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Abstract: The composite likelihood method has been proposed and systematically

discussed by Besag (1974), Lindsay (1988), and Cox and Reid (2004). This method

has received increasing interest in both theoretical and applied aspects. Compared

to the traditional likelihood method, the composite likelihood method may be less

statistically efficient, but it can be designed so as to be significantly faster to com-

pute and it can be more robust to model misspecification. Although there are a

number of ways to formulate a composite likelihood to balance the trade-off between

the efficiency and computational price, there does not seem to exist a universal rule

for constructing a combination of composite likelihoods that is both computation-

ally convenient and statistically appealing. In this article we present some thoughts

on the composite likelihood, drawing on basic knowledge about likelihood and es-

timating functions. A new efficiency result based on the Hoeffding decomposition

of U -statistics is given. A recommendation is given to consider the construction of

surrogate density functions as a way to better bridge the gap between likelihood

methods and composite likelihood methods.
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1. Introduction

The likelihood function has become a centerpiece of statistical inference since
it was turned into a powerful tool by Fisher (1922). Modern high-dimensional
data, such as spatial data, image data, complex structured longitudinal data, and
long-sequence genetic data, have generated significant new challenges to the use
of likelihood-based methods. There are two facets to the challenge; one involves
model-building, and the need to build reasonable models; the second involves
computing, and the need to produce answers in reasonable time. These challenges
have helped to generate considerable interest in alternative estimation methods
that are not based on full likelihood specification, such as quasi-likelihood (Wed-
derburn (1974); McCullagh (1983)), and in estimating functions more generally
(e.g., Godambe (1960); Durbin (1960)). In this paper, we consider a methodol-
ogy based on partial specification of the full likelihood that is called composite
likelihood.
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Let Y = (Y1, . . . , Yd)T be a d-dimensional random vector with the probabil-
ity model f(y; θ), where θ is a parameter taking values in a parameter space Θ
that is a subset of a Euclidean space of dimension p. To narrow the scope of this
paper, we assume that there is a significant computational challenge in evalu-
ating f(y; θ), or the corresponding likelihood L(θ), and this challenge increases
dramatically as the data dimension d increases. Thus, while it might be possible
to compute a lower dimensional marginal distribution, such as that of (Yi, Yj), it
might be impossible to compute f(y; θ).

We use the symbol Nops(D) to indicate the number of computer operations,
in order of magnitude, needed to calculate a marginal distribution for D vari-
ables a single time. For example, if f(y; θ) is the density of the multivariate
normal distribution N(µ,Σ), the calculation of the inverse of Σ for any subset
of D variables makes Nops(D) = O(D3) unless Σ is of special form. In more
severe cases, Nops(D) grows exponentially in D. This occurs, for instance, when
calculation of the distribution of the marginal subset requires integration over a
set of D unobserved random variables. We assume that calculating the densities
is so expensive that one can only consider their calculation for smaller values of
D. There are obviously other computational costs associated with our problem,
but we assume that the one time calculation of the density for a marginal density
grows so quickly in dimension D that computation for the full dimension d is not
possible.

One solution to this computational problem is to consider estimation meth-
ods based on objective functions called composite likelihoods, which simply means
a product of sub-likelihoods,

C(θ) =
Ncl∏
k=1

L(θ;Sk), (1.1)

where Ncl is the number of factors in C(θ) and where each L(θ; Sk) is a user-
selected sub-likelihood generated from f(y; θ) by considering a particular con-
ditional or marginal set of variables Sk. That is, Sk could be a sub-vector of
the data, such as (y1, y2), or it could be a “conditioned” pair of vectors, such
as (y1, y2)|y1. Ideally, C(θ) would be constructed so that the parameter θ is
identified.

Composite likelihood methods date back to the pseudo-likelihood of Besag
(1974) and the partial likelihood of Cox (1975). Lindsay (1988) coined the term
composite likelihood for “product of likelihood” C(θ) constructions; he reviewed
the small available literature to that date. In the 1990’s, the pairwise likelihood
(Hjort and Omre (1994); Heagerty and Lele (1998); Nott and Rydén (1999))
rose to prominence in the world of spatial statistics. The use of the composite
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likelihood, especially the pairwise likelihood, has received increasing attention in
recent years due to the simplicity in defining the objective function and compu-
tational advantages when dealing with data with complex structure (e.g., Kuk
and Nott (2000); Zhao and Joe (2005); Fieuws and Verbeke (2006); Dillon and
Lebanon (2009)). A recent review can be found in Varin (2008) and Varin, Reid,
and Firth (2011). There are also many uses in the complex likelihoods of genomic
data (e.g., Devlin, Risch, and Roeder (1996); Fearnhead and Donnelly (2002);
Engler et al. (2006)). A review on this topic is given in Larribe and Fearnhead
(2011).

There are two particularly attractive features about the composite likeli-
hood. For the first, the standard Kullback-Leibler inequality applies to each
sub-likelihood, so we have:

Eθ0

[
log

{C(θ0)
C(θ)

}]
= Eθ0

[
Ncl∑
k=1

log
{L(θ0; Sk)

L(θ; Sk)

}]
≥ 0,

where θ0 denotes the true value of θ. This implies that maximization based
on log C(θ) gives a Fisher consistent estimation method for θ. (With added
regularity conditions, Fisher consistency often implies consistency in probability.)
This reliability is a key factor in making composite likelihood a reasonable choice
in a complex situation. For the second attractive feature, E{∇ log L(θ; Sk)} = 0
under standard regularity conditions, so that c(θ) = ∇ log C(θ) is a mean zero
estimating equation for θ. Here ∇ is the gradient operator, that is, the operation
of differentiation with respect to the vector θ. Since these two properties match
those of the full likelihood, they might be called first order likelihood properties.

Thus the validity of using a chosen composite likelihood to perform infer-
ence about θ can be justified either from the standpoint of unbiased estimating
functions or the Kullback-Leibler criterion. For details, see Lindsay (1988), Cox
and Reid (2004) and Varin (2008). These properties are quite important, as they
give us a guarantee that the θ value that we are estimating with the composite
likelihood C(θ) is exactly the same as the one in the complete model.

Unfortunately, the second order properties of likelihood are not possessed by
composite likelihood except under special circumstances. The key second order
property of a likelihood is the second Bartlett identity,

I(θ) = E{−∇2 log L(θ)} = E[{∇ log L(θ)}{∇ log L(θ)}T],

where ∇2 denotes the Hessian, or the operation of twice differentiation with
respect to θ. This property holds for all the sub-likelihoods in the composite
likelihood, so that there is a meaningful Fisher information matrix for each term
in the composite likelihood,

ISk
(θ) = E{−∇2 log L(θ; Sk)} = E[{∇ log L(θ; Sk)}{∇ log L(θ; Sk)}T].
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However, this identity does not hold in general for the log composite likelihood,
log C(θ). As a result, many of the nice features of likelihood inference do not hold
for composite likelihood inference. Most importantly for this paper, one cannot
count on asymptotic efficiency for the maximum composite likelihood estimators.

If we let Sk be a single variable yi, then we obtain the marginal likelihood for
Yi with D = 1, L(θ; yi), which we call a one-wise likelihood. Setting Sk = (yi, yj),
yields the marginal likelihood for a pair of observations, L(θ; yi, yj), called a
pairwise likelihood. If we let Sk = yi|yj , we obtain L(θ; yi|yj), which we will call
a pairwise conditional likelihood. The last two likelihoods have data dimension
D = 2. Since the cost of marginal density calculation is largely determined by
D, we let Dcl be the largest data dimension among the Sk included in C(θ) in
(1.1). Our assumption about computational expense implies that we should first
consider using small values of Dcl.

If we fix an upper bound, say D∗, on Dcl, then we have partially controlled
for our computational expense. However, it is clear that one can also control the
computational expense by limiting Ncl, the number of sub-likelihoods that one
uses.

There are many possible composite likelihoods for any particular likelihood
problem. This paper is concerned with developing strategies that a researcher
might use for the design of a composite likelihood, where by composite likelihood
design we mean the selection of the sub-likelihoods in C(θ), including the selection
of the number Ncl, the dimension Dcl, and the particular Sk (i.e., marginal or
conditional densities). We will do so by considering a variety of statistical and
computational aspects, as well as overall ease of use and interpretation.

2. Basic Issues in Design

The very rich environment of composite likelihood makes it very difficult to
make sweeping statements about how they should be constructed. For example,
Cox devised the partial likelihood as a justification for an estimation method that
eliminated the unknown baseline hazard function from the estimation problem
(Cox (1975)). On the other hand, Besag’s pseudo-likelihood was an equally clever
method for creating straightforward estimation in a model with simple low order
conditional densities but an impossibly expensive full likelihood. In keeping with
Varin (2008) and Varin, Reid, and Firth (2011), we focus here on issues generated
when the lower order marginals are significantly easier to compute than the full
density or any of its higher order conditionals.

Given a composite likelihood design with Ncl sub-likelihoods each of dimen-
sion Dcl, the overall number of operations needed is of order

Ncl × Nops(Dcl).
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Thus if one were to fix computational costs by holding the number of operations
fixed, one would face a clear design trade-off. Increasing Dcl clearly forces a de-
crease in Ncl, and the change needed can be substantial if, for instance, Nops(Dcl)
grows exponentially in Dcl.

