence of this particular property of the model, the Wald and score
statistics based on the pairwise likelihood coincide with the analogous quantities
based on the full likelihood, at least without nuisance parameters. This is not
the case for the pairwise likelihood ratio statistic and its adjustments.

In order to assess the quality of the proposed approximations, we ran an
illustrative simulation experiment, with n = 5 and q = 30, and with three values
of ρ, ranging from a moderate to a strong correlation. Such a setting, with small
n relative to q, is likely to show problems for the pairwise likelihood, in particular
when ρ is one of the components of interest. We first considered the case in which
the overall parameter θ is of interest. Table 1 reports the empirical coverages of
confidence regions based on several statistics: likelihood ratio, score and Wald
statistics from the full model, and adjustments (3.2), (3.3), (3.4) and (3.8) of the
pairwise likelihood ratio statistic.
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Table 1. Equicorrelated multivariate normal model. Empirical coverage of
three-dimensional confidence regions based on different statistics in three
simulations, each with 100, 000 replications, with n = 5, q = 30, µ = 0,
σ2 = 1, and ρ = 0.2, 0.5, 0.9. Note that pwe(θ) = we(θ) and pwu(θ) = wu(θ).

ρ = 0.2 ρ = 0.5 ρ = 0.9
0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

w(θ) 0.856 0.920 0.978 0.856 0.921 0.981 0.855 0.918 0.980
we(θ) 0.921 0.962 0.991 0.746 0.807 0.890 0.488 0.525 0.580
wu(θ) 0.903 0.941 0.976 0.904 0.940 0.975 0.902 0.940 0.976
pw(θ)

INV
0.910 0.952 0.987 0.896 0.947 0.988 0.838 0.903 0.969

pw(θ)1 0.886 0.931 0.975 0.886 0.936 0.981 0.832 0.896 0.968
pw(θ)

CB
0.691 0.746 0.819 0.699 0.761 0.847 0.528 0.578 0.657

pw(θ)2 0.910 0.953 0.989 0.910 0.956 0.991 0.859 0.926 0.986

We note that the proposed adjustment (3.8) shows a reasonable performance
in terms of coverage, even outperforming the likelihood ratio from the full model
except when there is very large correlation. Adjustments (3.2) and (3.3) based
on moments also gave quite good results, with the latter being overall very accu-
rate. On the contrary, Wald and Chandler and Bate’s adjustment (3.4) showed
generally rather poor coverages.

A different aspect of confidence regions based on the pairwise likelihood, not
reflecting on coverage properties, is their shape. We might think of the shape
of the confidence region based on the likelihood ratio from the full model as a
gold standard. Figure 1 displays the confidence regions with nominal level 0.95
based on the statistics considered in Table 1, for a simulated sample with n = 5,
q = 30, ρ = 0.5, σ2 = 1, and µ = 0, giving ȳ = −0.065, SSW = 69.869, and
SSB = 1.226. The parameter µ is considered as known in this analysis. From
the plots we see that the score statistic has a degenerate shape in one direction.
On the contrary, pw(θ)INV seems to mitigate this problem and, overall, is the
solution that gives closest agreement with w(θ). Unreported simulation results in
this two-parameter case showed similar results to those for the three-parameter
case, although with better performances of all statistics.

As a numerical example of the lack of parameterization invariance of (3.4),
using the same data as those used for producing plots in Figure 1, consider
testing H0 : θ = θ0, with θ0 = (0, 0.7, 1), in the three parameter model. We
obtained pw(θ0)CB = 7.725 with approximate p-value 0.052. With the alternative
parameterization ω = (µ, 0.5 log((1+ρ)/(1−ρ)), σ2) the problem becomes testing
H0 : ω = ω0, with ω0 = (0, 0.867, 1) and we obtained cwΩ(ω0)CB = 8.767 with
approximate p-value 0.033.

We now consider the nuisance parameter case. First take ψ = (ρ, σ2) as a
two-dimensional parameter of interest, with µ treated as a nuisance parameter.
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Figure 1. Equicorrelated multivariate normal model. Confidence regions
with level 0.95 for (ρ, σ2), with µ known and equal to zero, for a simulated
sample with n = 5, q = 30, and true parameter value µ = 0, ρ = 0.5, and
σ2 = 1. In each plot, the solid line corresponds to w(θ), while the dashed
line corresponds to: (a) we(θ); (b) wu(θ); (c) pw(θ)INV ; (d) pw(θ)1 ; (e)
pw(θ)

CB
; (f) pw(θ)2 .

