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Abstract: We develop an empirical Bayesian thresholding rule for the normal mean

problem that adapts well to the sparsity of the signal. An key element is the

use of a mixture loss function that combines both the Lp loss and the 0 − 1 loss

function. The Bayes procedures under this loss are explicitly given as thresholding

rules and are easy to compute. The prior on each mean is a mixture of an atom

of probability at zero, and a Laplace or normal density for the nonzero part. The

mixing probability as well as the spread of the non-zero part are hyperparameters

that are estimated by the empirical Bayes procedure. Our simulation experiments

demonstrate that the proposed method performs better than the other competing

methods for a wide range of scenarios. We also apply our proposed method for

feature selection to four data sets.
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1. Introduction

We are given n scalar observations x1, x2, . . . , xn satisfying

xi = µi + εi, (1.1)

where each εi is independent and identically distributed as εi ∼ N (0, σ2), a
normal distribution with mean zero and a known variance σ2. Based on the
observation x = (x1, x2, . . . , xn) we need a desirable estimate µ̂ of the unknown
parameter µ = (µ1, µ2, . . . , µn). This is generally referred to as the multivariate
normal mean problem.

Very often we encounter scenarios that involve sparsity : a large number of
µi’s are zero but we do not know how many of them are zero. With no information
on how sparse the vector µ is, an estimator µ̂ that adapts to the degree of sparsity
is desirable.

The normal mean problem occurs in a wide range of practical applications.
Some examples include model selection in machine learning/data mining (George
and Foster (2000)), smoothing in signal processing, de-noising in astronomical
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image processing (Johnstone and Silverman (2004)), wavelet approaches to non-
parametric regression (Johnstone and Silverman (2005)), and significance testing
in genomics and bio-informatics (Efron and Tibshirani (2007)). Situations in-
volving Poisson or binomial observations, such as baseball batting averages, can
be transformed and efficiently treated within the normal means context (Brown
(2008)).

For sparse situations the desired and the natural estimator is an explicit
thresholding rule of the form

µ̂i =

{
0 if |xi| < t(x)

some estimate otherwise,
(1.2)

where t is some threshold that can depend on x. As a result of this the estimate
has some values exactly zero. However it is crucial that the threshold t adapt
to the degree of the sparsity in the signal, which is unknown. We propose an
explicit thresholding rule that adapts to the sparsity of the signal automatically
using an empirical Bayesian approach. The proposed approach has the following
three components:

1. To incorporate the possibility of sparsity we use a mixture prior on each
mean with an atom of probability at zero and either a Laplace or normal
density for the nonzero part. This form of the mixture prior has been earlier
used by Johnstone and Silverman (2004, 2005), Abramovich, Sapatinas, and
Silverman (1998), Clyde, Parmigiani, and Vidakovic (1998), and Chipman,
Kolaczyk, and McCulloch (1997) in the context of thresholding the wavlet
coefficients.

2. The mixing probability as well as the spread of the non-zero part are hyper-
parameters which are estimated by an empirical Bayes procedure.

3. The novel key element is the use of a loss function combining Lp-loss (p = 1, 2)
and a 0 − 1 loss function–more precisely we take

Lp,K(µi, µ̂i) = K1{µ̂i 6=µi} + |µ̂i − µi|p. (1.3)

Here the constant K controls the amount of penalty for incorrectly estimating
the exact true value of µi, and K = 0 corresponds to the usual Lp loss.

A nice property of our method is that the resulting Bayes procedures are
explicitly given as thresholding rules, i.e, a particular parameter estimate µ̂i is
set to zero if it is less than some threshold. The resulting estimator is adaptive
to the amount of sparsity, and is computed automatically based on the entire
observation x. To be more precise, in our procedure the hyperparameters are
adaptively estimated based on the entire observation x.
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Table 1. Average of the total squared error for various signals and different
settings of our proposed procedure. See Section 4 for details of the simulation
setup. Some of the methods with the minimum error are in bold, the best
method is underlined. The results for EBayesThresh, FDR, SURE, and
Universal hard threshold are directly taken from Table I in Johnstone and
Silverman (2004). The left most column ranks the different procedures by
computing the average rank among the different scenarios.

