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Abstract: We propose estimators for the counting process intensity function and its

derivatives by maximizing the local partial likelihood. We prove the consistency

and asymptotic normality of the proposed estimators. In addition to the compu-

tational ease, a nice feature of the proposed estimators is the automatic boundary

bias correction property. We also discuss the choice of the tuning parameters in the

definition of the estimators. An effective and easy-to-calculate data-driven band-

width selector is proposed. A small simulation experiment is carried out to assess

the performance of the proposed bandwidth selector and the estimators.
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1. Introduction

The counting process is a useful statistical model that is extensively applied
in the analysis of data arising from such fields as medicine and public health,
biology, finance, insurance, and social sciences. The evolution of a counting pro-
cess over time is (stochastically) governed by its intensity process, and by its
intensity function in the case of multiplicative intensity process models. There-
fore, to understand the behavior of a multiplicative intensity counting process,
the estimation of the intensity function is an important question. There is a
sizable literature devoted to this question. Ramlau-Hansen (1983) applied the
kernel smoothing method to estimate the intensity function and established the
consistency and local asymptotic normality of the proposed estimator. Ramlau-
Hansen also proposed to estimate the derivatives of the intensity function by
differentiating the estimator of the intensity function. Karr (1987) used the sieve
method and established the strong consistency and the asymptotic normality of
the resultant estimator for the intensity function. Antoniadis (1989) proposed a
penalized maximum likelihood estimator for the intensity function and proved its
consistency and asymptotic normality. Patil and Wood (2004) used the wavelet
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method to estimate the intensity function and calculated the mean integrated
squared error of the estimator. Chen et al. (2008) proposed to estimate the
intensity function and its derivatives using a local polynomial estimator based
on martingale estimating equations, and proved the consistency and asymptotic
normality of the estimators.

The roughness penalty method and the sieve method are computationally ex-
pensive because of the potentially high dimensional optimization involved. Also,
formal methods for derivative estimation based on these methods or the wavelet
thresholding method seem lacking. The kernel smoothing method is computa-
tionally very appealing, but requires extra effort in modifying the estimators for
boundary points to reduce the boundary or edge effects. The biased martin-
gale estimating equation method of Chen et al. (2008) provides estimators for
the intensity function and its derivatives in a unified manner and enjoys both
the computational ease and the automatic boundary correction property of lo-
cal polynomial type methods (Chen, Yip, and Lam (2009)) but, from a theoretic
point of view, the construction of the estimating equations is somewhat arbitrary.
In this paper we propose an estimation procedure for the intensity function and
its derivatives based on the idea of local partial likelihood, which falls under the
umbrella of the more general concept of composite likelihood (Lindsay (1988)).
The resultant estimators are fast to compute, and are consistent and asymptoti-
cally normally distributed under mild regularity conditions. Moreover, similar to
the biased estimating equation estimators, they also enjoy the automatic bound-
ary correction property. The practically important issue of bandwidth selection
is also discussed.

In Section 2 we introduce a multiplicative intensity counting process and
give a heuristic derivation of the partial likelihood that is used later. We present
the maximum local partial likelihood estimator for the intensity function and
its derivatives in Section 3. The properties of the estimators are considered in
Section 4. A data-driven bandwidth selector is proposed in Section 5. Sec-
tion 6 reports the results of a small scale numerical experiment in verifying the
properties of the proposed estimators and assessing the finite sample numerical
performance of the bandwidth selector as well as the estimators. Finally, some
concluding remarks and discussions are given in Section 7. A lemma used in
proving the consistency of the estimators is given in the Appendix.

2. Multiplicative Intensity Counting Process

The multiplicative intensity counting process is a counting process N(t)
that has an intensity process with respect to a filtration {Ft : t ∈ [0, 1]} of the
multiplicative form Y (t)α(t), t ∈ [0, 1]. Here Y is a nonnegative predictable
process called the exposure process, and α a positive deterministic function,
called the intensity function. Note the compensated counting process M(t) =
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N(t) −
∫ t
0 Y (s)α(s)ds is a local square integrable martingale. Suppose we can

observe the processes N(t) and Y (t) over [0, 1] and are interested in estimating
α(t) and its derivatives.

Using the chain rule for conditional probabilities, we can informally write
the likelihood of the data as

Pr(N(t), Y (t); 0 ≤ t ≤ 1)

=Pr(N0, Y0) × Pr(dN(t), dY (t); 0 < t ≤ 1|F0)

=Pr(N0, Y0) × π
t∈(0,1]

Pr(dN(t)|Ft−) Pr(dY (t)|Ft−)

=
{
π

t∈(0,1]
(Y (t)α(t)dt)dN(t)(1 − Y (t)α(t)dt)1−dN(t)

}

×
{

Pr(N0, Y0) π
t∈(0,1]

Pr(dY (t)|Ft−)
}

. (2.1)

To specify the full likelihood we have to specify the distributions of dY (t). To
avoid this usually awkward task, we base our inference about α on the partial
likelihood obtained by discarding the terms in the second pair of braces in (2.1),
and neglecting a term dtN(1) from the first pair of braces. Thus,

L(α) = π
t∈(0,1]

(Y (t)α(t))dN(t)(1 − Y (t)α(t)dt)1−dN(t)

=
N(1)∏
i=1

(Y (Ti)α(Ti))∆N(Ti) exp{−
∫ 1

0
Y (s)α(s)ds}, (2.2)

where the Ti are the jump times of the counting process N . With nonparametric
conditions on α such as differentiability over the interval [0, 1], L(α) can be
made arbitrarily large by suitably choosing α. Therefore, the fully nonparametric
maximum likelihood estimator for α does not exist. To overcome this difficulty,
the penalized maximum likelihood estimator (MLE) and the sieve MLE for α
have been proposed by Antoniadis (1989) and Karr (1987), respectively. In this
paper, we consider the computationally appealing alternative of maximum local
partial likelihood estimator.