There are, of course, other factors that play into the overall computational
challenge that is faced. One is the dimension of the parameter space, p. The
expense for this depends on the efficiency of optimization algorithms. Further,
inference about the parameter θ could be based on a single realization y, or on
the information in a sample y1, . . . ,yn that is independently drawn from f(y; θ).
Although growth in the replication variable n increases computational effort, it
does so linearly in n. For this reason we do not consider varying n explicitly
here.

If we construct C(θ) using all ordered pairs, the all-pairwise composite like-
lihood is

Capw(θ) =
∏
i<j

L(θ; yi, yj),

i.e., the value of Ncl is
(
d
2

)
and so grows quadratically in d. If the computational

effort to produce the full likelihood has calculations that are O(d3), as in the
multivariate normal, then all-pairwise likelihood would have computational ad-
vantages for large d, while an all-three-wise calculation, with Ncl =

(
d
3

)
= O(d3)

might not. The important point here is that increasing Dcl without controlling
the number of terms Ncl can lead to an explosive growth in computational effort.

When we fix computational expense, and turn to other statistical factors, we
find the situation is still very complex. Although it would be nice to focus on
statistical efficiency, there are also more basic aspects to consider. For example,
is the entire parameter identifiable from the composite likelihood? Ensuring that
the parameters of interest are identifiable is an important prerequisite for selec-
tion of a method. As in Cox’s partial likelihood, however, one might be happy
with eliminating nuisance parameters. Also, efficiency is a pointwise concept,
and we would generally prefer a composite likelihood that had reliable efficiency
across the parameter space to one that was highly efficient at some parameter
values but disastrous at others.

Note that the issue of asymptotic efficiency calls for an analysis of the com-
posite score

c(θ) = ∇ log C(θ)

as an estimating function, so much of this paper concerns composite likelihoods
as generators of score functions. Since all such scores fit within the class of linear
combinations of sub-likelihood scores, we will consider them in that framework.

In the next three sections we examine the statistical efficiency of the com-
posite score function c(θ) within the class of unbiased estimating functions for
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θ. We consider an optimal weighting strategy in Section 3, and in Section 4
we consider the problem of finding the optimal estimating function within the
class of additive estimating equations. The optimal methods are generally not
acceptable because they add significant computational costs, but they do suggest
new strategies for construction of composite likelihoods and estimating functions
that are reliable in efficiency. These issues are examined more carefully in several
examples in Section 5.

3. Composite Scores as Estimating Functions

We now turn to theory of unbiased estimating functions in order to better
understand the efficiency of composite likelihoods. We appeal to the powerful
optimality theory that can be used in this setting.

To emphasize its special role in this theory, we use umle as notation for
∇ log f(y; θ). A p × 1 unbiased estimating function g(y; θ) is one that satisfies
E(g) = 0. Differentiation under the integral gives use the important relationship
E(umleg

T) = E(−∇g). The Godambe information in g is defined to be

J(θ; g) = E(−∇g){var(g)}−1E{−(∇g)T}.

The inverse of J(θ; g) is the nominal asymptotic covariance matrix for the param-
eter estimator obtained from a sample y1, . . . ,yn using g. The following concept
is important when we consider the reliability of an estimating function. Given
any unbiased g, consider minimizing over p×p matrices R in the least squares cri-
terion E{(umle−Rg)(umle−Rg)T}. The solution is Rmin = E(umleg

T){var(g)}−1,
because E{(umle − Rming)gT} = 0. If we let g∗ = Rming, then we have

E(umleg
∗T) = E(−∇g∗) = E(g∗g∗T).

We say an estimating function g∗ is information-unbiased if it satisfies these
equalities. We have just shown that an arbitrary estimating function g can be
converted to g∗ that is information-unbiased by suitable matrix multiplication.
Such a multiplication does not change the point estimator. In this form we have
the information identity J(θ; g) = J(θ; g∗) = E(−∇g∗). Every sub-likelihood
score is automatically information-unbiased by the second Bartlett identity.

We use the symbol f to represent all marginal and conditional densities
derived from f(y; θ), using the variables with subscripts to indicate which density
we mean. So f(yi|yj ; θ) will be the density for Yi given Yj = yj , for example.
With Sk standing for a choice of conditioning or marginal model, we use the
notation u(θ; Sk) for the score ∇ log L(θ; Sk).

Given a particular choice of sub-likelihoods, Ncl in number, the correspond-
ing composite score is

Ncl∑
k=1

u(θ; Sk).
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The following result gives a basic calculation tool that we use repeatedly in our
analysis.

Proposition 1. If S1 is a marginal or conditional event and S2 is a marginal
event such that all variables appearing in S1 also appear in S2, then

E{u(θ;S1)uT(θ; S2)} = E{u(θ; S1)uT(θ; S1)} = J(θ; u(θ; S1)).

In particular, by setting S2 to be the whole data set, the result holds for u(θ; S2) =
umle.

We can create a class of estimating functions from the composite scores by
considering all their linear combinations. We note that this class is larger than
the class of weighted composite likelihood scores, but smaller than the class of
all unbiased estimating functions. Let u(θ) be the pNcl × 1 vector formed by
stacking the vectors u(θ, S1), . . . , u(θ, SNcl

). Let W (θ) be an arbitrary p × pNcl

matrix, not depending on data but possibly depending on parameter θ. Then
W (θ)u(θ) is a p×1 dimensional set of estimating functions for θ. The composite
likelihood estimator corresponds to using Ncl side-by-side p×p identity matrices
for W (θ); call this Wcl(θ).

The estimating function formulation now provides the tools necessary to do
an information analysis for the point estimators θ̂W that solve

W (θ)u(θ) = 0.

In this case the Godambe information has the familiar sandwich form

JW (θ) = W (θ)G(θ)[W (θ)V (θ){W (θ)}T]−1{W (θ)G(θ)}T.

Here G(θ) is the pNcl ×p matrix formed by stacking up the information matrices
ISk

(θ) of the subscores u(θ; Sk) over k and V is the pNcl×pNcl covariance matrix
of vector u(θ). There are p × p blocks along the diagonal of V (θ) that equal
ISk

(θ). Thus if the scores u(θ;S1), . . . , u(θ; SNcl
) are uncorrelated, the Godambe

information of the composite likelihood, using Wcl(θ), is IS1(θ) + · · · + ISNcl
(θ).

For example, Cox’s partial likelihood (Cox (1975)), by its construction, has this
ideal property. It is the correlation between the scores that creates a departure
from this ideal state.

Unfortunately, there are considerable computational challenges in carrying
out the information calculation. Assuming we have a known W (θ), such as might
be derived from a composite likelihood choice such as the all-pairwise likelihood
Capw(θ), one key numerical task is calculating the entries of V (θ). If we consider
the set of all pairwise scores, for example, the calculations require the calculation
of many terms like E(uijukl) for all pairs of pairs. This is a calculation involving
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the joint distribution of (Yi, Yj , Yk, Yl), having data dimension four that we have
assumed is expensive. In addition, there are now potentially

(
pNcl

2

)
terms to

calculate, where Ncl is itself
(
d
2

)
.

In this formulation we can also construct the optimal weights, in the sense
of information, to be

Wopt(θ) = GT(θ)V −1(θ),

giving the optimally weighted composite score as

wopt(θ) = Wopt(θ)u(θ)

which has Godambe information

Jopt(θ) = GT(θ)V −1(θ)G(θ).

Finding the optimal weights Wopt(θ) can be an enormous numerical challenge as
we must invert the pNcl × pNcl dimensional matrix V (θ), a calculation that is
O{(pNcl)3}.

We conclude that the theory of optimally weighted estimating equations
has limited usefulness for the efficiency problem we address. If we choose to
use weighted composite scores, then the optimal solution is very expensive to
compute, and the complex structure of the information calculation does not im-
mediately point to simple ways to choose a composite likelihood whose score
would have good efficiency properties. However, we should note that one can
employ a mixed strategy that increases efficiency with weightings while holding
down computational cost. See Kuk (2007) for a particularly clever design, where
optimally weighted estimating functions were used for parameters of interest, and
flat weights/composite likelihood were used for nuisance parameters.

Returning to composite likelihood, we note that even if one could compute
the optimal weights Wopt, it is very unlikely that there exists a composite like-
lihood for which Woptu is the score function. Moreover, if we generalize the
composite likelihood to a weighted composite likelihood of the form

Cw(θ) =
Ncl∏
k=1

{L(θ; Sk)}wk ,

then the weights wk must be positive and constant in θ if we are to retain the
Fisher consistency property. Given a choice between a weighted score approach
and a composite likelihood approach, the score approach offers the possibility of
increased efficiency. However, if this is impossible to obtain for computational
reasons, it would seem that there are advantages to sticking to a composite like-
lihood. Historically, building inference methods based on an objective function,
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such as the least squares criterion or the likelihood function, has been viewed as
giving a clear conceptual framework for inference. It can lead to reliable algo-
rithms for optimization that provide resolutions for irregularity problems, such
as the multiple solution problem that can arise in solving equations (e.g., Heyde
and Morton (1998)), or can give solutions on a boundary when the equations
have no interior point solutions (e.g., Self and Liang (1987)). In addition, using
a likelihood-like function opens up the possibility of applying Bayesian method-
ology in the composite framework (e.g., Heagerty and Lele (1998); Christensen
and Waagepetersen (2002)).