The constrained estimate of µ for fixed ψ does not depend on ψ and is equal to
ȳ, this for both the full and pairwise likelihood. For this reason, the shapes of
confidence regions, not displayed here, are very close to those in Figure 1 for the
case with µ known. On the other hand, coverages are slightly affected by the
presence of the nuisance parameter. Table 2 reports the results of a simulation
in the same setting as the one leading to the results in Table 1. The same
conclusions emerge. We did not consider Chandler and Bate’s adjustment, given
its poor coverage shown in Table 1 and its lack of invariance.

Finally, we restrict our attention to ρ as a scalar parameter of interest, with
λ = (µ, σ2) treated as a nuisance parameter. With a scalar parameter of inter-
est, all adjustments of the pairwise likelihood ratio coincide with (3.1). On the
contrary, the constrained estimate of σ2 for fixed ψ computed from the full likeli-
hood does not coincide with the one from the pairwise likelihood and, therefore,
Wald and score statistics no longer coincide in the two cases. Table 3 reports
the empirical coverage probabilities of confidence intervals for ρ in a simulation
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Table 2. Equicorrelated multivariate normal model. Empirical coverage of
profile confidence regions for ψ = (ρ, σ2) when µ is treated as a nuisance
parameter, based on different statistics. Results of three simulations, each
with 100, 000 replications, with n = 5, q = 30, µ = 0, σ2 = 1, and ρ =
0.2, 0.5, 0.9. Note that pwe

P
(θ) = we

P
(θ) and pwu

P
(θ) = wu

P
(θ).

ρ = 0.2 ρ = 0.5 ρ = 0.9
0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

w
P
(ψ) 0.846 0.912 0.975 0.847 0.913 0.977 0.846 0.912 0.976

we
P
(ψ) 0.935 0.969 0.992 0.735 0.793 0.874 0.480 0.515 0.569

wu
P
(ψ) 0.925 0.960 0.988 0.926 0.961 0.988 0.925 0.960 0.988

pwP (ψ)INV 0.921 0.962 0.992 0.890 0.946 0.988 0.823 0.891 0.961
pw

P
(ψ)1 0.908 0.952 0.987 0.862 0.929 0.989 0.803 0.863 0.943

pwP (ψ)2 0.925 0.967 0.994 0.898 0.966 0.997 0.837 0.908 0.981

Table 3. Equicorrelated multivariate normal model. Empirical coverage of
profile confidence intervals for ψ = ρ when (µ, σ2) is treated as a nuisance
parameter, based on different statistics. Results of three simulations, each
with 100, 000 replications, with n = 5, q = 30, µ = 0, σ2 = 1 and ρ =
0.2, 0.5, 0.9.

ρ = 0.2 ρ = 0.5 ρ = 0.9
0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

wP (ψ) 0.827 0.896 0.968 0.826 0.896 0.969 0.826 0.895 0.969
we

P
(ψ) 0.926 0.989 0.998 0.810 0.881 0.970 0.684 0.729 0.795

wu
P
(ψ) 0.963 0.976 0.990 0.963 0.976 0.990 0.962 0.976 0.990

pw
P
(ψ)

INV
0.935 0.987 0.997 0.862 0.940 0.999 0.798 0.864 0.946

pwe
P
(ψ) 0.926 0.989 0.998 0.810 0.881 0.970 0.684 0.729 0.795

pwu
P
(ψ) 0.940 0.988 0.997 0.879 0.959 1.000 0.825 0.899 0.985

study with the same setting as that leading to Table 1. All confidence inter-
vals seem to suffer the particular setting with small n and large q, with most
statistics showing a poor coverage. An exception is given by the two score statis-
tics, with the one from the full model always being strongly conservative. This
behaviour can be explained by the plots of the confidence intervals in Figure 2
corresponding to the same simulated sample as that used for Figure 1. Indeed,
the score statistic from the full model is increasing very slowly for large values
of ρ, thus giving a very large interval. This feature is not shared by the pair-
wise score. Finally, we note the close agreement between the adjusted pairwise
likelihood ratio and the full likelihood ratio, still considered as the gold standard.