3. Definition of the Local Partial Likelihood and the Estimator

Consider the estimation of α(t) for any fixed t ∈ [0, 1]. We define a reasonable
local log-partial likelihood function for the purpose of estimating α(t). First we
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note the global log-partial likelihood function can be written, again informally,
as

log L =
∫ 1

0
[{log(Y (s)α(s))}dN(s) + {1 − dN(s)} log(1 − Y (s)α(s)ds)] . (3.1)

Introducing a weighting process Wt(s) to modulate the likelihood contributions
in the infinitesimal intervals (s, s + ds], and replacing α(s) by a local version
α̃t(s), we arrive at the localized log-partial likelihood∫ 1

0
Wt(s)[{log(Y (s)α̃t(s))}dN(s) + {1 − dN(s)} log(1 − Y (s)α̃t(s)ds)]

=
∫ 1

0
{log(Y (s)α̃t(s))}Wt(s)dN(s) −

∫ 1

0
Y (s)α̃t(s)Wt(s)ds, (3.2)

where the equality follows from log(1 − Y (s)α̃t(s)ds) = −Y (s)α̃t(s)ds and the
fact that the set {s : dN(s) 6= 0} has Lebesgue measure 0.

The obvious choice of the local version of α at t seems to be the truncated
Taylor series expansion

α̃t(s) = α(t) + α′(t)(s − t) + · · · + α(p)(t)
p!

(s − t)p = gp(s − t)>θt, (3.3)

where gp(x) = (1, x, . . . , xp/p!)> and θt = (α(t), α′(t), . . . , α(p)(t))>.
The weighting process Wt(s) is expected to give less weight to the likelihood

contribution of dN(s) if s is further away from t, or if dN(s) has larger (condi-
tional) variance. As the conditional variance of dN(s) given Fs− is Y (s)α(s)ds
and is proportional to Y (s), we let Wt(s) be inversely proportional to Y (s). The
above considerations motivate the choice of weighting process

Wt(s) =
1
b
K(

s − t

b
)
J(s)
Y (s)

= Kb(s − t)
J(s)
Y (s)

, (3.4)

where b is a positive tuning parameter, called the bandwidth or window size, that
controls the size of the local neighborhood, K(x) is a nonnegative function called
the kernel function, that is nonnegative and integrates to unity, and J(s) =
1{Y (s) > 0} is the indicator of {Y (s) > 0} that, together with the convention
that 0/0 = 0, prevents the weighting process from giving infinite weights.

Substituting (3.3) and (3.4) into (3.2) gives a form of the local log-likelihood
that can be used to estimate α and its derivatives up to order p at t:

`(θt) =
∫ 1

0
{log(Y (s)gp(s − t)>θt)}Kb(s − t)

J(s)
Y (s)

dN(s)

−
∫ 1

0
gp(s − t)>θtJ(s)Kb(s − t)ds. (3.5)
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The MLPLE for θt comes as a maximizer of `(θt). To maximize `(θt), we need
the local score and (observed) information matrix for θt. These follow from
differentiating `(θt) with respect to θt:

s(θt) =
∂`(θt)
∂θt

=
∫ 1

0

gp(s − t)Kb(s − t)J(s)
gp(s − t)>θtY (s)

dN(s) −
∫ 1

0
gp(s − t)J(s)Kb(s − t)ds, (3.6)

I(θt) = − ∂2`(θt)
∂θt∂θt

> =
∫ 1

0

gp(s − t)gp(s − t)>J(s)Kb(s − t)
{gp(s − t)>θt}2Y (s)

dN(s)

=
N(1)∑
i=1

gp(Ti − t)gp(Ti − t)>J(Ti)Kb(Ti − t)
{gp(Ti − t)>θt}2Y (Ti)

∆N(Ti). (3.7)

The MLPLE θ̂t of θt should solve the local score equation `(θt) = 0. Except for
the case p = 0, where the MLPLE θ̂t is one-dimensional and is given by

α̂(0)(t) =

∫ 1
0 Kb(s − t)J(s)/Y (s)dN(s)∫ 1

0 Kb(s − t)J(s)ds
, (3.8)

a closed-form solution for the score equation is generally not anticipated and
we have to resort to numerical procedures. As we have the information matrix
at hand, the obvious choice of the numerical procedure is the Newton-Raphson
iteration

θt
(new) = θt

(old) + I(θt
(old))−1s(θt

(old)). (3.9)

The initial value to start the iteration can be chosen as θt
(0) = α̂

(0)
t e>0,p, where

α̂
(0)
t is given by (3.8) and ei,p is the (p + 1)-dimensional unit vector with the

(i + 1)st component being 1.

4. Properties of the Estimator

As we are interested in asymptotic properties, we consider a sequence of
multiplicative models, indexed by n = 1, 2, . . . . Throughout, convergence is as
n tends to infinity, unless indicated otherwise. For each n, with respect to the
filtration F (n) =

{
F (n)

t : t ∈ [0, 1]
}

, the counting process N (n) has an intensity

process Y (n)α(t), with Y (n) being predictable with respect to the filtration F (n).
Note here the intensity function α is the same in all models. In the definition
of the MLPLE for θt, we let the kernel function K and the order p of the lo-
cal polynomials be fixed, but allow the bandwidth parameter b to vary with
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n. Then, under regularity conditions on the model and on the choices of the
bandwidth and of the kernel function, we can prove that the MLPLE is consis-
tent and asymptotically normally distributed. To avoid repetitious statements of
regularity conditions, and for ease of reference, we list all the conditions below.

C1. (Positive and differentiable intensity). The true intensity is positive and
p times continuously differentiable at t. When t = 0 or 1, derivatives are
interpreted as right or left derivatives accordingly.

C2. (Explosive exposure process). The exposure process Y (n) → ∞ in probabil-
ity, uniformly in a neighborhood of t.

C3. (Slowly shrinking bandwidth). The bandwidth bn ↘ 0, but b2p+1
n Y (n) → ∞

in probability, uniformly in a neighborhood of t.

C4. (Positive definite kernel moment matrix). The kernel function K is bounded,
is supported by a compact interval, say [−1, 1], and is such that the matrix

At =
∫ min(1,(1−t)/0)

−min(1,t/0)
g∗

p(x)⊗2K(x)dx (4.1)

is positive definite, where we follow the convention 0/0 = 0 as before, and
use g∗

p to denote the vector-valued function g∗
p(x) = (1, x, . . . , xp)> and

x⊗2 = xx> to denote the outer product of a vector x.