4. Optimal Additive Estimating Functions

Sometimes greater insights to a problem can arise by building a more general
framework. In this section this occurs when we generalize the results of Section
3 by changing the class of estimating functions under consideration from linear
combinations of sub-likelihood scores to additive estimating functions.

Let Gi be the class of all p × 1 unbiased estimating functions of the form
gi(yi; θ) that have bounded covariance, and Gij be the class of all p× 1 unbiased
estimating functions gij(yi, yj ; θ) that have bounded covariance. We consider all
estimating functions in the linear classes of estimating functions

L1 = {c +
∑

i

gi(yi; θ) : c is a constant vector, and gi ∈ Gi},

L2 = {c +
∑

i

gi(yi; θ) +
∑
i<j

gij(yi, yj ; θ) : c is a constant vector, gi ∈ Gi,

and gij ∈ Gij}.

We call these classes the additive functions of orders 1 and 2, respectively. Here
the functions g are p × 1 vector-valued functions. It is easily seen that every
linear combination of one-wise, pairwise, and pairwise conditional scores lies in
L2. It is also clear how to generalize L2 to Lk (3 ≤ k ≤ d), the order k additive
functions.

We consider the problem of deriving the optimal estimating function in Lk,
using the criterion of Godambe. Once again, the optimal function Ak,opt is given
by the projection of the full score umle onto Lk (k = 1, 2):

Ak,opt = arg minA∈Lk
E{(umle − A)(umle − A)T}.

Here the minimization takes place in the Loewner ordering; a global minimizer
exists because Lk is a closed linear space. We can identify the solution by the
fact that the residuals umle −Ak,opt must be orthogonal to the basis functions gi

and gij .
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We note that the minimization needed to find Ak,opt is pointwise, in that
it is done separately for each parameter value θ. We start the discussion by
identifying certain parameter values where the minimization can be carried out
explicitly.

Definition 1. An “Independence parameter value” θind is any value of θ in the
parameter space Θ such that when θ = θind all the variable components Yi are
independent.

4.1. Examples of independence parameter values

We clarify what is meant by Definition 1 through examples, and then pro-
ceed to giving Ak,opt(θind), the optimal function at θind.

Example 1. If Y has a multivariate normal distribution N(µ,Σ) with Σ = [σij ],
where σii = σ2 and σij = ρσ2 (i 6= j), then θ = (µ, ρ, σ2)T is the parameter, and
θind = (µ, 0, σ2)T.

Example 2. Consider the Bahadur representation (Bahadur (1961)) for a d-
dimensional binary response variable Y = (Y1, . . . , Yd)T. Let µj = E(Yj) =
P (Yj = 1) be the mean for the jth component, and Zj = (Yj − µj)/

√
µj(1 − µj)

be the standardized variable, j = 1, . . . , d. Let ρd1···dk
= E(Zd1 · · ·Zdk

) be the
kth order correlation among Zd1 ,. . . , and Zdk

, for any subset (d1, . . . , dk) of the
index set (1, . . . , d). The Bahadur representation (Bahadur (1961); Cox (1972))
of the joint distribution of (Y1, . . . , Yd) is then given by

f(y1, . . . , yd) =
d∏

k=1

µyk
k (1 − µk)1−yk · (1 +

∑
d1<d2

ρd1d2 · zd1zd2

+
∑

d1<d2<d3

ρd1d2d3 · zd1zd2zd3 + · · · + ρ1···d · z1 · · · zd). (4.1)

A nice property of this representation is that the structure is retained for
any subsets of Y1, . . . , Yd. That is, for a non-empty subset D of (1, . . . , d), the
induced marginal density for the subvector (yj , j ∈ D) is

f(yj , j ∈ D) =
∏
j∈D

µ
yj

j (1 − µj)1−yj · (1 +
∑

Q⊂D,|Q|≥2

ρQ

∏
k∈Q

zk), (4.2)

where ρQ represents ρj1···jk
if Q = {j1, . . . , jk}, and |Q| denotes the number of

elements in Q. That is, the marginal sub-likelihood for the variables in D is given
by (4.2).
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If considering the case with an exchangeable correlation structure and a
common marginal mean µ, i.e., ρd1···dk

= ρ for any subset (d1, . . . , dk), and µj = µ
for j = 1, . . . , d, then the parameter vector indexing the distribution is θ =
(ρ, µ)T. It is easily seen that θind = (0, µ)T.

Example 3. Suppose Y = (Y1, . . . , Yd)T is a vector of multivariate survival
times with marginal survivor function Sj(yj), j = 1, . . . , d. Let S(y1, . . . , yd)
be the joint survivor function for Y. In survival analysis, copula models are
commonly used to link the joint and marginal survivor functions. That is,

S(y1, . . . , yd) = C{S1(y1), . . . , Sd(yd);φ},

where C(u1, . . . , ud; φ) is a copula function indexed by parameter φ (e.g., Joe
(1997)). This structure has the appeal that the marginal and association pa-
rameters in the joint survivor function can be separately expressed by distinct
parameters. If β denotes the parameters in the marginal survivor functions
Sj(yj), j = 1, . . . , d, then the parameter vector associated with the joint model is
θ = (βT, φT)T. For example, taking the copula function to be

C(u1, . . . , ud; φ) = ψ−1{
d∑

j=1

ψ(uj ; φ);φ}, 0 ≤ uj ≤ 1, j = 1, . . . , d

leads to the so-called Archimedean family, where the range of ψ(u;φ) is between
0 and 1, and ψ(u; φ) is completely monotonic, i.e., ψ(u; φ) is differentiable with
(−1)rψ(r)(u; φ) > 0, r = 1, 2, . . .. In particular, setting ψ(u; φ) = u−1/φ − 1 with
φ > 0 leads to the Clayton models with

S(y1, . . . , yd; θ) = [{S1(y1;β)}−φ + · · · + {Sd(yd;β)}−φ]−1/φ.

As φ → 0, Y1, . . . , Yd become independent. So we can write θind = (βT, 0)T.
Similarly, setting ψ(u; φ) = (− log u)1/φ with 0 < φ < 1, or ψ(u; φ) = − log{(φu−
1)/(φ− 1)} with 1 ≤ φ yields the positive stable frailty model, or Frank model,
respectively. In both cases, Y1, . . . , Yd become independent as φ → 1. Thus, θind

can be taken as (βT, 1)T.

4.2. Hoeffding scores

We return to the problem of finding Aopt,k, the optimal additive estimating
function. We first do so at values of θind. We start by defining the Hoeffding
one-wise, pairwise, and three-wise scores by

uhfd
i = ui,

uhfd
ij = uij − ui − uj ,

uhfd
ijk = uijk − uij − uik − ujk + ui + uj + uk,
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where i, j, and k are distinct integers between 1 and d. We can similarly define
the Hoeffding k-wise score uhfd

i1···ik . We call these the Hoeffding scores because
they are derived from the Hoeffding decomposition of a U -statistic (Hoeffding
(1948); Lee (1990, p.26)). We can then define the Hoeffding additive scores of
various orders by

h1(θ) =
∑

i

uhfd
i ,

h2(θ) = h1(θ) +
∑
i<j

uhfd
ij ,

h3(θ) = h2(θ) +
∑

i<j<k

uhfd
ijk .

The kth order Hoeffding additive scores hk(θ) (1 ≤ k ≤ d) can be defined recur-
sively.

Theorem 1. For 1 ≤ k ≤ d, hk(θind) = Ak,opt(θind). That is, at θind, the
Hoeffding additive scores hk(θ) are the information optimal estimating functions
in Lk.

The proof involves showing the residuals are orthogonal to the basis; see
Appendix A. The following theorem tells us a bit more about this solution.

Theorem 2. Under θind, the Hoeffding k-wise scores are mutually orthogonal,
over all orders, so that, for example, E{uhfd

ij (uhfd
ijk )T} = 0. Moreover, they are

all information-unbiased, so that

E(−∇uhfd
ij ) = E{uhfd

ij (uhfd
ij )T} = J(θind; u

hfd
ij ).

As a result, there is a decomposition of the information in hk(θind) of the form

J{θind;hk(θind)} =
∑

i

J(θind; u
hfd
i )+

∑
i<j

J(θind; u
hfd
ij )+· · ·+

∑
i1<···<ik

J(θind; u
hfd
i1···ik).

The proof of this result is straightforward. Notice that the calculation of
the individual information terms is also likely to be less expensive due to the
independence that occurs at θind.

To describe these results in a more suggestive way, we might say the optimal
order-2 score arises by first constructing the optimal one-wise score, and then
adding the Hoeffding pairwise scores, which contain only the new information
J(θ; uhfd

ij ) that is found in the pairwise density but not the one-wise densities.