R (Number nonzero) 5 5 5 5 50 50 50 50 500 500 500 500
Rank V (Value nonzero) 3 4 5 7 3 4 5 7 3 4 5 7

Proposed method
7 L2 loss normal prior K=0 34 30 18 12 194 158 112 80 857 819 752 665
1 L2 loss normal prior 34 30 17 10 193 151 96 54 807 722 585 502
9 L2 loss laplace prior K=0 33 31 19 10 200 167 120 86 862 889 832 711
3 L2 loss laplace prior 33 30 18 6 198 159 102 60 848 774 649 572
4 L1 loss normal prior K=0 36 31 15 8 213 149 96 70 819 778 697 620
2 L1 loss normal prior 36 32 15 5 214 155 96 57 790 698 614 516
6 L1 loss laplace prior K=0 35 31 15 8 213 154 100 74 859 874 790 661
5 L1 loss laplace prior 35 32 15 6 215 159 102 67 855 777 751 673

15 L1 loss lasso prior 50 69 78 88 238 272 290 332 857 876 876 889
EBayesThresh

8 Laplace prior pos. median 36 32 17 8 214 156 101 73 857 873 783 658
10 Laplace prior pos. mean 34 32 21 11 201 169 122 85 860 888 826 708

FDR
12 q=0.01 43 51 26 5 392 299 125 55 2568 1332 656 524
11 q=0.1 40 35 19 13 280 175 113 102 1149 744 651 644
16 q=0.4 58 58 53 52 298 265 256 254 919 866 860 860
14 SURE 38 42 42 43 202 209 210 210 829 835 835 835
13 Universal hard threshold 39 37 18 7 370 340 163 52 3672 3355 1578 505

Without the mixture loss, the Bayes procedure for the L2 loss is the posterior
mean, which has a shrinkage property but no thresholding property at all, i.e.,
all estimates are non-zero. The posterior mean and median are just special cases
of the proposed estimator (with K = 0). In our simulation results (see Table 1),
the proposed estimators are better than the posterior mean and median in terms
of the total squared error, in addition to the fact that they adapt to the sparsity
in the signal. We also study the effect of different choices of K, and empirically
propose a universal value that depends only on the adaptive estimate of the
hyperparameters. Because of the mixture loss, the proposed procedure turns out
to be robust to mis-specification of the non-zero component of the mixture prior.

Johnstone and Silverman (2004, 2005) propose an estimator that is closely
related to ours and study its theoretical properties. Their estimator is the poste-
rior median based on the same prior as we use. This happens to be a special case
of our proposed estimator–it corresponds to our loss function (1.3) with p = 1 and
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K = 0. Our results show that by using a non-zero K the mean squared error can
be much lower and the sparsity is captured much more accurately. Johnstone and
Silverman (2004) use the posterior median (L1-loss) for its thresholding property.
By using a non-zero K our proposed estimator is always a thresholding rule for
both L1 and L2 loss.

There are related approaches. For example, the SURE approach of Donoho
and Johnstone (1995) is based on minimizing Stein’s unbiased risk estimate for
the mean squared error of soft thresholding. The FDR approach of Abramovich
et al. (2006) is derived from the principle of controlling the false discovery rate
in simultaneous hypothesis testing. Brown and Greenstein (2009) also propose a
non-parametric empirical Bayes estimator; their estimator is not a thresholding
estimator, but does adapt and perform well in moderately sparse or non-sparse
settings.

The rest of the paper is organized as follows. In Section 2 we describe the
mixture prior used to promote sparsity. We subsequently describe an empirical
Bayes procedure to estimate the hyperparameters by maximizing the marginal
likelihood; the estimated hyperparameters are then plugged in to derive the pos-
terior. The mixture loss function is introduced in Section 3, and the correspond-
ing Bayes rule is derived. Simulation results, along with the choice of K, are
discussed in Section 4. In Section 5 we use the proposed procedure to select rele-
vant features for classification on four data sets. The optimal number of features
selected through our methods agrees with those selected using cross-validation.