C5. (Explosive exposure process). There exists a sequence of positive constants
an ↗ ∞, and a deterministic function y that is positive and continuous at t

such that Y (n)/a2
n converges in probability to y, uniformly in a neighborhood

of t.

C6. (Higher order differentiable intensity). The true intensity is (p + 1) times
continuously differentiable at t.

We use P−→ to indicate convergence in probability, and d−→ convergence in distri-
bution. We take ‖x‖ = (

∑
i x

2
i )

1/2 for a vector x, Dp to denote the (p+1)×(p+1)
diagonal matrix with diagonal elements Di+1,i+1 = bi/i!, i = 0, . . . , p, and θ0

t to
denote the true value of θt.

4.1. Consistency and asymptotic normality

Theorem 4.1 (Consistency of θ̂t). Under C1−C4, θ̂t
P−→ θ0

t .

By definition, our estimator is an M -estimator as well as a Z-estimator.
Therefore it is natural to try to establish its consistency using the general theory
about these types of estimators, such as Theorem 5.7 and Theorem 5.9 of van
der Vaart (1998). However, these two theorems cannot be directly applied here,
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due to the lack of a useful fixed limit of the criterion function. To overcome
this difficult, we generalize Theorem 5.9 of van der Vaart (1998) to accommo-
date situations in which a useful fixed limit of the criterion function does not
exist but a deterministic approximating sequence of the criterion function can be
constructed. This generalization is stated as Lemma A.1 in the Appendix.

Proof of Theorem 4.1. In the sequel we suppress the subscript or superscript
p and n from various notations for simplicity. Define s0, a vector-valued function
of θt, by

s0(θt) =
∫ 1

0
g(s − t)

g(s − t)>θ0
t

g(s − t)>θt
Kb(s − t)ds −

∫ 1

0
g(s − t)Kb(s − t)ds.

Note that s0 depends on n through the bandwidth b and has a zero θ0
t . A change

of variable in the integrals involved shows that

D−1s0(θt) =
∫ min(1,(1−t)/0)

−min(1,t/0)
g∗(x)

{
g∗(x)>Dθ0

t

g∗(x)>Dθt
− 1

}
K(x)dx

when n is large. The derivative matrix of D−1s0(θt) evaluated at θ0
t is given by

−D
∫ min(1,(1−t)/0)

−min(1,t/0)

g∗(x)⊗2K(x)
g∗(x)>Dθ0

t

dx

which, by C1 and C4 is positive definite and has smallest eigenvalue larger than
λbp/p! for some constant λ > 0, when n is large. Thus, a linearization of D−1s0

shows that when n is large, θ0
t is a suitably separated solution of s0(θt) = 0 in

the sense that∥∥θt − θ0
t

∥∥ ≥ ε ⇒
∥∥D−1s0(θt)

∥∥ ≥ λbpε/(2p!), ∀ε > 0 small enough. (4.2)

If we can show that supθt

∥∥b−pD−1 {s(θt) − s0(θt)}
∥∥ P−→ 0, then Lemma A.1

guarantees θ̂t
P−→ θ0

t .
To complete the proof, it remains to show that supθt

∥∥b−pD−1{s(θt) − s0(θt)}
∥∥

P−→ 0. With α0 denoting the true intensity, and M(t) = N(t) −
∫ t
0 Y (s)α0(s)ds

the compensated counting process, we can write s(θt)− s0(θt) as the sum of the
random functions

∆1(θt) =
∫ 1

0
g(s − t)

J(s)
Y (s)

1
g(s − t)>θt

Kb(s − t)dM(s),

∆2(θt) =
∫ 1

0
g(s − t)J(s)

1
g(s − t)>θt

Kb(s − t){α0(s) − g(s − t)>θ0
t }ds,
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∆3(θt) =
∫ 1

0
g(s − t){J(s) − 1}g(s − t)>θ0

t

g(s − t)>θt
Kb(s − t)ds,

∆4(θt) =
∫ 1

0
g(s − t){1 − J(s)}Kb(s − t)ds.

We only need to show b−p supθt

∥∥D−1∆i(θt)
∥∥ P−→ 0, for i = 1, 2, 3, 4. By C2,

with probability tending to 1, |1 − J(s)| is zero in a neighborhood of t. Since
Kb is supported by [−b, b], and thus the effective intervals of integrations in the
∆i are [t − b, t + b] and fall inside the neighborhood of t for n large, we have
b−pD−1∆i(θt) equals 0 with probability tending to 1 for i = 3, 4. This implies
b−p supθt

∥∥D−1∆i(θt)
∥∥ P−→ 0, i = 3, 4.

By C1 we can assume the local parameter space Θt of θt is a compact rect-
angle in (0,∞) × Rp. Therefore, when n is sufficiently large, supθt

sups∈[t−b,t+b]∣∣1/g(s − t)>θt

∣∣ is uniformly (in n) bounded , say by C < ∞. This implies, when
n is large and with the notations ≤, sup, and |·| understood component-wise for
vectors,

b−p sup
θt

∣∣D−1∆2(θt)
∣∣

=sup
θt

∣∣∣∣∣
∫ min(1,(1−t)/0)

−min(1,t/0)
g∗(x)

J(t + bx)
g(bx)θt

K(x)
α0(t + bx) − gp(bx)>θ0

t

bp
dx

∣∣∣∣∣
≤C

∫ min(1,(1−t)/0)

−min(1,t/0)
|g∗(x)|K(x)

∣∣∣∣α0(t + bx) − gp(bx)>θ0
t

bp

∣∣∣∣ dx → 0,

where the convergence to 0 is by dominated convergence and the differentiability
condition C1. Now some simple algebra shows the component-wise convergence
b−p supθt

∣∣D−1∆2(θt)
∣∣ → 0 implies b−p supθt

∥∥D−1∆2(θt)
∥∥ → 0.