That is, uhfd
ij is orthogonal to all one-wise scores u′

is and so contains only the
non-redundant information found in the pair (yi, yj). We think it is important
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to keep in mind this basic paradigm when constructing either scores or compos-
ite likelihood: each additive term should, if possible, provide new, orthogonal,
information only.

It is clear that this result must have implications for the structure of the
optimal weighting matrix for one-wise and pairwise scores at θind as well. If we
construct the optimal weighting matrix Wopt(θ) for the Hoeffding one-wise and
pairwise scores uhfd

i and uhfd
ij , then Wopt(θ) is a stack of p× p identity matrices,

which shows that the Hoeffding additive score h2(θ) is the optimal weighting
solution (this is a weaker result than being optimal additive). Assuming Wopt(θ)
is continuous in θ, this means Wopt(θ) should be near the Hoeffding weights when
θ is near θind.

As we will see later, the Hoeffding optimality results can have very limited
value except for parameter values that are near the independence parameters. On
the other hand the theorem holds for absolutely any model, and so represents
a breakthrough of sorts in a problem that has so far seen little in the way of
general theory.

4.3. Parameter classification

The Hoeffding optimality results enable us to create a classification of the
parameters based on their Hoeffding scores. We say that an element of the
parameter vector has no Hoeffding one-wise information if the corresponding
diagonal element of J(θind, ui) is zero for all i. We say that the parameter element
has no Hoeffding pairwise information if the corresponding diagonal element of
J(θ, uhfd

ij ) is zero for all i and j.
These definitions are important to the theory as follows. If there is no

one-wise information about a parameter, then each Hoeffding pairwise score
uij − ui − uj is the corresponding pairwise score uij . It follows that the sec-
ond order Hoeffding additive score h2(θ) is just the all-pairwise score capw(θ) for
that parameter. On the other hand, if there is no pairwise information in any
pair, then h2(θ) must equal caow(θ), the all-one-wise score. However the corre-
sponding equality uij = ui + uj now implies that h2(θ) itself is a multiple of
capw(θ). Thus in either case, h2(θ) is equivalent to the all-pairwise score.

We give an example of each of these two parameter types in our examples.
It follows from the above remarks that at θind, the Hoeffding scores are no more
efficient than pairwise for these parameter types. However, if we consider a
neighborhood of θind, we know that the optimal weighting matrix should stay
close to the weights given by Hoeffding scores, and so Hoeffding scores should
be superior in efficiency to pairwise scores in some neighborhood of θind. Our
examples bear this out.
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4.4. Results about general θ

The rather surprising nature of the optimal additive scores at θind leads one
to consider the consequences for non-independence values of θ. For example, are
the optimal additive scores always linear combinations of marginal scores? The
answer to this question is no. In fact the best additive scores appear to be gener-
ally more difficult to compute than the optimal weighted combination of scores.
To illustrate this point, consider the multivariate normal model, N{µ(θ), Σ(θ)}.
The log likelihood is quadratic in the data y, and hence the score umle(θ) is
as well. This means that umle(θ) lies in L2. It follows that the second order
optimal additive estimating function is umle(θ) itself, as nothing else could be
more efficient. That is, we have gained no computational advantage in using the
additive estimating function approach - unless perhaps the result inspires a new
algorithm for finding the maximum likelihood estimator (MLE).

The additive decomposition of information in Theorem 2 is limited to inde-
pendence, but we can create an extension that sheds some light on the construc-
tion of the optimal scores more widely. Suppose we have created an estimating
function g(y; θ). We consider how we might improve its information by adding
a subset of the variables in Y, say S. This problem is made somewhat eas-
ier by generalizing it, and finding the matrix R and function a that maximize
J(θ; Rg + a) over all p × p matrices R and all functions a(S; θ). The solution is
as follows.

Proposition 2. The matrix Ropt is the matrix that makes Ropt · [g(y; θ) −
E{g(Y; θ)|Sk}] information-unbiased. The function aopt(Sk; θ) is then given by

aopt(Sk; θ) = u(θ; Sk) − E{Roptg(Y; θ)|Sk}.

In this case

J(θ; Roptg + aopt) = J(θ; [g(y; θ) − E{g(Y; θ)|Sk}]) + J{θ; u(θ; Sk)}.

The proof is outlined in Appendix B. There are several important conceptual
lessons in this result. First, this clearly shows that the marginal score u(θ;Sk)
is always a fundamental building block for adding the information in a set of
variables Sk. But secondly, if we wish to add a new score a(Sk; θ) to an existing
estimating equation, it is best to do so by first constructing g∗ so as to remove
the information in g(y; θ) that can be attributed to Sk, then adding it back in
through u(θ; Sk). This result also gives the following corollary that provides a
non-trivial characterization of the optimal estimating functions in any additive
class.
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Corollary 1. The estimating function g is optimal additive estimating function
in the additive class of estimating functions G∗ = {Σkgk(Sk; θ)} if and only if

E(Roptg|Sk) = u(θ; Sk)

with probability one for every k.

We note that one can in theory create an algorithm similar to the backfit-
ting algorithm of generalized additive models (Hastie and Tibshirani (1990))
that would iteratively determine the optimal additive function. One would cy-
cle through the subsets of interest Sk, adding adjustments one at a time and
improving information at each step. However, this presents numerous new com-
putational challenges.

4.5. Hoeffding scores and likelihood

We next examine whether the Hoeffding additive scores hk(θ) are themselves
composite likelihood scores for some true or weighted composite likelihood. If
true, then these composite likelihoods have an attractive local optimality prop-
erty near θind relative to other composite likelihoods. The answer to this question
is mostly negative, which is somewhat disappointing.

To be more precise about this, we first construct the likelihood-based ob-
jective function whose differentiation yields the Hoeffding scores. Recursively,
define the Hoeffding likelihoods by

LH1(θ) =
∏

i

f(yi; θ),

LH2(θ) = LH1(θ) ·
∏
i<j

f(yi, yj ; θ)
f(yi; θ)f(yj ; θ)

,

LH3(θ) = LH2(θ) ·
∏

i<j<k

f(yi, yj , yk; θ)f(yi; θ)f(yj ; θ)f(yk; θ)
f(yi, yj ; θ)f(yi, yk; θ)f(yj , yk; θ)

.

The higher order Hoeffding likelihoods LHk
are determined in a similar fash-

ion from the higher order Hoeffding scores. Note that hk(θ) = ∇LHk
(θ) is the

kth order Hoeffding additive score.
It is easily seen that the Hoeffding likelihood LH1(θ) based on the one-wise

marginal likelihoods is a true composite likelihood. On the other hand, the
second-order Hoeffding additive score is quite surprising:

h2(θ) =
∑
i<j

uij − (d − 2)
∑

i

ui

= capw(θ) − (d − 2)caow(θ). (4.3)
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The striking feature here is the large negative weight on the one-wise scores.
Because a composite likelihood score is a sum of marginal and conditional scores,
the true composite likelihood that comes closest to having such a relatively large
negative weight on the one-wise scores is the all-pairwise-conditionals composite
likelihood, Capc(θ) =

∏
i 6=j L(θ; yi|yj), whose score is

capc(θ) = 2

{∑
i<j

uij −

(
d − 1

2

)∑
i

ui

}
.

The details are given in Appendix C. We note that when d = 3, capc and h2

are proportional, and the likelihoods are as well. However, as d increases to
larger values, there is a significant difference in weighting of the one-wise scores.
When we go beyond pairwise to three-wise or more, we find that there is no
overlap between the Hoeffding additive scores and the scores for any composite
likelihood except for the trivial case when k = d, i.e., when the k-wise score is
the full likelihood score.

4.6. Modified Hoeffding scores

We now know that the Hoeffding likelihoods LHk
(θ) are not composite likeli-

hoods for k > 1, but also that they are superior in information to any composite
likelihood at θind. How well would they work if used for arbitrary θ? The answer
is “very poorly”. Our examples in Section 5 show that, as the density f deviates
from independence, the Hoeffding likelihoods can behave catastrophically worse
than the composite likelihoods we consider. Before proceeding to these results,
we consider what might go wrong with the Hoeffding additive scores, and in the
process we show how one can improve them while retaining local optimality at
θind.

Recall that the Hoeffding pairwise scores uhfd
ij = uij −ui −uj have the prop-

erty that they are orthogonal at θind to all the other scores. Thus by their con-
struction, they represent only the new information that was not in those scores.
Their weakness is that this orthogonality does not hold away from independence.

In the spirit of Proposition 2, we propose to replace uhfd
ij with a pairwise

term we call the centered pairwise score,

ucen
ij = uij − Biui − Bjuj .

Here the p× p weight matrices Bi(θ) and Bj(θ) are used to remove the marginal
effects of ui and uj at each θ value, making the centered pairwise score orthogonal
to those marginal scores at that θ.

The idea is to force ucen
ij to represent the new information in the pair that

was not already present in the one-wise scores ui and uj . If ucen
ij = 0 for all i and
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j and for some parameter element θ1, we can then say that there is no additional
information (beyond the two one-wise scores) in the pairwise density about θ1.
With this definition, we have the intuitively pleasing result that when we have a
parameter θ1 in the N{µ(θ), Σ(θ)} model that only affects the mean parameter
µ(θ), then there is no additional pairwise information about θ1. A further remark
on this is placed at the end of the section.