2. Adapting to Unknown Sparsity

Without loss of generality we assume that the xi are scaled such that σ2 = 1.
If σ is unknown we estimate it using a robust estimator. One good choice is the
median absolute value of xi. Since we assume that µ is sparse, the median
absolute value is not strongly affected by the nonzero µi.

From (1.1), and assuming εi ∼ N (0, 1), we have p(xi|µi) = N (xi|µi, 1). Since
the εi are independent, the likelihood of the parameters µ given the observations
x can be factored as

p(x|µ) =
n∏

i=1

p(xi|µi) =
n∏

i=1

N (xi|µi, 1). (2.1)

Note that the maximum-likelihood estimator µ̂ML = arg maxµ p(x|µ) is the
observation x itself. It is well known that this estimator can be considerably
improved by such shrinkage estimators as the James-Stein estimators (see Berger
(1985)).

We impose a prior on µ and then find the Bayes solution under a suitable loss
function. In order to promote sparsity, we assume that each of the parameters
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µi comes from a mixture of a delta function mass at zero and a fixed symmetric
density,

p(µi|w, a) = wδ(µi) + (1 − w)γa(µi), (2.2)

where w ∈ [0, 1] is the mixture parameter and the δ puts probability mass of 1
at 0, and zero elsewhere. For the nonzero part of the prior γa we consider two
possibilities.

1. A zero mean normal with variance a2.

γa(µi) = N (µi|0, a2) = (2πa2)−1/2 exp
(
− µ2

i

2a2

)
. (2.3)

2. A double exponential (Laplace) with scale parameter a.

γa(µi) = 0.5a exp (−a|µi|). (2.4)

The Laplace prior has a heavier tail than the normal. We consider w and a as
hyper-parameters and use an empirical Bayesian approach to estimate them by
maximizing the marginal likelihood. Given the hyper-parameters w and a, the
posterior of µ given the data x can be written as

p(µ|x, w, a) =
∏n

i=1 p(xi|µi)p(µi|w, a)
m(x|w, a)

, where (2.5)

m(x|w, a) =
n∏

i=1

∫
p(xi|µi)p(µi|w, a)dµi (2.6)

is the marginal of the data given the hyper-parameters. For the likelihood (2.1)
and the mixture prior (2.2) we have∫

p(xi|µi)p(µi|w, a)dµi = wN (xi|0, 1) + (1 − w)ga(xi), (2.7)

where we define ga(xi) =
∫
N (µi|xi, 1)γa(µi)dµi. Hence the log-marginal likeli-

hood can be written as

log m(x|w, a) =
n∑

i=1

log [wN (xi|0, 1) + (1 − w)ga(xi)] . (2.8)

We chose w and a to maximize the log-marginal likelihood numerically,

{ŵ, â} = arg max
w,a

log m(x|w, a). (2.9)

More specifically we used an alternate optimization technique: for a fixed w, find
the a which maximizes the log-marginal likelihood; given the best a, find the best
w; repeat to convergence.
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Estimated hyperparameters are then plugged into the posterior. For ease of
later derivation we factor the posterior as

p(µ|x, w, a) =
n∏

i=1

p(µi|xi, w, a), where (2.10)

p(µi|xi, w, a) =
wδ(µi)N (xi|µi, 1) + (1 − w)γa(µi)N (xi|µi, 1)

wN (xi|0, 1) + (1 − w)ga(xi)
. (2.11)

Define

p̃i =
wN (xi|0, 1)

wN (xi|0, 1) + (1 − w)ga(xi)
. (2.12)

Then

p(µi|xi, w, a) = p̃iδ(µi) + (1 − p̃i)G(µi), where (2.13)

G(µi) =
N (µi|xi, 1)γa(µi)∫
N (µi|xi, 1)γa(µi)dµi

. (2.14)

3. Bayes Thresholding Rule via Mixture Loss Function

From now on we drop the subscript i in (2.13) and write the posterior as

p(µ|x,w, a) = p̃δ(µ) + (1 − p̃)G(µ). (3.1)

We can either use the mean or the median of the posterior as our estimate. These
correspond to L2 and the L1 loss, respectively. It is known that the mean does
not have the thresholding property while the median does.