Now we need only show b−p supθt

∥∥D−1∆1(θt)
∥∥ P−→ 0. Thanks to the

boundedness of supθt
sups∈[t−b,t+b]

∣∣1/g(s − t)>θt

∣∣, it is sufficient to show b−p∣∣∣D−1
∫ 1
0 g(s − t)(J(s)/Y (s))Kb(s − t)dM(s)

∣∣∣ P−→ 0, which is equivalent to the
component-wise convergences

b−p

∣∣∣∣ejD−1

∫ 1

0
g(s − t)

J(s)
Y (s)

Kb(s − t)dM(s)
∣∣∣∣ P−→ 0, j = 0, . . . , p. (4.3)

For j = 0, . . . , p, define the process

M̃(u) =
∫ u

0
b−pejD−1g(s − t)

J(s)
Y (s)

Kb(s − t)dM(s), u ∈ [0, 1].
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By the theory of counting process stochastic integrals (Aalen (1978); Andersen
et al. (1993); Fleming and Harrington (1991)), M̃(u) is a local square integrable
martingale with predictable variation process

〈M̃〉(u) =
∫ u

0
b−2p{ejD−1g(s − t)}2 J(s)

Y (s)2
Kb(s − t)2Y (s)α0(s)ds.

By a change of variables and C3,

〈M̃〉(1) =
∫ min(1,(1−t)/0)

−min(1,t/0)
x2j J(t + bx)

b2p+1Y (t + bx)
K(x)2α0(t + bx)dx

P−→ 0. (4.4)

By Lenglart’s inequality (Andersen et al. (1993); Fleming and Harrington (1991)),

Pr

(
sup

u∈[0,1]

∣∣∣M̃(u)
∣∣∣ > ε

)
≤ δ

ε2
+ Pr

(
〈M̃〉(1) > δ

)
, ∀ε, δ > 0. (4.5)

Taking lim sup on both sides of (4.5), we have by (4.4) that

lim sup
n→∞

Pr

(
sup

u∈[0,1]

∣∣∣M̃(u)
∣∣∣ > ε

)
≤ δ

ε2
.

The arbitrariness of δ guarantees limPr(supu∈[0,1] |M̃(u)| > ε) exists and equals
0. So supu∈[0,1] |M̃(u)|, and therefore |M̃(1)|, converge in probability to 0. This
concludes the proof of (4.3) and the theorem.

Theorem 4.2 (Asymptotic normality). Under Conditions C1−C6, if the
bandwidth is chosen such that lim sup a2

nb2p+3
n < ∞, then we have anb

1/2
n D{θ̂t −

θ0
t − bp+1

n D−1mt}
d−→ N (0,At

−1VtAt
−1), where At is given in (4.1) and

mt =
α

(p+1)
0 (t)

(p + 1)!
At

−1

∫ min(1,(1−t)/0)

−min(1,t/0)
g∗(x)xp+1K(x)dx, (4.6)

Vt =
α0(t)
y(t)

∫ min(1,(1−t)/0)

−min(1,t/0)
g∗(x)⊗2K(x)2dx. (4.7)

Moreover, if Ŝ =
∫ 1
0

g(s−t)⊗2

{g(s−t)>θ̂t}2

J(s)
Y (s)2

Kb(s − t)2dN(s), then

a2
nbnDI(θ̂t)−1 Ŝ I(θ̂t)−1D P−→ At

−1VtAt
−1.

This theorem implies that, when n is large, the distribution of θ̂t is ap-
proximately normal and its variance-covariance matrix can be estimated by the
sandwich-type estimator

v̂ar(θ̂t) = I(θ̂t)−1ŜI(θ̂t)−1. (4.8)



116 FENG CHEN

Proof of Theorem 4.2. For the local score function s, we have

s(θ̂t) = s(θ0
t ) − I(θ∗

t )(θ̂t − θ0
t ),

where θ∗
t is on the line segment joining θ̂t and θ0

t . Since s(θ̂t) = 0,

D−1I(θ∗
t )D

−1anb1/2
n D(θ̂t − θ0

t ) = anb1/2
n D−1s(θ0

t ).

Mimicking the proof of Theorem 4.1, we can show C1−C4 imply D−1I(θ̂t)D−1−
Atα0(t)/{e>0 θ̂t}2 P−→ 0⊗2, with At given by (4.1). As convergence in probability

is preserved by continuous mappings, Atα0(t)/{e>0 θ̂t}2 P−→ At/α0(t). It follows

that D−1I(θ̂t)D−1 P−→ At/α0(t), from which we also have D−1I(θ∗
t )D

−1 P−→
At/α0(t), since θ∗

t is sandwiched by θ̂t and θ0
t .

We next prove anb
1/2
n {D−1s(θ0

t )−bp+1
n Atmt/α0(t)}

d−→ N (0,Vt/α0(t)2), so
that by Slutsky’s Theorem,

anb1/2
n D(θ̂t − θ0

t − bp+1
n D−1mt)

= anb1/2
n DI(θ∗

t )
−1D{D−1s(θ0

t ) − bp+1
n

Atmt

α0(t)
}

+anbp+3/2
n {DI(θ∗

t )
−1D

Atmt

α0(t)
− mt}

d−→N (0,At
−1VtAt

−1).

Define a vector-valued process M̃(u), u ∈ [0, 1], and a vector-valued random
variable R by

M̃(u) =
∫ u

0
anb1/2

n

D−1g(s − t)
g(s − t)>θ0

t

J(s)
Y (s)

Kb(s − t)dM(s)

,
∫ u

0
H(s)dM(s),

R =
∫ 1

0

anb
1/2
n D−1g(s − t)J(s)Kb(s − t)

g(s − t)>θ0
t

{α0(s) − g(s − t)>θ0
t }ds,

so we can write anb
1/2
n D−1s(θ0

t ) = M̃(1) + R. By stochastic integration theory,
M̃(u) is a local square integrable martingale with predictable variation process
given by

〈M̃〉(u) =
∫ u

0
H(s)⊗2Y (s)α0(s)ds

=
∫ u

0

g∗((s − t)/b)⊗2

{g(s − t)>θ0
t }2

J(s)
Y (s)/a2

n

1
b
K

(s − t

b

)2
α0(s)ds
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=
∫ min{1,(u−t)/b}

max{−1,−t/b}

g∗(x)⊗2α0(t + bx)
{g∗(bx)>θ0

t }2

J(t + bx)
Y (t + bx)/a2

n

K(x)2dx.