We can solve for Bi and Bj by letting them be the βi and βj that minimize
the matrix least squares criterion

E{(uij − βiui − βjuj)(uij − βiui − βjuj)T}.

The minimizers in the Loewner ordering satisfy the matrix equalities:

E{(uij − Biui − Bjuj)uT
i } = 0,

E{(uij − Biui − Bjuj)uT
j } = 0.

Assuming the regularity conditions in Section 1 and noting that E(uiju
T
r ) =

E(uru
T
r ), r = i, j, with a little algebraic manipulation one obtains the formulas

Bi = (CijI−1
j − IiC

−1
ji )−1(Ip − IiC

−1
ji ),

Bj = (CjiI−1
i − IjC

−1
ij )−1(Ip − IjC

−1
ij ),

where Ip is the p × p identity matrix, and

Cij = E(uiu
T
j ),

Cji = CT
ij ,

Ii = E(uiu
T
i ),

Ij = E(uju
T
j ).

With these choices of Bi and Bj , the centered pairwise score ucen
ij satisfies the

second Bartlett identity, and is orthogonal to any linear combination of ui and
uj , the two scores with which uij is intrinsically dependent. (This is proved later
in this section).

On the computational side, note that the weight matrices Bi and Bj are
constructed from the pairwise density, nothing higher order, so the problem still
has Dcl = 2. Of course, if the parameter dimension p is large, there could be
significant computational burden in finding the needed inverses.

In order to assess the usefulness of the centered pairwise scores, we propose
to examine the modified Hoeffding score h2(θ),

hmod
2 (θ) =

∑
ui +

∑
ucen

ij . (4.4)
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This proposal is again based on the assumption that we must avoid any weight
matrix calculations involving the full set of scores. When hmod

2 (θ) is constructed
in this way, it matches the Hoeffding additive score h2(θ) at θind, and so is locally
optimal.

We conclude this section by showing that ucen
ij mimics the score for a sub-

likelihood in a manner that uhfd
ij does not, namely information unbiasedness. In

the next section we give an argument for why this should make it a more reliable
method.

We next verify that ucen
ij has the information-unbiased property.

Proposition 3.

E(−∇ucen
ij ) = E(ucen

ij uT
mle) = E{ucen

ij (ucen
ij )T}.

Proof. The first equality is a standard interchange of derivative and integral. If
we calculate the middle expression by first conditioning on (Yi, Yj), we find that it
is equal to E(ucen

ij uT
ij). This is then equal to E{ucen

ij (ucen
ij )T} by the orthogonality

of ucen
ij to ui and uj .

Remark 1. At θind, the Hoeffding score decomposition gives an ideal orthogonal
decomposition of scores so that information is additive over pieces. In such a case
there is no ambiguity when we say that when uhfd

ij = 0, there is no additional
information about a parameter in the pairwise score after accounting for one-wise
information; uhfd

ij is not just orthogonal to ui and uj , it is orthogonal to any uk.
At other values of θ, we do not have ucen

ij orthogonal to uk for other k than i

and j. Our definition above treats the pair (Yi, Yj) as an island even though the
additional information in the pair over the one-wise could, for example, be defined
through Proposition 2 as J [θ; caow−E{caow|(Yi, Yj)}]+J(θ; uij)−J(θ; caow). Our
choice is a computationally practical simplification of this that has some intuitive
appeal.

4.7. Reliable versus optimal

We have argued that the Fisher consistency property of the true composite
likelihood is a desirable property: it arises because we add together terms, each
of which satisfies the Kullback-Leibler inequality. However, if we were to include
sub-likelihoods with negative weights, the guarantee of Fisher consistency would
be lost. That is, adding together the log sub-likelihoods is a reliable mecha-
nism, even though it is not necessarily most efficient - we know this because
the Hoeffding result implies that one needs to use negative weights for optimal
efficiency near θind. Given the high computational cost of optimality, we propose
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to direct our attention towards lower cost methods that are inherently reliable
in consistency and efficiency.

If log sub-likelihoods can be reliably combined by summing with positive
weights, how can we reliably combine estimating functions g1, . . . , gk? Even at
the most primitive level, one should know which ones have negative signs and
which ones positive when forming g1±· · ·±gk. Our proposed rule for reliability is
that one should add information-unbiased scores (or at least use positive weights).
We recall that any estimating function gi that is not information-unbiased can
be put into this form by matrix multiplication, so our proposed rule provides a
general way to combine estimating functions.

We can claim no optimality theorem for this rule, but we can make the
following observations about reliability. First, if the scores are uncorrelated and
information-unbiased, then adding them together with equal weight is the most
efficient of all weighting schemes. Secondly, if this rule is applied to sub-likelihood
scores, it exactly replicates the class of composite likelihood scores, as the sub-
likelihood scores are automatically information-unbiased.

There is a third, and deeper, reason that this rule is reasonable. An unbiased
estimating function g that is information-unbiased satisfies

E(−∇g) = E(guT
mle) = E(ggT) ≥ 0,

where the inequality is in a sense of the Loewner ordering. If we examine the last
display, we note that the second expression E(guT

mle) gives the covariances of the
g score with umle, while the third expression E(ggT) is a non-negative definite
matrix. That is, information-unbiasedness implies that the estimating function
g has a positive association with the full likelihood score. We call this positive
likelihood association. If g were the gradient of an objective function, such as
u(θ; Sk), positive likelihood association has a physical interpretation: the steepest
ascent direction on log L(θ; Sk), namely u(θ; Sk), has a positive association with
the steepest ascent direction on log L(θ), namely umle.

Now if we add together estimating functions all with positive association
with umle, the sum has positive association. However, if we were to add some
with negative weights, this guarantee would be lost. So our proposed rule for
summing estimating functions guarantees positive likelihood association.

Remark 2. One can also view our rule as “semi-optimizing” the Godambe
information formula J(θ; g) = E(umleg

T){var(g)}−1E(guT
mle). By adding to-

gether terms with positive association, we are making sure that the expressions
E(−∇g) = E(guT

mle) increase as we add terms. Using a negative sign would make
these “numerator” terms decrease, so might be a bad idea. Our naivety, from
the efficiency point of view, comes from ignoring the costs that are associated
with {var(g)}−1 when we use this rule.
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We now can introduce a corollary to Proposition 3.

Corollary 2. The modified second order Hoeffding score hmod
2 (θ) is a sum of

terms with positive likelihood association.

In contrast, the Hoeffding pairwise score uhfd
ij is not guaranteed to have

positive likelihood association, as we show in the following example. Therefore,
h2(θ) itself has no guarantee of having positive association. For this reason we
might find its reliability suspect.

Example 4. Suppose

Y = (Y1, . . . , Yd)T ∼ N(θ1d, Σ),

where 1d is the d×1 unit vector, and Σ is a d×d matrix with diagonal elements 1
and off-diagonal elements ρ. Here θ is an unknown parameter, but ρ is assumed
known.

For i 6= j, we have the pairwise and one-wise scores

uij =
1

1 + ρ
(yi + yj − 2θ), ui = yi − θ, uj = yj − θ,

which yield

E(∇uij) = − 2
1 + ρ

, E(∇ui) = E(∇uj) = −1.

Therefore,

E(uhfd
ij umle) = E(uijumle) − E(uiumle) − E(ujumle)

= E(−∇uij) − E(−∇ui) − E(−∇uj)

=
−2ρ

1 + ρ
,

so the Hoeffding pairwise score has negative likelihood association when the cor-
relation coefficient ρ is positive.

We can construct the centered pairwise scores as follows. Since E(u2
i ) =

E(u2
j ) = 1, and E(uiuj) = ρ, we have Bi(θ) = Bj(θ) = 1/(1 + ρ), leading to the

centered pairwise score

ucen
ij = uij −

(
1

1 + ρ

)
ui −

(
1

1 + ρ

)
uj .

That is, how much one-wise scores should be removed from the pairwise score
depends on how strongly the one-wise scores are related.
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In fact, in this example ucen
ij = 0 at ρ = 0, showing that all the pairwise

information about the mean parameter θ is in the one-wise scores at this value.

5. Numerical Illustrations

In this section we provide a numerical study to compare the performance of
different ways to combine composite scores. We consider a multivariate normal
distribution N(0, Σ) with the covariance matrix Σ = [σij ]. There is a single
scalar parameter θ, so that p = 1. The examples are chosen so that we can do
relatively simple exact efficiency calculations, not for their intrinsic interest. We
restrict attention here to Dcl = 2, and so will focus on various combinations of
one-wise and pairwise scores.

We compare the following five methods.

1. All-pairwise likelihood, with capw(θ) =
∑

i<j uij .

2. All-pairwise conditionals, with capc(θ) = 2[capw(θ) − {(d − 1)/2} · caow(θ)],
where caow(θ) is the all-one-wise score

∑
i ui.