4.2. First order autoregression

Consider a normal autoregressive process of order one. We use the pa-
rameterization given in Davison (2003, Example 6.24), such that Yir − µ =
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Figure 2. Equicorrelated multivariate normal model. Confidence intervals
with level 0.95 for ρ when (µ, σ2) is considered as a nuisance parameter, for
a simulated sample with n = 5, q = 30 and true parameter value µ = 0,
ρ = 0.5, and σ2 = 1. In each plot, the solid line corresponds to w

P
(θ), while

the dashed line corresponds to: (a) we
P
(ρ); (b) wu

P
(ρ); (c) pw

P
(ρ)

INV
; (d)

pwe
P
(ρ); (e) pwu

P
(ρ).

ρ(Yir−1 − µ) + εir, i = 1, . . . , n, r = 2, . . . , q, where εir are independently nor-
mally distributed with zero mean and variance σ2. This implies that we have
n observations, with the ith vector Yi having a multivariate normal distribution
with components having mean µ and covariance between Yir and Yis equal to
σ2ρ|r−s|/(1 − ρ2), r, s = 1, . . . , q.

In the following, we consider inference on the parameter θ = (µ, ρ, σ2), re-
stricting our attention to a single series. Dropping the subscript i from the
notation, the log likelihood from the full model is

`(θ) = − 1
2σ2

{
q∑

r=1

(yr − µ)2 + ρ2
q−1∑
r=2

(yr − µ)2 − 2ρ

q∑
r=2

(yr − µ)(yr−1 − µ)

}

−q

2
log σ2 +

1
2

log(1 − ρ2) . (4.3)

In this model, we construct the pairwise log likelihood (2.1) using only pairs
of contiguous components; hence, the only non-zero weights are wrs = 1 when
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Table 4. First order autoregression. Empirical coverage of three-dimensional
confidence regions based on different statistics in three simulations, each with
100, 000 replications, with q = 30, µ = 0, σ2 = 1, and ρ = 0.2, 0.5, 0.9.

ρ = 0.2 ρ = 0.5 ρ = 0.9
0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

w(θ) 0.889 0.942 0.988 0.881 0.938 0.986 0.819 0.898 0.974
we(θ) 0.866 0.921 0.974 0.832 0.893 0.958 0.582 0.650 0.753
wu(θ) 0.905 0.942 0.977 0.903 0.939 0.975 0.902 0.932 0.967
pw(θ)

INV
0.894 0.946 0.988 0.892 0.945 0.987 0.860 0.921 0.978

pw(θ)1 0.885 0.937 0.985 0.882 0.935 0.982 0.879 0.933 0.981
pw(θ)

CB
0.879 0.933 0.982 0.854 0.914 0.972 0.681 0.768 0.883

pw(θ)2 0.892 0.944 0.988 0.895 0.947 0.988 0.904 0.955 0.991

Table 5. First order autoregression. Empirical coverage of profile confidence
regions for ψ = (ρ, σ2) when µ is treated as a nuisance parameter, based on
different statistics. Results of three simulations, each with 100, 000 replica-
tions, with q = 30, µ = 0, σ2 = 1, and ρ = 0.2, 0.5, 0.9.

ρ = 0.2 ρ = 0.5 ρ = 0.9
0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

w
P
(ψ) 0.887 0.942 0.987 0.876 0.935 0.985 0.796 0.882 0.969

we
P
(ψ) 0.863 0.918 0.972 0.826 0.885 0.952 0.560 0.628 0.733

wu
P
(ψ) 0.921 0.955 0.984 0.927 0.960 0.986 0.950 0.973 0.992

pw
P
(ψ)

INV
0.893 0.946 0.989 0.887 0.944 0.989 0.833 0.906 0.973

pw
P
(ψ)1 0.884 0.937 0.983 0.874 0.930 0.981 0.834 0.920 0.990

pw
P
(ψ)2 0.891 0.942 0.987 0.885 0.940 0.987 0.875 0.959 0.999

r − s = 1, r, s = 1, . . . , q. In general, for autoregressive processes of higher
order, pairs at larger distances should be included in the pairwise likelihood
or, alternatively, a composite likelihood based on higher dimensional margins
could be used. A generic pair of successive components has a bivariate normal
distribution with the two components having mean µ, variance σ2/(1− ρ2), and
correlation ρ. Hence, the pairwise log likelihood is

p`(θ) = − 1
2σ2

{
q∑

r=2

(yr − µ)2 +
q∑

r=2

(yr−1 − µ)2 − 2ρ

q∑
r=2

(yr − µ)(yr−1 − µ)

}

−(q − 1) log σ2 +
q − 1

2
log(1 − ρ2) . (4.4)

All results reported below refer to the (µ, ρ, log σ2) parameterization. Of
course, this choice is only relevant for the non-invariant statistics.