By C5, this converges (point-wise) in probability to∫ min{1,(u−t)/0}

max{−1,−t/0}

g∗(x)⊗2

α0(t)
1

y(t)
K(x)2dx. (4.9)

Moreover, for any ε > 0 and j = 0, . . . , p, that

1
{∣∣∣e>j H(s)

∣∣∣ > ε
}

= 1
{∣∣∣∣ (s − t)j

g(s − t)>θ0
t

J(s)
Y (s)/a2

n

K
(s − t

bn

)∣∣∣∣ > anb1/2+j
n ε

}
converges to 0 uniformly in s as a2

nb2p+1
n → ∞ implies anb

1/2+j
n → ∞. It follows

that ∫ 1

0
{e>j H(s)}21

{∣∣∣e>j H(s)
∣∣∣ > ε

}
ds

P−→ 0.

By the Martingale Central Limit Theorem (Aalen, Borgan and Gjessing (2008);
Andersen et al. (1993); Fleming and Harrington (1991)), the process M̃(u) con-
verges in distribution (in the Skorohod space) to a (p + 1)-dimensional zero-
mean Gaussian martingale with predictable variation variance process given by
(4.9). This means M̃(1) converges in distribution to a zero mean normal vector
with variance covariance matrix

∫ min(1,(1−t)/0)
−min(1,t/0) (g∗(x)⊗2/α0(t))(1/y(t))K(x)2dx =

Vt/α0(t)2. By Taylor’s expansion and the assumption that lim sup a2
nb2p+3

n < ∞,
it can be shown that R− anb

p+3/2
n Atmt/α0(t)

P−→ 0. So, by Slutsky’s Theorem,

anb1/2
n {D−1s(θ0

t ) − bp+1
n

Atmt

α0(t)
} = M̃(1) + R − anbp+3/2

n

Atmt

α0(t)
d−→ N (0,

Vt

α0(t)2
),

which concludes the proof of the asymptotic normality of θ̂t.
Finally, by considering a matrix-valued processes indexed by θt,∫ u

0
a2

nbn
D−1g(s − t)⊗2D−1

{g(s − t)>θt}2

J(s)
Y (s)2

Kb(s − t)2dN(s), u ∈ [0, 1],

we can show a2
nbnD−1ŜD−1 P−→ Vt/α0(t)2 by an argument similar to the one

leading to D−1I(θ̂t)D−1 P−→ At/α0(t). Therefore

a2
nbnDI(θ̂t)−1 Ŝ I(θ̂t)−1D



118 FENG CHEN

= {D−1I(θ̂t)D−1}−1{a2
nbnD−1ŜD−1}{D−1I(θ̂t)D−1}−1

P−→ At
−1VtAt

−1.

This concludes the proof of the theorem.

4.2. Asymptotic bias and variance and the choice of the order of the
local polynomial

As implied by Theorem 4.2, the MLPLE estimator θ̂t for θt is generally
biased, unless we know a priori that the intensity function to be estimated is
a polynomial. It is important to study the bias and variance of the estimator
in order to strike a balance between them by suitable choice of the bandwidth.
Due to the lack of a closed-form expression for the estimator, the exact bias and
variance are not easy to work out, and in situations where the exact expres-
sions of the bias and variance of a biased estimator are easily available, they are
typically intractable. Therefore, it is common to work with suitable asymptotic
versions of the bias and variance. In the sequel, the asymptotic bias, asymptotic
variance-covariance, and asymptotic mean squared error are in the sense of Shao
(2003), which are not necessarily the leading terms in the exact versions of the
corresponding quantities. As a corollary to Theorem 4.2, we have the following
result concerning the asymptotic bias, variance, and mean square error of the
MLPLE θ̂t = (α̂(t), α̂′(t), . . . , α̂(p)(t))>.

Corollary 4.3. Assume that the conditions of Theorem 4.2 hold. Let mt

and Vt be given by (4.6) and (4.7). Then, the asymptotic bias and variance-
covariance matrix of the MLPLE θ̂t are given, respectively, by bp+1

n D−1mt and
(a2

nbn)−1D−1At
−1VtAt

−1D−1.

It is possible to show that under different conditions on Y and b, the asymp-
totic bias and variance-covariance given here are also the leading terms of the
bias and variance-covariance of θ̂t, and therefore the approximate bias and vari-
ance. However the conditions are very cumbersome, and the condition on the
shrinking rate of b seems incompatible with that assumed by Theorem 4.2. We
consent ourselves with the asymptotic bias and variance.

In applications the commonly used kernel functions, such as the normal den-
sity kernel K(x) = (1/

√
2π)e−x2/2, the Epanechnikov kernel K(x) = (3/4)(1 −

x2)+, and the general beta kernel K(x) = [Γ(λ + 3/2)/{Γ(1/2)Γ(λ + 1)}](1 −
x2)λ

+, λ ∈ [0,∞), are symmetric about 0. As symmetric kernels have zero odd-
order moments, for t ∈ (0, 1), µt(K) =

∫ min(1,(1−t)/0)
−min(1,t/0) g∗

p(x)xp+1dx is independent
of t with the form

(· · · , ?, 0, ?, 0)>, (4.10)
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and the matrices At and At
−1 are independent of t and have the common form

? 0 ? · · ·
0 ? 0 · · ·
? 0 ? · · ·
...

...
...

. . .
...

? 0
· · · 0 ?