3. The second order Hoeffding additive scores h2(θ) defined in (4.3).

4. Modified second order Hoeffding scores hmod
2 (θ) defined in (4.4).

5. Maximum likelihood, with score umle.

In each of our examples there is an exchangeable distribution for the vector
Y. Under such circumstances, it is an easy argument to show that the optimal
weights for each ui are the same, and the weights for each uij are the same. That
is to say, the linear optimal estimating function wopt(θ) with Dcl = 2 is of the
form

α1

∑
i

ui + α2

∑
i<j

uij (5.1)

for constants α1 and α2. Moreover, the score umle in the normal likelihood lies
in the linear class of estimating functions with Dcl = 2 (as it depends on the
data linearly through yi and yiyj products only), so in fact umle is wopt(θ). Since
all the methods we consider have the form (5.1), they are competitors to be
equivalent to MLE, provided they correspond to good choices of α1 and α2.

If the parameter θ has dimension one, then the efficiency of the various
estimators is determined by their relative weight

RW = −α1

α2
.

For example, for all-pairwise capw(θ), this ratio is always zero.
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Table 1. Relative weights comparison for constant correlation model.

Score RW Same as MLE
True d−2

1+ρ all ρ

Pairwise 0 never
All cond’ls d−1

2 ρ = 1 − 2
d−1

Hoeffding d − 2 ρ = 0
Mod. Hoeffding − ρ2

1+ρ2 + d−2
1+ρ2 ρ = 0, ρ ≈ 1 − 1

d−1

In such a simple setting one might expect all methods to do well. However, we
will see that ramping up the data dimension d severely erodes efficiency because,
in fact, none of the methods comes close to having the same relative weights as
the MLE.

5.1. Exchangeable normal: mean and correlation known

Suppose Y = (Y1, . . . , Yd)T ∼ N(0,Σ), where Σ = σ2 · {(1 − ρ)Id + ρ1d1T
d}.

Here, σ2 is the unknown parameter and ρ is assumed to be a known constant.
We start by displaying in Table 1 the relative weights RW described above. True
to our local optimality theory, the relative weights for MLE and Hoeffding are
identically d − 2 at the independence model ρ = 0, as is the modified Hoeffd-
ing relative weight. That is, Hoeffding and modified Hoeffding are both locally
equivalent to the MLE in this case, while all-pairwise and all-pairwise condition-
als are not. However, we are interested in behaviour away from ρ = 0, so we
also check to see if there are any other values of ρ for which a method might be
locally equivalent to the MLE, and so be fully efficient. Here we see that both
all-pairwise conditionals and modified Hoeffding have this property at exactly
one value of ρ. These values are near 1 if d is large. Thus we might expect the
latter two methods to be reliably efficient at larger values of ρ.

To carry out the efficiency calculations, we note that under the normal dis-
tribution, all above five types of scores can also be written as Y TAY −E(Y TAY )
with suitable matrices A. In addition, the matrix A can be expressed as a linear
combination of Aaow for one-wise marginal score and Aapw for pairwise score
according to the same weights α1 and α2 mentioned above. Therefore, we can
compare the relative efficiency, r, between composite score estimator, θ̂cs, and
MLE, θ̂mle, as

r =
avar(θ̂mle)

avar(θ̂cs)

=
{tr(AmleΣAcsΣ)}2

tr(AmleΣAmleΣ) · tr(AcsΣAcsΣ)
.
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We compare the relative efficiencies of all methods when d = 3, 20, 50 for
values of ρ in its range (−1/(d − 1), 1). Note that when d = 3, all-pairwise
conditionals and Hoeffding are identical. Note also that this is a model in which
the Hoeffding pairwise scores uij − ui − uj are all zero at ρ = 0. That is, there is
no additional information about the mean in the pairwise densities at this value.
So at this ρ, all the methods we are considering are equivalent to the all-one-wise
score, and so all have relative efficiency of 1 at ρ = 0.

At d = 3, it is clear that all-pairwise is inferior to the other methods, espe-
cially so for large ρ. The local optimality of the other methods near ρ = 0 is also
apparent.

At d = 20, there seems to be less benefit to having locally optimal weights in
h2(θ) and hmod

2 (θ), as their regions of high efficiency are considerably smaller. It
also becomes clear that we cannot consider h2(θ) an acceptable method for esti-
mation, as it has disastrous efficiency beyond ρ = 0.2. The comparison between
all-pairwise and modified Hoeffding is something of a tie, with the latter better
for large ρ. And all-pairwise-conditionals is a clear overall winner. The plot for
d = 50 provides nearly identical information, but now the worst case efficiency
for all-pairwise conditionals has degraded to about 0.50.

5.2. Exchangeable normal: mean and variance known

We consider a second simple example. Suppose Y = (Y1, . . . , Yd)T ∼ N(0,Σ),
where Σ−1 = σ−2{(1− β)Id + β1d1T

d}. Here, σ2 is treated as a known parameter
and β is assumed to be unknown, β = 0 corresponding to θind. In this case, the
weights for the MLE and for the modified Hoeffding are more complex, and so we
do not repeat Table 1. However, we should note that at β = 0, the one-wise scores
are zero, so in contrast with the first example, there is no one-wise information at
β = 0. However, this again implies that all the competing methods are equivalent
to pairwise, and hence fully efficient, at β = 0.

Again, we compare the relative efficiencies for our five methods when d =
3, 20, 50, under different values for β ∈ (−1/(d−1), 1). Starting with d = 3, we see
that the locally optimal methods are both superior to pairwise in a neighborhood
of β = 0. Other than this, pairwise is a little better than Hoeffding/all-pairwise
conditionals at the two extremes of β′s range, but much worse for β ≈ 0.3.
Modified Hoeffding is an overall winner. All methods become fully efficient as β

goes to 1.
For d = 20, the performance of Hoeffding h2 is so bad that we left it off the

plot. Examining the other three, we can see that pairwise is largely inferior in ef-
ficiency to the other two. Both all-pairwise conditionals and pairwise deteriorate
badly near β = 0.1. We do not have a simple explanation for this weak per-
formance. On the other hand, modified Hoeffding performs the best, with clear
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Figure 1. Comparisons of the relative efficiency for different composite like-
lihoods under various settings.

local optimality. Among the true composite likelihoods, all-pairwise conditionals
was best. The same conclusions hold for d = 50, except that the worst case
efficiencies decay further, with modified Hoeffding going down to about 30%.

6. Strategies

The Hoeffding optimality result and the seeming success of the modified Ho-
effding scores offer some strategic insights. One clear insight is that the pairwise
likelihood is generally not “conditional” enough. That is, it contains too many
copies of the one-wise information, in fact d − 2 times too much near θind. An-
other lesson is that we can correct for this feature somewhat at other values
of θ than θind by using ucen

ij , and obtain methods that were clearly superior to
pairwise in our examples. It is also clear that all-pairwise conditionals perform
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better than pairwise near the independence model.
However, these results do not directly address a question that we view as

becoming ever more important in composite likelihood: when and how should
one move to a higher order strategy (with Dcl larger) while keeping Ncl small.
Our information decomposition in Theorem 2 does provide some insights. The
additive decomposition of information at θind means that we can precisely de-
termine the contribution to the information of higher order marginals relative to
lower order ones. Thus, for example, one could take the full Hoeffding decompo-
sition, list the information content of each score for a parameter of interest, and
then select the ones that give the greatest return in information per dollar cost
in computing. Of course, such an analysis would be naive given the very local
nature of Hoeffding optimality.

However, there are examples that show that this thinking can apply more
widely. Suppose the model f(y; θ) is a first order Markov chain for the sequence
Y1, . . . , Yd. In such a case, it is clear that the true score umle has Dcl = 2,
regardless of the value of θ, and that it only uses adjacent pairs (Yi, Yi+1). It also
follows that the Hoeffding additive score h2(θ) must be umle at θind. This can be
checked by direct calculation: first show that at θind, uhfd

ij = 0 for any (i, j) pair
that are not adjacent, then plug these scores into h2(θ) to give the result. That is,
the number of scores we need to consider is only of order Ncl = d. More generally,
the optimal additive score at any θ, with Dcl = 2, must also be umle. That is,
many of the terms in the best additive decomposition are identically zero; namely
all functions of (Yi, Yj) where i and j are not neighbors. Similar remarks apply
to higher order Markov chain models, with Ncl staying at d, but Dcl increasing
with the order of the Markov chain. That is, assumptions of Markovian structure
can greatly reduce computational burden by keeping Ncl of order d.

Markov chains are thus examples where many of the additive score terms
are exactly zero. (See Hjort and Varin (2008), for a more detailed comparison of
the efficiency of various composite likelihood choices in Markov chain models.)
There are many other models of interest where one might not have exact zeroes
(except possibly for certain parameter values), but one would still expect some
ordering in the information content of the various scores due to some spatial or
temporal structure, and therefore expect there to be significant value to using
higher order marginals with fewer composite likelihood factors Ncl. In the fol-
lowing, we describe some strategies for doing this. These strategies are being
implemented and evaluated by the authors in a separate ongoing project.