Simulation results with the overall parameter θ of interest are summarized in
Table 4. The picture does not depart remarkably from that of the previous exam-
ple. Results for pairwise Wald and score-type statistics are not reported, being
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Table 6. First order autoregression. Empirical coverage of profile confi-
dence intervals for ψ = ρ when (µ, σ2) is treated as a nuisance parameter,
based on different statistics. Results of three simulations, each with 100, 000
replications, with q = 30, µ = 0, σ2 = 1, and ρ = 0.2, 0.5, 0.9.

ρ = 0.2 ρ = 0.5 ρ = 0.9
0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

w
P
(ψ) 0.892 0.945 0.988 0.876 0.934 0.984 0.760 0.855 0.959

we
P
(ψ) 0.889 0.943 0.987 0.844 0.899 0.960 0.545 0.608 0.713

wu
P
(ψ) 0.911 0.961 0.995 0.926 0.973 0.996 0.993 0.997 0.999

pw
P
(ψ)

INV
0.893 0.945 0.989 0.878 0.936 0.986 0.785 0.893 0.987

pwe
P
(ψ) 0.891 0.944 0.987 0.844 0.899 0.960 0.521 0.591 0.704

pwu
P
(ψ) 0.901 0.954 0.993 0.890 0.949 0.993 0.866 0.975 1.000

undistinguishable from those for the analogous statistics for the full model, al-
though the statistics do not coincide. The proposed adjustment (3.8) shows again
a reasonable performance in terms of coverage, and is uniformly more accurate
than the likelihood ratio from the full model. Moment matching adjustments,
especially (3.3), perform very well. On the contrary, Wald statistic and Chandler
and Bate’s adjustment (3.4) show generally rather poor coverages.

The analogous results for two problems with nuisance parameters are sum-
marized in Tables 5 and 6. For results in Table 5, we consider ψ = (ρ, σ2) and µ

as a nuisance. Results for pairwise Wald and score-type statistics are still very
close to those for the analogous statistics for the full model and are therefore
omitted. The best adjustments are (3.9) and the nuisance parameter version
of (3.3), with the latter giving higher accuracy under strong correlation. Con-
fidence regions from a simulated sample with q = 50 and true parameter value
µ = 0, ρ = 0.9, and σ2 = 1 are displayed in Figure 3. Score-type confidence
regions have quite an unusual shape and depart remarkably from the one based
on the full likelihood ratio. On the contrary, the region based on (3.9) largely
overlaps with the one based on the full likelihood ratio, although it inherits some
anomaly from the score. Finally, results in Table 6 summarize coverage estimates
for confidence intervals for ρ when (µ, σ2) is treated as a nuisance parameter. The
pairwise score interval shows the highest accuracy. On the other hand, the scale
adjusted pwP (ψ)INV = pwP (ψ)1 improves on wP (ψ). Confidence intervals for ρ,
for the same simulated sample as in Figure 3, are displayed in Figure 4. We note
that pwP (ψ)INV matches closely to wP (ψ), while the pairwise score exhibits an
anomalous behavior for large values of ρ.

5. Concluding Remarks

The simulation studies in Section 4 indicate that the parameterization in-
variant adjustments of composite likelihood ratio statistics (3.8) and (3.9) yield
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Figure 3. First order autoregression. Confidence regions with level 0.95 for
(ρ, σ2) when µ is treated as a nuisance parameter, for a simulated sample
with q = 50 and true parameter value µ = 0, ρ = 0.9, and σ2 = 1. In each
plot, the solid line corresponds to w(θ), while the dashed line corresponds to:
(a) we

P
(θ); (b) wu

P
(θ) and pwu

P
(ρ); (c) pw

P
(θ)

INV
; (d) pw

P
(θ)e; (e) pw

P
(θ)1 ;

(f) pwP (θ)2 .

confidence regions whose coverage and shape properties are comparable to, or
even better than those based on moment-matching corrections. Moreover, statis-
tics based on the composite likelihood ratio are to be preferred to score and
Wald-type statistics. These results agree with those in Geys and Molenberghs
(2002), focused on power estimation and check of type I error probabilities in
problems without nuisance parameters.