. (4.11)

Therefore, mt ∝ At
−1µt also takes the form (4.10). This means the asymptotic

bias of α̂(ν)(t) = e>ν,pθ̂t for α(ν)(t) is of order bp+1−ν (unless α(ν)(t) = 0) when
p− ν is odd, and is 0 when p− ν is even. However, at the boundary points t = 0
and 1, the vector µt does not take the form (4.10), nor does the matrix At take
the form (4.11). Therefore, mt is not generally of the special form (4.10), and the
asymptotic bias of α̂(ν)(0) and α̂(ν)(1) is of order bp+1−ν no matter p− ν is even
or odd. This implies that when p− ν is even, the estimator for α̂(ν)(t) converges
to α(ν)(t) more slowly at a boundary t than at an interior t and suffers from
boundary effects. As the Ramlau-Hansen estimator for the intensity function is
essentially the MLPLE with p = ν = 0, it suffers from boundary effects as noted,
for instance, by Andersen et al. (1993) and Nielsen and Tanggaard (2001). At
the same time, if p − ν is odd, then the rate of convergence of α̂(ν)(t) to α(ν)(t)
is the same for all t ∈ [0, 1] and, in this sense, the MLPLE for α(ν)(t) has an
automatic boundary bias correction property.

The asymptotic variance of α̂(ν)(t) is (a2b2ν+1)−1ν!2e>ν At
−1VtAt

−1eν , which
is of order (a2b2ν+1)−1 for all t ∈ [0, 1]. The observations about the behavior of
the asymptotic bias and variance of the MLPLE estimator imply that, if we are
interested in estimating α(ν) using the MLPLE and a symmetric kernel is to be
used, it is advisable to choose the order of the local polynomials to be ν plus
an odd integer. Meanwhile, as choosing large p contradicts the principle of local
modeling and tends to reduce the computational attractiveness of the estimator,
the practically relevant advice is to choose p = ν + 1 or, if data are abundant,
ν + 3. In the sequel, we assume p − ν is odd if the kernel K in question is
symmetric.

4.3. Asymptotically optimal bandwidth

From Corollary 4.3, it is clear that in oder to reduce the asymptotic bias of
the MLPLE we should use a smaller bandwidth, but to reduce the asymptotic
variance, large bandwidths are preferred. An asymptotically optimal bandwidth
that takes into account both accuracy and precision can be obtained by mini-
mizing the asymptotic mean square error (AMSE) or the asymptotic integrated
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mean square error (AIMSE). Here, the AMSE of the estimator is defined as the
squared asymptotic bias plus the asymptotic variance, and the AIMSE is de-
fined as the integral of the AMSE. As direct consequences of Corollary 4.3 and
Theorem 4.2 we have the following.

Corollary 4.4. Fix t ∈ [0, 1]. Assume the conditions of Theorem 4.2 hold. Then
the AMSE of the MLPLE α̂(ν)(t) for α(ν)(t) is

amse{α̂(ν)(t)} =

{
α

(p+1)
0 (t)ν!
(p + 1)!

}2

e>ν At
−1µ⊗2

t At
−1eν × b2(p+1−ν)

+
α0(t)
y(t)

ν!2e>ν At
−1ΣtAt

−1eν × (a2
nb2ν+1

n )−1, (4.12)

where µt =
∫ min(1,(1−t)/0)
−min(1,t/0) g∗(x)xp+1K(x)2dx, Σt =

∫ min(1,(1−t)/0)
−min(1,t/0) g∗(x)⊗2K(x)dx.

If α(p+1)(t) 6= 0, t ∈ [0, 1], the asymptotically optimal bandwidth for α̂(ν)(t) is

bn,opt(t) =
[

e>ν At
−1ΣtAt

−1eν

e>ν At
−1µ⊗2

t At
−1eν

]1/(2p+3) [
(p + 1)!2(2ν + 1)

2(p + 1 − ν)

]1/(2p+3)

×

[
α0(t)

{α(p+1)
0 (t)}2y(t)

]1/(2p+3)

× a−2/(2p+3)
n . (4.13)

Corollary 4.5. Assume the conditions of Theorem 4.2 hold for all t ∈ (0, 1).
Then the AIMSE of the MLPLE α̂(ν)(t) for α(ν)(t) is

aimse{α̂(ν)} =
∫ 1

0
amse{α̂(ν)(t)}w(t)dt

=
{

ν!
(p + 1)!

}2 {
e>ν A−1µ⊗2A−1eν

}∫ 1

0
{α(p+1)

0 (t)}2w(t)dt

× b2(p+1−ν)

+ ν!2e>ν A−1ΣA−1eν

∫ 1

0

α0(t)w(t)
y(t)

dt × (a2
nb2ν+1

n )−1, (4.14)

where w(t) is a bounded weighting function, and µ, Σ, and A are, respec-
tively, the µt, Σt and At in Corollary 4.4 evaluated at any t ∈ (0, 1). If∫ 1
0 {α

(p+1)(t)}2w(t)dt 6= 0, the asymptotically optimal global bandwidth for α̂(ν) is

b∗n,opt =
[

e>ν A−1ΣA−1eν

e>ν A−1µ⊗2A−1eν

]1/(2p+3) [
(p + 1)!2(2ν + 1)

2(p + 1 − ν)

]1/(2p+3)

×

[ ∫ 1
0 α0(t)w(t)/y(t)dt∫ 1

0 {α
(p+1)
0 (t)}2w(t)dt

]1/(2p+3)

× a−2/(2p+3)
n . (4.15)
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5. Practical Bandwidth Selection

The performance of the MLPLE is highly influenced by the choice of the
bandwidth parameter. The explicit expressions for the optimal bandwidths pre-
sented in Section 4.3 are not directly applicable in practice, since they involve the
unknown intensity function and its derivatives that we want to estimate. How-
ever, these explicit expressions allow us to construct plug-in type estimators for
the optimal global or local bandwidths by replacing the unknown quantities by
their estimators. Depending on how we choose the initial estimators for the un-
known quantities, we can have different estimators for the optimal bandwidths.
Here we propose a crude global bandwidth selector which is similar in spirit to
the rule of thumb bandwidth selector for the local polynomial estimator of a
regression function (Fan and Gijbels (1996)).