6.1. Surrogate densities and likelihoods

Motivated by our Markov chain example, we now consider a special class
of composite likelihoods C(θ) that have the property that they are the actual
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likelihoods for true density functions. We say that the density function s(y; θ) is
a surrogate density for f(y; θ) if s(y; θ) = C(θ) for some composite likelihood C.
We then call C(θ) a surrogate composite likelihood. In this section we show how
one can construct a sequence of surrogates sm(y; θ) such that Dcl increases in m,
but Ncl is fixed at d, while statistical efficiency increases as well. Thus one could
select the parameter m to optimize efficiency for any given set of computational
limitations.

Surrogate composite likelihoods have some conceptual advantages. Most
commonly used constructions of composite likelihoods, such as pairwise, are not
true likelihoods for any density, and so the parallels to likelihood theory are lim-
ited to first order properties. When calculations are done treating the surrogate
model as true instead of the nominal model, surrogate likelihoods obey all the
standard properties of likelihood, such as full efficiency for parameter estima-
tion, estimation of information from the information matrix, sensible Bayesian
analysis, and so forth. Thus to the extent that the surrogate density s(y; θ) is
a reasonable approximation to the full model f(y; θ), these features should be
approximately true for the surrogate composite likelihood.

6.2. Surrogate Markov random field

The universal representation of a density s in the form

s(y) = s(y1)s(y2|y1)s(y3|y1, y2) × · · · × s(yd|y1, . . . , yd−1)

shows that one can define a density function s that will be a surrogate for f(y; θ)
by defining each of the conditional densities s(yk|y<k>) for k = 2, . . . , d, where
y<k> stands for the set {y1, y2, . . . , yk−1}. We here define these conditional den-
sities using the true model f by setting

s(yk|y<k>) = f{yk|y∗(k)},

where y∗(k) is a chosen subset of y<k>. It follows from the product representation
of the density that the surrogate composite likelihood is

Cs(θ) =
∏

s(yk|y<k>; θ) =
∏

f{yk|y∗(k); θ}.

If the size of the subset y∗(k) is fixed to be m or less, then the calculations
for this surrogate density/likelihood are from marginals of order no greater than
Dcl = m+1. Ideally, the density f{yk|y∗(k)} equals f(yk|y<k>), as then we have
reproduced f exactly. Thus the closeness of the surrogate s to f depends on how
strongly the conditional density of Yk given y<k> depends on the “neighbors” of
yk that are specified by y∗(k). The worst case situation for this type of composite
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likelihood occurs if the data is exchangeable in the model, then all points are equal
neighbors of each other, and so one is unlikely to do a good job of approximating
f(yk|y<k>) with fewer conditioning variables.

If we were to choose y∗(k) to be yk−1, . . . , yk−m, then the surrogate model
would be an mth order Markov chain model for the Y sequence. In this setting
one can show that each increment of m leads to a surrogate density that is closer,
in Kullback-Leibler discrepancy, to the model f (A similar remark holds for any
strategy that increments y∗(k) in a nested fashion). In a surrogate Markov chain,
it can also be shown that the surrogate marginal densities s(yk, . . . , yk+m) for
m + 1 adjacent variables will also equal f(yk, . . . , yk+m), giving another piece of
evidence about how s becomes an increasingly accurate approximation for f as
m increases. The details are presented in Appendix D.

More generally, and more appropriately for data that has spatial structure,
one can create a surrogate Markov random field using lower order marginal den-
sities. For each data point yk, we first specify a set of neighbors of yk , a subset of
{y1, . . . , yd}\{yk} that we denote by N(yk). We assume that if yi is a neighbor for
yj , then yj is a neighbor of yi. For each k, let the conditioning event y∗(k) be the
intersection of {yl, . . . , yk−1} and N(yk). Further, let the induced neighbors of yk

be all those yj that appear with yk in any of the terms f{ym|y∗(m)},m = 1, . . . , d.
This set includes all neighbors of yk, plus possibly some neighbors of y′ks neigh-
bors. When this is done, the surrogate density s has the following property: the
conditional density of Yk given the remaining data is the same as the conditional
density of Yk given its induced neighbors. This is called the “local Markov prop-
erty” and a density with this characteristic is called a Markov random field (Rue
and Held (2005)).

If we are creating a surrogate Markov random field, then we need to con-
sider which data point is to be labelled y1, which y2, and so forth. Clearly our
sequential factorization depends on this choice. Given an initial labelling of the
data, (y1, . . . , yd), let (y′1, . . . , y

′
d) be a reordered version. A useful selection of

this ordering can reasonably be based on computational considerations, as we
desire to keep the data dimension Dcl small. To achieve this, the conditioning
sets, y∗(k) = y<k> intersected with N(yk), should be kept as small as possible.

We propose a sequential selection, starting with the last variable yd. The
choice for the last variable is obvious because its conditioning set does not depend
on ordering. Minimizing the size of y∗(d) = N(yd) means that one should choose
the variable y′d from among those yk with the smallest number of neighbors.
Next, note that once y′d is selected, one can proceed to choosing y′d−1 in the same
fashion, but now the set of conditioning neighbors must be in the set {y1, . . . , yd}\
{y′d}. That is, this new optimization problem is the same as the first, only y′d has
been eliminated from the data set. Continuing in this manner gives a recursive
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algorithm that starts with selecting the last variable y′d and, at each following
step, we choose y′d−k, for k = 1, . . . , d−1, based on it having the fewest neighbors
among the remaining variables.

As an example, suppose the data are realizations of a spatial process where
the observations are taken at points in the rectangular lattice {(i, j) : i = 1, . . . , I,
and j = 1, . . . , J}. Suppose that the neighbors of yk are defined to be those
y-values whose lattice locations a′, b′ are within a fixed Euclidean distance of
(ak, bk), say ≤

√
2. Then in the rectangular lattice, observations at the four

corner points each have 3 neighbors, the edges of the rectangle each have 5
neighbors, and points in the interior of the lattice each have 8 neighbors. If
we follow the above algorithm, then the first four points to be selected, namely
y′d, . . . , y

′
d−3, are the four corners, each having three neighbors. After they are

removed, the edge locations next to the corners have one less neighbor, and so
they would be selected next because they have four remaining neighbors. The
algorithm would continue in this way, “peeling off” the corners and edges, while
never taking an interior point. As a result, the largest conditioning set has size
4, which can be shown to be the smallest maximal size that could be obtained
by any ordering of the factorization. In this example, the number of points in an
induced neighborhood is never more than one element larger than the original
neighborhoods.

Remark 3. One could also build a sequence of nested surrogate models, and
use likelihood ratio testing to compare their quality of fit.

6.3. Hidden surrogate densities

Many applications of composite likelihood are in settings where the com-
plexity in computation arises from integration or summation over many hidden
variables. (e.g., Breslow and Clayton (1993); Diggle, Tawn, and Moyeed (1998);
Fieuws, Verbeke, and Molenberghs (2007)). Suppose we are doing inference for
a model that has the structure

f(y; θ) =
∫

f(y,h; θ)dh,

where the hidden random variables H are high-dimensional, and the densities
f(y,h; θ) are each individually simple to compute. We here have represented
the hidden variables as continuous, but we mean to allow discrete variables H as
well. We assume it is the high-dimensional integration or summation that creates
the computational problem. Rather than creating a surrogate density for f(y; θ)
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directly, we could instead create surrogate densities for f(y,h; θ), say g(y,h; θ),
and then for an overall surrogate use

g(y; θ) =
∫

g(y,h; θ)dh,

where the g′s are densities that not only easier to compute, but also chosen so
that the “complete data” likelihood g(y,h; θ) is also equal to a complete data
composite likelihood for the density f(y,h; θ). We call g(y; θ) a hidden surrogate
for f(y; θ). It is now critical, if this construction is to be computationally efficient,
that the integration over h to create g(y; θ) becomes more efficient to implement
than the integration for f(y; θ).

One possible way to do this is to let g(y,h; θ) be an order-m Markov chain
surrogate for f(y,h; θ). As before, this guarantees a growing Kullback-Leibler
similarity between g and f . The resulting observed data surrogate g(y; θ) is then
a hidden Markov chain, and benefits from the computational simplifications for
its calculation that are found in the forward and backward algorithms. This can
reduce an integration whose operations grow exponentially in d to calculations
that are quadratic in d (Ewens and Grant (2001)). More generally, if we use
a surrogate Markov random field for g(y,h; θ), we obtain a similar savings in
computation.

We foresee considerable advantages to the hidden surrogate approach due
to one’s ability to use the surrogate densities for inference about the hidden
variables. It also provides a natural method to create proposal distributions for a
Monte Carlo likelihood analysis (Geyer and Thompson (1992); Gilks, Richardson,
and Spoegelhalter (1996); Robert and Casella (1997)). However, there is one note
of caution: even though the surrogate exactly matches the chosen complete data
marginal densities, it does not imply that the score functions from g(y; θ) satisfy
Eθ{∇ log g(Y; θ)} = 0. That is, if one uses a hidden surrogate for a composite
likelihood, one needs to be cautious about the bias that is introduced into the
parameter estimates.