3.1. Mixture loss function

We propose the following loss function which combines the 0−1-loss and the
Lp-loss:

L(µ, µ̂) = K1{µ̂ 6=µ} + |µ̂ − µ|p, (3.2)

where, 1{bµ 6=µ} = 1 if µ̂ 6= µ, and 0 otherwise. K controls the amount of penalty
for wrongly estimating the exact true value of µ. In our set up, we believe that a
significant proportion of the µi are zero, so we want the resulting estimate to have
a significant chance to be exactly zero. The resulting estimate is a thresholding
rule.

We now derive the Bayes rule for this loss function. It minimizes the expected
posterior loss

µ̂(x, w, a) = arg minµ̂

∫
L(µ, µ̂)p(µ|x,w, a)dµ. (3.3)
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Although p in the loss function is simply a non-negative number, we present the
results only for p = 2 and p = 1.

3.2. Bayes rule when p = 2

Theorem 3.1.Under the loss (3.2) when p = 2, the Bayes’ rule µ̂ is the thresh-
olding rule

µ̂ =
{

0 if (1 − p̃)2E2
G[µ|x,w, a] < Kp̃

(1 − p̃)EG[µ|x,w, a] otherwise,

where p̃ and G are given in (2.12) and (2.14), respectively. The region where
µ̂ = 0 is an interval in x.

Proof. The posterior is given by

p(µ|x,w, a) = p̃δ(µ) + (1 − p̃)G(µ). (3.4)

Note that

p(µ = 0|x,w, a) = p̃ and p(µ|x,w, a, µ 6= 0) = G(µ). (3.5)

We separately consider the cases µ̂ = 0 and µ̂ 6= 0.

1. When µ̂ = 0 the loss function is

L(µ, µ̂) =
{

0 µ = 0
K + µ2 µ 6= 0.

(3.6)

The expected posterior loss is

Eµ[L(µ, µ̂)|µ̂ = 0] =
∫

L(µ, 0)p(µ|x, w, a)dµ = (1 − p̃)
∫

(K + µ2)G(µ)dµ

= (1 − p̃)(K + EG[µ2]). (3.7)

2. Similarly when µ̂ 6= 0,

L(µ, µ̂) =
{

K + µ̂2 µ = 0
K + (µ̂ − µ)2 µ 6= 0.

(3.8)

The expected posterior loss is

Eµ[L(µ, µ̂)|µ̂ 6= 0] = (K + µ̂2)p̃ + (1 − p̃)
∫

(K + (µ̂ − µ)2)G(µ)dµ

= µ̂2 − 2(1 − p̃)EG[µ]µ̂ + (K + (1 − p̃)EG[µ2]). (3.9)



456 VIKAS C. RAYKAR AND LINDA H. ZHAO

The minimum value of (3.9) is attained at

µ̂ = (1 − p̃)EG[µ] (3.10)

and the minimum expected posterior loss is

K + (1 − p̃)EG[µ2] − (1 − p̃)2E2
G[µ]. (3.11)

When (3.7) < (3.11) the Bayes rule is µ̂ = 0. This is equivalent to

(1 − p̃)(K + EG[µ2]) < K + (1 − p̃)EG[µ2] − (1 − p̃)2E2
G[µ]. (3.12)

The Bayes thresholding rule is

µ̂ = 0 if E2
G[µ] <

Kp̃

(1 − p̃)2
, (3.13)

otherwise
µ̂ = (1 − p̃)EG[µ]. (3.14)

Finally, every Bayes procedure corresponding to a bowl-shaped loss is monotone
(Brown and Cohen (1976)), hence the region where µ̂ = 0 is an interval in x.