In more realistic applications, analytic expressions for H(θ) and J(θ) may be
unavailable, and evaluation of H(θ̂c) and J(θ̂c) seems to offer the most straight-
forward solution. In this way, however, exact invariance is lost. Moreover, sim-
ulation results, not reported here, dealing with the same models as in Section
4, show that accuracy in coverage decays. On the other hand, use of (3.5) in
place of (3.4) does not generally yield a remarkable improvement in coverage,
especially when the parameter is close to the boundary of the parameter space.

We also note that evaluation of H(θ) and J(θ) at various θ values is not an
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Figure 4. First order autoregression. Confidence intervals with level 0.95 for
ρ when (µ, σ2) is considered as a nuisance parameter, for a simulated sample
with q = 50 and true parameter value µ = 0, ρ = 0.9, and σ2 = 1. In each
plot, the solid line corresponds to w

P
(ρ), while the dashed line corresponds

to: (a) we
P
(ρ); (b) wu

P
(ρ); (c) pw

P
(ρ)

INV
; (d) pwe

P
(ρ); (e) pwu

P
(ρ).

issue in hypothesis testing on a specific value of the parameter of interest, but
is only required for the construction of confidence regions. These in turn are of
interest, particularly when d0 = 1 or d0 = 2. In such cases, estimation of matrices
H(θ), and J(θ) over a grid of values of the parameter of interest seems to be the
strategy leading to the most accurate coverage, while preserving parameterization
invariance. For a recent overview of computational aspects related to matrices
H(θ) and J(θ) see Varin, Reid, and Firth (2011, Sec. 5.1).

Parameterization invariance, although in itself an appealing property, does
not perhaps fully explain the satisfactory sampling behaviour of the proposed
adjustments. A theoretical explanation is an open issue for further research.

Under the general setting of model misspecification entailing failure of the
second Bartlett identity, Stafford (1996) and Royall and Tsou (2003) consider
adjusting a working likelihood function in order to recover the familiar asymp-
totic chi-squared distribution for the likelihood ratio statistic. Their treatment
requires a scalar parameter of interest and leads to a robust adjustment that
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may be seen as an empirical version of adjustments considered in this paper
when d = 1, or d0 = 1. An extension to a multidimensional parameter of interest
of robust adjusted likelihood functions could be based on (3.8) and (3.9), with
empirical versions of H(θ) and J(θ).
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Appendix

In the equicorrelated example of Section 4.1 the score function for the full
log likelihood (4.1) has elements

Uµ(θ) =
nq(ȳ − µ)

σ2{1 + ρ(q − 1)}
,

Uρ(θ) = − SSW

2σ2(1 − ρ)2
+

q(q − 1){SSB + n(ȳ − µ)2}
2σ2{1 + ρ(q − 1)}2

+
n(q − 1)
2(1 − ρ)

− n(q − 1)
2{1 + ρ(q − 1)}

,

Uσ2(θ) =
SSW

2(σ2)2(1 − ρ)
+

q{SSB + n(ȳ − µ)2}
2(σ2)2{1 + ρ(q − 1)}

− nq

2σ2
,

while the expected information matrix has elements

Iµµ(θ) =
nq

σ2{1 + ρ(q − 1)}
, Iρρ =

n(q − 1)
2

[
1

(1 − ρ)2
+

q − 1
{1 + ρ(q − 1)}2

]
,

Iσ2σ2(θ) =
nq

2(σ2)2
, Iµρ(θ) = Iµσ2(θ) = 0, Iρσ2 = − nq(q − 1)ρ

2σ2(1 − ρ){1 + ρ(q − 1)}
.

The score function for the pairwise log likelihood (4.2) has elements

pUµ(θ) =
nq(q − 1)(ȳ − µ)

σ2(1 − ρ)
,

pUρ(θ) = −ρ2 + 2ρ(q − 1) + 1
2σ2(1 − ρ2)2

SSW +
q(q − 1){SSB + n(ȳ − µ)2}

2σ2(1 + ρ)2
+

nq(q − 1)ρ
2(1 − ρ2)

,

pUσ2(θ) =
q − 1 + ρ

2(σ2)2(1 − ρ2)
SSW +

q(q − 1){SSB + n(ȳ − µ)2}
2(σ2)2(1 + ρ)2

− nq(q − 1)
2σ2

.