Remark. It has long been commonplace in statistical practice to use a statis-
tical model that has simple computations and analysis even though it is clearly
false. Prominent examples include the wide variety of models based on linearity
assumptions and on normality assumptions. These methods are usually justified
on the basis that the analysis is likely to be approximately valid if the model
assumptions are approximately true. Another way to put this is that we can
think of the normal/linear model as a useful surrogate for a model that would
more accurately capture our state of knowledge. One of the virtues of composite
likelihood methods is that they have that same simplifying nature. Indeed, we
have shown above that there are useful ways to create computationally easier
surrogate models within the composite likelihood framework.
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7. Discussion

In the first part of this paper, we restricted our attention to the determining
the optimal estimating functions based on using only marginal densities with data
dimension less than some fixed value. In the process, Ncl was left unconstrained.
We did this in two ways, by examining the optimal weights for the composite
likelihood scores and by considering the optimal additive estimating functions.
In the process, our optimality result showed that the pairwise scores could suffer
in efficiency loss from an implicit overuse of one-wise information.

However, simply using the composite likelihood generated by the Hoeffding
scores turned out to be too “local” to the independence models. In this paper, we
provided motivations for the use of “all pairwise conditionals” and modified Ho-
effding scores. Modified Hoeffding scores could serve as a start toward a method
with easy computation as well as balanced optimality and positive likelihood
association. The pairwise conditional likelihood seems to be competitive, has
the advantage of being a true composite likelihood, and serves as a reasonable
compromise between efficiency and cheapness. Our numerical assessments here
were quite limited. It would be interesting to compare the performance of various
composite likelihoods on more complex models.

In Section 6, we developed several new composite likelihood constructions
based on using Markov random field surrogate densities. These models are a nat-
ural way to create density approximations using an increasing hierarchy of con-
ditional independence assumptions. They are fully efficient when the true model
has the needed conditional independence relationships, and otherwise provides
a computationally feasible way to construct a composite likelihood for models
where the data has some natural neighborhood structure to its dependencies.

We consider these results a bare beginning. Much more research is warranted
to investigate the use of the composite likelihood regarding these questions.
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Appendix A: Proof of Theorem 1

We need to show that at θ = θind, umle − hk(θ) is orthogonal to all the
basis elements of Lk. First consider the case where k = 2 and we wish to show
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orthogonality to any function of g(y1, y2; θ) ∈ G12. We have

E[{umle − h2(θ)}gT(Y1, Y2; θ)|(Y1, Y2)]

= E(E[{umle − h2(θ)}gT(Y1, Y2; θ)|(Y1, Y2)])

= E[u12 − E{h2(θ)|(Y1, Y2)}gT(Y1, Y2; θ)].

Thus we are done if we show E{h2(θ)|(Y1, Y2)} = u12. We consider the con-
ditional expectation of all the terms in h2(θ). First, E{u1|(Y1, Y2)} = u1 and
E{u2|(Y1, Y2)} = u2, but for every other index j we have E{uj |(Y1, Y2)} = 0 due
to the independence of Yj and (Y1, Y2) at θind. Next, clearly E{uhfd

12 |(Y1, Y2)} =
uhfd

12 . For j > 2, we have

E{uhfd
1j |(Y1, Y2)} = E{u1j − u1 − uj |(Y1, Y2)} = E{uj|1 − uj |(Y1, Y2)} = 0.

We have here used the fact that E(uj|1|Y1) is necessarily zero by the mean zero
property of a score, but the independence of the variables means that the condi-
tional distributions of one subset given any other subset are just the marginals.

More generally, we show that at θ = θind, for 3 ≤ k ≤ d, umle − hk(θ) is
orthogonal to any function of r-wise subset Sr = (yi1, . . . , yir), g(Sr; θ) ∈ GSr ,
r = 1, . . . , k. Indeed, as

E[{umle − hk(θ)}gT(Sr; θ)] = E(E[{umle − hk(θ)}gT(Sr; θ)|Sr])

= E([u(θ; Sr) − E{hk(θ)|Sr}]gT(Sr; θ)),

we are done if we show that E{hk(θind)|Sr} = u(θind; Sr). This can be proved
by applying the following identities to hk(θ) iteratively, following the same argu-
ments as above: for any subset S ⊂ {y1, . . . , yd},

E{u(θ; S)|Sr} =


u(θ;S), if S ⊂ Sr

u(θ;S ∩ Sr), if S ∩ Sr 6= ®, θ = θind

0, if S ∩ Sr = ®, θ = θind.

Appendix B: Proof of Proposition 2

The class of functions defined by Rg + a, for arbitrary p × p matrix R, is
linear, so the optimal estimating function in this class comes from minimizing the
least squares criterion E{(umle−Rg−a)(umle−Rg−a)T}. We start by replacing g

with g∗ = g(y; θ)−E{g(Y; θ)|Sk}. We can now minimize the equivalent criterion

E([U−Rg∗−RE{g(Y; θ)|Sk}−a(Sk; θ)]·[umle−Rg∗−RE{g(Y ; θ)|Sk}−a(Sk; θ)]T)
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over R and a. If we define the new function a∗(Sk; θ) = a(Sk; θ)−RE{g(Y ; θ)|Sk},
then the objective is to minimize

E{(U − Rg∗ − a∗)(U − Rg∗ − a∗)T}

over matrices R and functions a∗ of Sk. We can do this by showing that for Ropt

and aopt as given in Proposition 2, and a∗opt = aopt+RoptE{g(y; θ)|Sk} = u(θ; Sk),
we have the residuals umle − Roptg − aopt, or umle − Roptg

∗ − a∗opt orthogonal to
all linear functions of g∗ and all functions of Sk. Now as a function of Sk, a∗opt is
orthogonal to g∗ (which is conditionally mean zero given Sk) and so any linear
functions of it. Since Ropt makes Roptg

∗ information-unbiased, we have

E{(umle − Roptg
∗ − a∗opt)g

∗T} = 0.

Next, we consider arbitrary basis functions h(Sk). Note that umle−a∗opt = umle−
u(θ; Sk) is conditionally mean zero given Sk, as is Roptg

∗. Hence we have

E{(umle − Roptg
∗ − a∗opt)h

T(Sk)} = 0,

as required. The orthogonality properties of g∗ and a∗opt give the information
decomposition.

Appendix C: Expression of All-Pairwise Conditionals

The product of all pairwise conditionals
∏

i6=j Li|j yields the sum of pairwise
conditional scores

∇ log(
∏
i 6=j

Li|j) =
∑
i6=j

ui|j =
∑
i 6=j

uij −
∑
i 6=j

uj .

Noting that

∑
i6=j

uj =
d∑

i=1

∑
1≤j≤d,j 6=i

uj

= (u2 + u3 + u4 + · · · + ud) + (u1 + u3 + u4 + · · · + ud)

+(u1 + u2 + u4 + · · · + ud) + · · · + (u1 + u2 + u3 + · · · + ud−1)

= (d − 1)
∑

i

ui,

we obtain that∑
i6=j

ui|j =
∑
i 6=j

uij − (d − 1)
∑

i

ui = 2

{∑
i<j

uij −

(
d − 1

2

)∑
i

ui

}
.
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Appendix D: On Surrogate Markov Chain Models

Proposition 4. The Markov chain surrogate density of order m satisfies

s(yk, . . . , yk+m) = f(yk, . . . , yk+m).

Proof. Consider a simple example, where m = 1 and d = 4. Then we can write

s(y1, y2, y3, y4) = f(y4|y3)f(y3|y2)f(y2|y1)f(y1)

=
f(y1, y2)f(y2, y3)f(y3, y4)

f(y2)f(y3)
.

To find the marginal density for two variables, we integrate out the other two.
When written appropriately, these integrations are clear. For example, if we wish
to integrate out y1 and y4 to get the marginal for Y2 and Y3, we rewrite s in the
form

s(y1, y2, y3, y4) = f(y1|y2)f(y2, y3)f(y4|y3),

where the integrals over y1 and y4 in the first and last terms are, for fixed y2 and
y3, exactly one. This argument clearly extends to larger m and d.

Proposition 5. The Markov chain surrogate densities sm satisfy∫
f(y) · log

{
sm+1(y)
sm(y)

}
dy ≥ 0

so that the Kullback-Leibler divergence
∫

f(y) log{f(y)/sm(y)}dy is monotoni-
cally decreasing in m.

Proof. We consider a simple example first. Suppose d = 4 and we compare
m = 0 and m = 1. Then we wish to find∫

f(y) · log

{
sm+1(y)
sm(y)

}
dy

= E

[
log

{
sm+1(Y)
sm(Y)

}]

= E

[
log

{
f(Y1, Y2)f(Y2, Y3)f(Y3, Y4)
f(Y1)f2(Y2)f2(Y3)f(Y4)

}]

= E

[
log

{
f(Y1, Y2)

f(Y1)f(Y2)

}]
+ E

[
log

{
f(Y2, Y3)

f(Y2)f(Y3)

}]
+ E

[
log

{
f(Y3, Y4)

f(Y3)f(Y4)

}]
.

Now each summand is nonnegative by the information inequality, as applied to
each two dimensional marginal density. This proof generalizes to arbitrary m
and d.
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