The resulting estimator is an explicit thresholding rule but when K = 0 the
resulting (shrinkage) estimator is the posterior mean that does not do explicit
thresholding.

3.3. Bayes rule when p = 1

In this section we consider the loss function

L(µ, µ̂) = K1{µ̂6=µ} + |µ̂ − µ|. (3.15)

Theorem 3.2. Under the loss (3.15) the Bayes’ rule µ̂ is a thresholding rule. Let
γ0 =

∫ 0
−∞ G(µ)dµ where G is given in (2.14), and p̃ be the posterior probability

of nonzero mean calculated in (2.12).
• If p̃ > 1/2 the Bayes rule is µ̂ = 0.
• When p̃ ≤ 1/2

1. if (1 − 2p̃)/[2(1 − p̃)] < γ0 < 1/[2(1 − p̃)] then the Bayes rule is also µ̂ = 0.

2. if γ0 > 1/[2(1 − p̃)], µ̂min is the unique negative solution to∫ µ̂min

−∞
G(µ)dµ =

1
2(1 − p̃)

. (3.16)
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3. if γ0 < (1 − 2p̃)/[2(1 − p̃)], µ̂min is the unique positive solution to∫ µ̂min

−∞
G(µ)dµ =

1 − 2p̃

2(1 − p̃)
. (3.17)

4. In either (2) or (3) the Bayes rule is µ̂ = 0 if (1− p̃)(K +EG[|µ|]) < πmin,
where πmin = K + |µ̂min|p̃ + (1 − p̃)

∫
|µ̂min − µ|G(µ)dµ. Otherwise the

Bayes rule is µ̂ = µ̂min defined in (3.16) or (3.17) respectively.

Proof. As before we separately consider the cases µ̂ = 0 and µ̂ 6= 0.

1. When µ̂ = 0 the loss function is

L(µ, µ̂) =
{

0 µ = 0
K + |µ| µ 6= 0.

(3.18)

The expected posterior loss is

Eµ[L(µ, µ̂)|µ̂ = 0] =
∫

L(µ, 0)p(µ|x,w, a)dµ = (1 − p̃)
∫

(K + |µ|)G(µ)dµ

= (1 − p̃)(K + EG[|µ|]). (3.19)

2. Similarly when µ̂ 6= 0,

L(µ, µ̂) =
{

K + |µ̂| µ = 0
K + |µ̂ − µ| µ 6= 0.

(3.20)

The expected posterior loss is

Eµ[L(µ, µ̂)|µ̂ 6= 0] = (K + |µ̂|)p̃ + (1 − p̃)
∫

(K + |µ̂ − µ|)G(µ)dµ

= K + |µ̂|p̃ + (1 − p̃)
∫

|µ̂ − µ|G(µ)dµ. (3.21)

This is minimized when the first derivative is zero. The derivative of the
expected posterior loss can be written as

E
′
µ[L(µ, µ̂)|µ̂ 6= 0] = sign(µ̂)p̃ + (1 − p̃)

[
2

∫ µ̂

−∞
G(µ)dµ − 1

]
. (3.22)

Hence the expected posterior loss attains a minimum at µ̂min where∫ µ̂min

−∞
G(µ)dµ =

1
2

[
1 − p̃

1 − p̃
sign(µ̂min)

]
, (3.23)

and the minimum value is

πmin = K + |µ̂min|p̃ + (1 − p̃)
∫

|µ̂min − µ|G(µ)dµ. (3.24)



458 VIKAS C. RAYKAR AND LINDA H. ZHAO

Since 0 ≤
∫ µ̂min

−∞ G(µ)dµ ≤ 1, (3.23) has no solution when p̃ > 1/2. Let γ0 =∫ 0
−∞ G(µ)dµ. It is also easy to see that there is no solution to (3.23) if (1 − 2p̃)

/[2(1 − p̃)] < γ0 < 1/[2(1 − p̃)]. In these situations, the minimum is attained at
the boundary {−∞, 0,∞}. The expected posterior loss is minimum when µ̂min

approaches zero, the minimum value being K + (1 − p̃)EG[|µ|], which is greater
than the posterior loss (3.19) when µ̂min = 0. This means that the Bayes rule is
0.