Let U1 =
∫ 1
0 α0(t)w(t)/y(t)dt and U2 =

∫ 1
0 {α

(p+1)
0 (t)}2w(t)dt be the un-

known quantities in (4.15). If we assume the conditions of Corollary 4.5, then by
considering the zero mean local square integrable martingale{∫ u

0

J(t)w(t)
Y (t)2

dM(t)
}

, u ∈ [0, 1],

and by using Lenglart’s inequality, we note a consistent estimator for U1 is Û1 =
a2

n

∫ 1
0 [J(t)w(t)/Y (t)2]dN(t).
To estimate U2, it seems that we have to estimate α(p+1), and do a numerical

integration. While there are clearly many possibilities for a pilot estimate of
α(p+1), we simply estimate α using a parametric method and then use the (p+1)th
derivative of the estimate as an estimator of α(p+1). More specifically, we impose
a global polynomial form for α, α(t) =

∑p+q
i=0 γit

i, with q ≥ 3, insert it into the
modified global partial log-likelihood,

˜̀=
∫ 1

0
{log(Y (t)α(t))} J(t)

Y (t)
dN(t) −

∫ 1

0
α(t)J(t)dt

≈
∫ 1

0
{log(Y (t)α(t))} J(t)

Y (t)
dN(t) −

∫ 1

0
α(t)dt,

do the maximization with respect (γ0, . . . , γp+q)> to obtain the estimates γ̂i of
the coefficients, and estimate α(p+1) by

α̂(p+1)(t) =
q∑

i=1

(p + i)!γ̂p+i

(i − 1)!
ti−1. (5.1)

Now the estimator for U2 is

Û2 =
∫ 1

0
{α̂(p+1)(t)}2w(t)dt.
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Plugging Û1 and Û2 into (4.15), we have an estimator for b∗n,opt. We refer to it
as the rule of thumb bandwidth selector, and denote it by b̂∗ROT, so

b̂∗ROT =
[

e>ν A−1ΣA−1eν

e>ν A−1µ⊗2A−1eν

]1/(2p+3) [
(p + 1)!2(2ν + 1)

2(p + 1 − ν)

]1/(2p+3)

×

[∫ 1
0 J(t)w(t)/Y (t)2dN(t)∫ 1

0 {α̂(p+1)(t)}2w(t)dt

]1/(2p+3)

, (5.2)

with α̂(p+1) given by (5.1). It is worth mentioning that b̂∗ROT is free of an, which
means it is not necessary to work out the normalizing sequence an of the exposure
process Y (n) before we can use the ROT bandwidth selector.

In obtaining the pilot estimate for α(p+1), we have chosen to use the modified
global partial log-likelihood instead of the unmodified partial likelihood (3.1).
The main motivation for this choice is computational stability. If we work with
(3.1), we need to evaluate the integral

∫ 1
0 Y (t)α(t)dt, that is numerically unstable

when Y (t) is a jump process as in survival analysis.

6. Numerical Studies

In this section, we use simulated data to verify the automatic boundary
correction property of the MLPLE and to assess the performance of the variance
estimator (4.8) and the ROT bandwidth selector.

6.1. Automatic boundary bias correction

We simulated a Poisson process on [0, 1] with intensity process 500α(t), where
α(t) = 1+e−t cos(4πt), and estimated α and its derivative using the MLPLE with
the Epanechnikov kernel. The simulation and estimation was repeated N = 100
times. The bandwidth used in the intensity estimation was b = 0.088 and, in the
derivative estimation, b = 0.13. The order of the local polynomial was chosen to
be p = ν + 1. The average of estimated intensity curves is graphed in Figure 1,
together with the true intensity curve and the average of the estimates obtained
from the Ramlau-Hansen estimator. The average of the estimated derivative
curves is shown in Figure 2, together with the true derivative. From these two
figures we note the MLPLE of α(ν)(t) with p = ν+1 had the automatic boundary
bias correction property, but with p = ν it suffered from the boundary effects.

6.2. Variance estimator

In the simulations reported in Section 6.1, we also estimated the standard
error of the MLPLE estimators using the formula

v̂ar{α̂(ν)(t)} = e>ν v̂ar(θ̂t)eν ,
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Figure 1. True intensity function and the averages of the estimates using
the MLPLE with p = 1 and the Ramlau-Hansen estimator. The MLPLE
with p = 1 did not suffer from the boundary effects, but the Ramlau-Hansen
estimator did.

Figure 2. Derivative of the intensity function and the averages of the es-
timated derivative curves obtained from the MLPLE with p = ν = 1 and
p = ν +1 = 2. The MLPLE with p = ν +1 did not suffer from the boundary
effects while it did with p = ν.

where v̂ar(θ̂t) is given by (4.8). The average of estimated standard error of
α̂(ν)(t), and its true standard error, approximated by the standard deviation of
the estimated value of α̂(ν)(t), are plotted in Figure 3. The ratio of the estimated
standard error to the true standard error is shown in Figure 4. From these figures
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Figure 3. The average of the estimated standard error and the empirical
standard error of α̂(ν)(t). Left, ν = 0; right, ν = 1.

Figure 4. The ratio of the estimated standard error of α̂(ν)(t) to the empirical
standard error: left, ν = 0; right, ν = 1.

Table 1. ROT bandwidths for the MLPLE α̂(ν).

ν
Summary of the 100 simulated b̂∗ROT b∗optMin. 1st Qu. Median Mean 3rd Qu. Max.

0 0.07374 0.07828 0.08051 0.08129 0.08456 0.09092 0.08835
1 0.13170 0.14350 0.14720 0.14780 0.15280 0.16560 0.13280

we can see the variance estimator had satisfactory performance.

6.3. ROT bandwidth selector

For each of the 100 sample paths of the Poisson process simulated in Sec-
tion 6.1, we calculated the ROT bandwidth using (5.2), with the tuning param-
eters chosen as p = ν + 1, q = 3, w(t) ≡ 1. The kernel function used was the
Epanechnikov kernel as before. The ROT bandwidths for the MLPLE α̂(ν) is
summarized in Table 1.



MAXIMUM LOCAL PARTIAL LIKELIHOOD ESTIMATORS 125

Figure 5. True intensity function and its derivative, and the lower and
upper 0.025 quantiles of their estimates obtained using the MLPLE with the
optimal and the ROT bandwidths.