The matrix H(θ) has elements

Hµµ(θ) =
nq(q − 1)
σ2(1 + ρ)

, Hρρ =
nq(q − 1)(1 + ρ2)

2(1 − ρ2)2
,

Hσ2σ2(θ) =
nq(q − 1)
2(σ2)2

, Hµρ(θ) = Hµσ2(θ) = 0, Hρσ2 = − nq(q − 1)ρ
2σ2(1 − ρ2)

,



146 LUIGI PACE, ALESSANDRA SALVAN AND NICOLA SARTORI

while the matrix J(θ) has

Jµµ(θ) =
nq(q − 1)2{1 + ρ(q − 1)}

σ2(1 + ρ)2
, Jµρ(θ) = Jµσ2(θ) = 0 ,

Jρρ(θ) =
n(q − 1)
2(1 + ρ)4

[
{ρ2 + 2ρ(q − 1) + 1}2

(1 − ρ)2
+ (q − 1){1 + ρ(q − 1)}2

]
,

Jρσ2(θ) =
nq(q − 1)ρ

2σ2(ρ − 1)(ρ + 1)3
{
q2ρ2 − 3qρ2 + 3ρ2 − q2ρ + 5qρ − 4ρ + 1

}
,

Jσ2σ2(θ) =
n(q − 1)

2(σ2)2(1 + ρ)2
[
(q − 1 + ρ)2 + (q − 1) {1 + ρ(q − 1)}2

]
.

We now consider the score functions and the matrices I(θ), H(θ), and J(θ)
for the first order autoregressive model in the example of Section 4.2. We start
with the full likelihood (4.3), whose score function has the following elements

Uµ(θ) =
1
σ2

{
q∑

r=1

(yr − µ) + ρ2
q−1∑
r=2

(yr − µ) − ρ

q∑
r=2

(yr−1 − µ) − ρ

q∑
r=2

(yr − µ)

}
,

Uρ(θ) = − ρ

1 − ρ2
− 1

σ2

{
ρ

q−1∑
r=2

(yr − µ)2 −
q∑

r=2

(yr−1 − µ)(yr − µ)

}
,

Uσ2(θ) =
1

2(σ2)2

{
q∑

r=1

(yr − µ)2 + ρ2
q−1∑
r=2

(yr − µ)2 − 2ρ

q∑
r=2

(yr − µ)(yr−1 − µ)

}
− q

2σ2
,

while the expected information matrix has elements

Iµµ(θ) =
1
σ2

{(q − 1)(1 − ρ)2 + 1 − ρ2}, Iρρ =
1 + ρ2 + (q − 2)(1 − ρ2)

(1 − ρ2)2
,

Iσ2σ2(θ) =
q

2(σ2)2
, Iµρ(θ) = Iµσ2(θ) = 0, Iρσ2 =

ρ

σ2(1 − ρ2)
.

The score function for the pairwise log likelihood (4.4) has elements

pUµ(θ) =
1 − ρ

σ2

{
q∑

r=2

(yr − µ) +
q∑

r=2

(yr−1 − µ)

}
,

pUρ(θ) = −(q − 1)ρ
1 − ρ2

+
1
σ2

q∑
r=2

(yr − µ)(yr−1 − µ) ,

pUσ2(θ) =
1

2(σ2)2

{
q∑

r=2

(yr − µ)2 +
q∑

r=2

(yr−1 − µ)2 − 2ρ

q∑
r=2

(yr − µ)(yr−1 − µ)

}

−q − 1
σ2

.
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The matrix H(θ) has elements

Hµµ(θ) =
2(q − 1)(1 − ρ)

σ2
, Hρρ =

(q − 1)(1 + ρ2)
(1 − ρ2)2

,

Hσ2σ2(θ) =
q − 1
(σ2)2

, Hµρ(θ) = Hµσ2(θ) = 0, Hρσ2 =
(q − 1)ρ

σ2(1 − ρ2)
,

while the matrix J(θ) has

Jµµ(θ) =
2(1 − ρ)2

σ2(1 − ρ2)