The solution in (3.23) exists when p̃ < 1/2 and either γ0 > 1/[2(1 − p̃)] or
γ0 < (1 − 2p̃)/[2(1 − p̃)]. By comparing the posterior risks between (3.19) and
(3.21), we conclude the Bayes rule in the theorem.

4. Simulation Studies

4.1. Experimental setup

To evaluate our proposed procedure and facilitate comparison, we followed
the simulation setup specified in Johnstone and Silverman (2004). A sequence
µ of fixed length N =1,000 was generated with different degrees of sparsity and
signal strengths. The sequence had µi = 0 except at R randomly chosen posi-
tions, where it took a specified value V –representing the strength of the non-zero
component of the signal. The observations xi were generated by adding N (0, 1)
noise for each µi. The signal µ was estimated using the proposed procedure
with different mixture loss functions (0/1+L2 or 0/1+L1) and different non-
zero component of the mixture prior (normal or Laplace). To evaluate accuracy,
the total squared error (TSE) between µ and the estimate µ̂ was computed as∑N

i=1(µ̂
2
i − µi)2. Results are reported for R = 5, 50, and 500, corresponding to

very sparse, sparse, and dense signals. The non-zero µ′
is were set at V = 3, 4, 5,

and 7, representing a range of the strength of the signals. For each setting, results
were averaged over 100 repetitions.

4.2. Illustrative examples

Figure 1 shows an example of a sequence with R = 5 and V = 7. Figure 2(a)
shows our estimate for the normal non-zero mixture prior with 0/1+L2 mixture
loss and penalty K = 10. Note that most of the values in the estimate are zero.
Figure 2(b) shows the behavior of our estimator for this signal as a function of
the observation–it is indeed a thresholding rule in which all xi below a certain
level are set to zero. The threshold depends on the sparsity and the strength of
the signal, and is automatically determined. Figure 2(c) and (d) are the same but
without the 0/1 loss; this leads to shrinkage but no thresholding. Figure 3show
the same results with L1 loss. While K = 0 (posterior median) also results in
thresholding, the TSE K = 10 is much smaller than with K = 0.
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Figure 1. A sample sequence used in our simulation studies. The N =1,000
length sequence has R = 5 values that are non-zero, with signal strength
V = 7.

4.3. Dependence on K

The performance of the empirical Bayes procedure depends on K, the amount
of penalization for a wrong estimation. Figure 4, 5, and 6, show the TSE as a
function of K for R = 5, 50, and 500 respectively. We compare the TSE for
the four different cases over a range of values of K–using two different mixture
loss functions (0/1+L2 or 0/1+L1) and two different non-zero component of
the mixture prior (normal or Laplace). In each plot the dashed horizontal line
corresponds to the estimator with K = 0. For ease of presentation we show the
plots only for V = 3 and V = 7. The following observations can be made.

1. Note that K = 0 shows comparable performance only for very sparse small
strength signals; for the rest of the cases the proposed thresholding rule
with K > 0 has a lower TSE.

2. Very sparse signal (R = 5) (see Figure 4). For a small strength signal
(V = 3), L2 loss with Laplace prior has lower average TSE over all values of
K. For a large strength signal (V = 7), L1 loss with Laplace prior has lower
average TSE over a range of values of K. However, L2 loss with laplace
prior can still achieve a lower TSE for larger K.