Comparing the ROT bandwidths with the corresponding asymptotically op-
timal bandwidths, we might conclude that the ROT bandwidth selector as an
estimator of the theoretically optimal bandwidth is generally biased and the di-
rection of the bias seems unpredictable. The performance of the ROT bandwidth
selector depends on how well the unknown intensity function can be approxi-
mated by a low-order polynomial. However, the range of the ratio of the ROT
bandwidth to the optimal bandwidth was fairly close to 1, [0.8347,1.0290] for
ν = 0 and [0.9913,1.2470] for ν = 1. Moreover, the estimator with the ROT
bandwidth might have similar or even better finite sample performance than
with the optimal bandwidth. For instance, in our simulations, the empirical
IMSE of α̂(t) was 0.0234 if the optimal bandwidth was used, and was 0.0243 if
the ROT bandwidths were used. The IMSE of α̂′(t) was 42.01 if the optimal
bandwidth was used, and is a slightly better 39.48 if the ROT bandwidths were
used. We have plotted in Figure 5 the true derivative curve and the point-wise
lower and upper 0.025 quantiles of the estimates obtained with the optimal and
the ROT bandwidths, which also implies the MLPLE with the ROT bandwidth
selector had better or very similar finite sample performances to that with the
asymptotically optimal bandwidth. We conclude that the performance of the
ROT bandwidth selector was satisfactory.

7. Conclusion and Discussion

We have proposed estimators for the intensity function of a counting process
and its derivatives through using the method of maximum local partial likelihood.
The resultant estimators are easy and fast to evaluate numerically, and they pos-
sess an automatic boundary bias correction property if the tuning parameters
in the definition of the estimators are suitably chosen. We have also proved the
consistency and asymptotic normality of the estimators under mild regularity
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conditions. We have calculated the asymptotic bias, variance and mean square
errors of the estimators and based on these derived the explicit formulas of the
theoretically optimal bandwidths that minimize the asymptotic mean square er-
ror or integrated mean square error. For practical bandwidth selection, we have
proposed an easy-to-evaluate data-driven bandwidth selector which has favorable
numerical performance.

Along the way of proving the consistency of the estimators, we proposed
and proved a lemma which is potentially useful in establishing the consistency
of general Z estimators constructed from biased estimating equations, which is
a generalization of Theorem 5.9 of van der Vaart (1998).

It is worth noting that the automatic boundary bias correction property of
the local polynomial estimators in the contexts of nonparametric regression and
density function estimation have been long noticed and well understood, and the
same advice has been made for the choice of the order of the local polynomials;
see Fan and Gijbels (1996) and the references therein for details. In the context
of hazard rate function estimation, or more generally the counting process in-
tensity function estimation, there has been relatively little effort in investigating
the automatic boundary bias correction property of the local polynomial type
estimators for the counting process intensity function and its derivatives except,
for example, Jiang and Doksum (2003) and Chen, Yip, and Lam (2009).

Under same regularity conditions the asymptotic properties of the MLPLE
estimators are exactly the same as the biased martingale estimating equation
based local polynomial estimators proposed in Chen et al. (2008) and further
investigated in Chen, Yip, and Lam (2009). These two estimators are asymp-
totically equivalent, and both enjoy the nice features of the local polynomial
estimators in the contexts of regression function estimation. However, our expe-
rience is that the MLPLE is roughly five times quicker to evaluate than the local
polynomial estimators based on the martingale estimating equations.

From the construction of the local partial log-likelihood (2.1)−(3.2), it can
be seen that the local partial likelihood considered in this paper is essentially a
continuous-observation version of the composite conditional likelihood. The con-
sistency and asymptotic normality of the MLPLE echo those same properties of
the MCCLEs (maximum composite conditional likelihood estimators), although
as estimators for the intensity function and its derivatives, the MLPLEs are not
efficient or even root-n consistent as the MCCLEs for finite dimensional param-
eters (see e.g., Liang (1984)).

The ROT global bandwidth selector proposed in Section 5 is of ad hoc na-
ture, and are not expected to work satisfactorily when the intensity function to
be estimated has highly inhomogeneous shape. In fact in these situations any
constant bandwidth cannot be expected to work very well, and variable/local
bandwidths should be used instead.
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Appendix

A. Consistency of Z-estimators

The following lemma is handy in proving the consistency of Z-estimators in
situations where a usable fixed limit of the estimating equations does not exist.
It is a generalization of Theorem 5.9 of van der Vaart (1998).

Lemma A.1 (Consistency of Z-estimators). Let fn be a sequence of ran-
dom functions and gn a sequence of nonrandom functions defined on a metric
space (Θ, d) and taking values in a metric space (Y, ρ). If there exist a θ0 ∈ Θ,
a y0 ∈ Y , a constant η > 0, a function δ from (0, η) to (0, η), and a sequence of
positive constants cn → 0, such that

(i) gn(θ0) = y0, for n large;

(ii) inf
θ:d(θ,θ0)≥ε

ρ(gn(θ), y0) ≥ δ(ε)cn, ∀ε ∈ (0, η), for n large; and

(iii) sup
θ∈Θ

ρ(fn(θ), gn(θ)) = oP (cn),

then any sequence of estimators θ̂n such that ρ(fn(θ̂n), y0) = oP (cn) converges in
probability to θ0.

Proof. By the definition of convergence in probability, we only need to show
Pr(d(θ̂, θ0) ≥ ε) → 0, for any ε > 0 small enough. However, for ε ∈ (0, η),

Pr(d(θ̂, θ0) ≥ ε) ≤P (c−1
n ρ(gn(θ̂), y0) ≥ δ(ε))

≤Pr(c−1
n {ρ(gn(θ̂), fn(θ̂)) + ρ(fn(θ̂), y0)} ≥ δ(ε))

≤Pr(c−1
n {sup

θ
ρ(gn(θ), fn(θ)) + ρ(fn(θ), y0)} ≥ δ(ε)).

By assumption, c−1
n supθ∈Θ ρ(fn(θ), gn(θ)) P−→ 0 and c−1

n ρ(fn(θ̂n), y0)
P−→ 0.

Thus the last term in the preceding display converges to 0, which completes
the proof.
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