q∑
r=2

q∑
s=2

{
ρ|r−s| + ρ|r−s+1|

}
, Jµρ(θ) = Jµσ2(θ) = 0 ,

Jρρ(θ) =
1

(1 − ρ2)2

q∑
r=2

q∑
s=2

{
ρ2|r−s| + ρ|r−s+1|+|r−s−1|

}
,

Jρσ2(θ) =
1

σ2(1 − ρ2)2

q∑
r=2

q∑
s=2

{
ρ|r−s|+|r−s−1| + ρ|r−s|+|r−s+1| − ρ2|r−s|+1

−ρ|r−s−1|+|r−s+1|+1
}

,

Jσ2σ2(θ) =
1

(σ2)2(1 − ρ2)2

q∑
r=2

q∑
s=2

{
(1+ρ2)ρ2|r−s|+ρ|r−s+1|+|r−s−1|+2+ρ2|r−s+1|

−2ρ|r−s|+|r−s+1|+1 − 2ρ|r−s|+|r−s−1|+1
}

.

References

Chandler, R. E. and Bate, S. (2007). Inference for clustered data using the independence log-

likelihood. Biometrika 94, 167-183.

Cox, D. R. and Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities.

Biometrika 91, 729-737.

Davison, A. C. (2003). Statistical Models. Cambridge Univ. Press, Cambridge.

Foutz, R. V. and Srivastava, R. C. (1977). The performance of the likelihood ratio test when

the model is incorrect. Ann. Statist. 5, 1183-1194.

Foutz, R. V. and Srivastava, R. C. (1978). The asymptotic distribution of the likelihood ratio

when the model is incorrect. Canad. J. Statist. 6, 273-279.

Geys, H. and Molenberghs, G. (2002). Pseudo-likelihood inference. In Topics in Modelling of

Clustered Data (Edited by M. Aerts et al.), 115-125. Chapman and Hall, London.

Kent, J. T. (1982). Robust properties of likelihood ratio tests. Biometrika 69, 19-27.

Lindsay, B. G. (1988). Composite likelihood methods. Contemp. Math. 80, 221-239.

Lindsay, B. G., Pilla, R. S. and Basak, P. (2000). Moment-based approximations of distributions

using mixtures: theory and applications. Ann. Inst. Statist. Math. 52, 215-230.

Mardia, K. V., Kent, J. T., Hughes, G. and Taylor, C. C. (2009). Maximum likelihood estimation

using composite likelihoods for closed exponential families. Biometrika 96, 975-982.



148 LUIGI PACE, ALESSANDRA SALVAN AND NICOLA SARTORI

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longitudinal Data. Springer, New

York.

Rotnitzky, A. and Jewell, N. P. (1990). Hypothesis testing of regression parameters in semi-

parametric generalized linear models for cluster correlated data. Biometrika 77, 485-497.

Royall, R. and Tsou, T.-S. (2003). Interpreting statistical evidence by using imperfect models:

robust adjusted likelihood functions. J. Roy. Statist. Soc. Ser. B 65, 391-404.

Satterthwaite, F. E. (1946). Approximate distribution of estimates of variance components.

Biometrics Bull. 2, 110-114.

Stafford, J. E. (1996). A robust adjustment of the profile likelihood. Ann. Statist. 24, 336-352.

Varin, C. (2008). On composite marginal likelihoods. Adv. Stat. Anal. 95, 1-28.

Varin, C., Reid, N. and Firth, D. (2011). An overview of composite likelihood methods. Statist.

Sinica 21, 5-42.

Wood, A. T. A. (1989). An F approximation to the distribution of a linear combination of

chi-squared variables. Commun. Statist. Simula. 18, 1439-1456.

Department of Statistics, University of Udine, Via Treppo of 18, 33100 Udine, Italy.

E-mail: pace@dss.uniud.it

Department of Statistics, University of Padova, Via C. Battisti 241, 35121 Padova, Italy.

E-mail: alessandra.salvan@unipd.it

Department of Statistics, University of Padova, Via C. Battisti 241, 35121 Padova, Italy.

E-mail: nicola.sartori@unipd.it

(Received October 2009; accepted February 2010)

file:pace@dss.uniud.it
file:alessandra.salvan@unipd.it
file:nicola.sartori@unipd.it

	1. Introduction
	2. Notation
	3. Adjustments to Composite Likelihood Ratio
	3.1. No nuisance parameters
	3.2. Nuisance parameter case

	4. Examples
	4.1. Equicorrelated multivariate normal data 
	4.2. First order autoregression

	5. Concluding Remarks
	Appendix