3. Sparse signal (R = 50) (see Figure 5). For a small strength signal (V = 3),
L2 loss with normal prior has lower average TSE over all values of K. For a
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(a) (b)

(c) (d)

Figure 2. Illustration of our thresholding rule with 0/1+L2-mixture loss and
normal non-zero prior for the sequence shown in Figure 1. (a) The estimated
sequence with K = 10 penalty in the mixture loss. (b) The thresholding
behavior of the estimator, the estimated hyperparameters a and w are also
shown. (c) and (d) show the same without the 0/1 loss, i.e, K = 0. This
leads to shrinkage but no thresholding.

large strength signal (V = 7), L1 loss with normal prior has lower average
TSE over a range of values of K.

4. For both Very sparse signal (R = 5) and Sparse signal (R = 50), in terms
of the minimum TSE that can be achieved, there is no significant difference
between all the four methods.

5. Dense signal (R = 500) (see Figure 6). For small strength signals (V = 3, 4),
L2 loss with normal prior has lower average TSE over all values of K. For a
large strength signal (V = 7), L1 loss with normal prior has lower average
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(a) (b)

(c) (d)

Figure 3. Illustration of our thresholding rule with 0/1+L1-loss and normal
non-zero prior for the sample sequence shown in Figure 1. (a) The estimated
sequence with K = 10 penalty in the mixture loss. (b) The thresholding
behavior of the estimator, the estimated hyperparameters a and w are also
shown. (c) and (d) show the same without the 0/1 loss, i.e, K = 0. While
K = 0 also results in thresholding, the TSE with non-zero K = 10 is much
smaller than with K = 0.

TSE over a range of values of K.

6. Note that in each plot, the dashed horizontal line for L1 loss with laplace
prior and K = 0 corresponds to the method proposed by Johnstone and
Silverman (2004).

4.4. Choice on K

In our simulations, the optimal performance (in terms of the total squared
error) of our proposed method depends on the choice of K. In practice, we need
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(a) (b)

Figure 4. Very sparse signal R = 5. The total squared error (TSE) averaged
over 100 trials as a function of K for different choices of the mixture loss
functions (0/1+L1 and 0/1+L2) and non-zero part of the mixture prior
(normal and Laplace), and for signal strengths (a) V = 3 and (b) V = 7.
In each plot the dashed horizontal line corresponds to the estimator with
K = 0.

(a) (b)

Figure 5. Sparse signal R = 50. The total squared error (TSE) averaged over
100 trials as a function of K for different choices of the mixture loss functions
(0/1+L1 and 0/1+L2) and non-zero part of the mixture prior (normal and
Laplace), and for signal strengths (a) V = 3 and (b) V = 7. In each plot
the dashed horizontal line corresponds to the estimator with K = 0.

to use a suitable K in order to compare fairly with the other methods.
If the Bayesian model is correct, i.e., the prior for the non-zero part is cor-

rectly specified, and if the estimator is to be judged by TSE, then the optimal K
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(a) (b)

Figure 6. Dense signal R = 500. The total squared error (TSE) averaged
over 100 trials as a function of K for different choices of the mixture loss
functions (0/1+L1 and 0/1+L2) and non-zero part of the mixture prior
(normal and Laplace), and for signal strengths (a) V = 3 and (b) V = 7.
In each plot the dashed horizontal line corresponds to the estimator with
K = 0.

(a) (b)

Figure 7. (a) Plots comparing the optimal value of the penalty K and
the value recommended (K = C10c/ŵ, where we have set the constant
C = 10−3) as a function of the estimated hyperparameter â for a sequence
of length N =1,000 with R = 50 non-zero values; the normal non-zero prior
and 0/1+L2 mixture loss was used. (b) Plots comparing the minimum TSE
that can be achieved by the optimal K and that obtained by our procedure;
plots were generated by running the simulations for different values of non-
zero signal strength V and are averaged over 100 repetitions.
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(a) (b)

Figure 8. (a) Plots comparing of the optimal value of K and the value
recommended (K = C10c/ŵ, where we have set the constant C = 10−3)
as a function of the estimated hyperparameter ŵ for a sequence of length
N =1,000, with R non-zero values and signal strength for V = 5. (b)
Plot comparing the minimum TSE that can be achieved by the optimal K
and that obtained by our procedure; plots were generated by running the
simulations for different number of non-zero values R and are averaged over
100 repetitions.

is zero. However from the simulations we saw that there was some optimal K > 0
which achieved a lower TSE. This happens because in practice the prior is often
mis-specified and our proposed mixture loss with K > 0 makes the estimator
more robust.

Empirically we have found that the optimal value of K that minimizes TSE
depends only on the estimated hyperparameters â and ŵ. We found that choosing
K ∝ 10c/ŵ –where c = â for the normal prior and c =

√
2/â for the Laplace

prior–was very close to the optimal K. The hyperparameter â determines the
spread of the non-zero part of the prior and is directly related to strength of
the signal V . As c increases the optimal K increases. The hyperparameter ŵ

determines the amount of sparsity in the signal. If the signal is not very sparse,
we need a larger K in order to achieve the minimum possible TSE.

Figures 7(a) and 8(a) show two sample plots comparing the optimal value
of K (as obtained from the simulation experiments) and the value automatically
chosen by our procedure (K = C10c/ŵ, where C = 10−3 is a constant) as func-
tions of the estimated hyperparameters â and ŵ. The results are for N =1,000,
0/1 + L2 mixture loss, and normal non-zero prior. The plots were generated by
running the simulations for different values of R and V , and are averaged over
100 repetitions. It can be seen that the proposed value of K is very close to
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the optimal one. This can also be seen in Figures 7(b) and 8(b) that show that
there is no significant difference between the minimum TSE that can be achieved
by the optimal K and that obtained by our procedure. It should be noted that
for model selection type applications, the optimal K can always be chosen by a
suitable cross-validation procedure.

4.5. Adapting to unknown sparsity

The hyperparameter w is directly related to the signal sparsity. Figure 9
(a) plots the estimated w as a function of 1 − R/N (the fraction of zeros in the
signal)–varying from 0.5 (moderately sparse setup) to 0.99 (very sparse). The
results are averaged over 100 repetitions. For both the normal and the Laplace
prior, as sparsity tends to one, the estimate of w becomes more accurate. Between
the normal and Laplace prior, the normal gives more accurate estimates of w.

The estimator used here would converge to the true parameters w and a

if the family of priors used in forming the estimator contains the true prior.
However, in reality (and also in the simulation setup used here) this may not be
true. Because of the mis-specification of the prior, the estimate of w may not be
that accurate (especially for moderately sparse signals, see Figure 9(a)). While
the estimated w roughly captures the amount of sparsity in the signal, for our
estimator further sparsity is obtained because of the penalty term in the mixture
loss function. This can be seen in Figure 9(b) which plots the actual fraction
of zeros in the estimate for those methods that result in thresholding. In each
of these the penalty K was chosen using the proposed heuristic rule. Note that
all the proposed estimators with K > 0 penalty clearly adapt to the unknown
sparsity in the signal.

Figures 9(c) and (d) plot the corresponding false positive rate (the fraction of
zeros incorrectly labeled as non-zero) and the false negative rate (the fraction of
non-zeros incorrectly labeled as zero). We see that the mixture loss function (with
K > 0 penalty) results in a much lower false positive rate than the estimator
with K = 0, while at the same time maintaining comparable false negative rates.

4.6. Reduction in TSE due to mixture loss

The mixture loss function also results in a reduction in the total squared error
of the estimate. Figure 10(a) plots the total squared error for the same setup for
different loss functions. We see that the proposed estimator with K > 0 results
is a lower TSE than the estimator with K = 0 (without the mixture loss). This
can be clearly seen in Figure 10(d), which plots the corresponding reduction in
TSE obtained due to the mixture loss function. The normal prior with L2 loss
gives the best performance.
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(a) (b)

(c) (d)

Figure 9. (a) The estimated hyperparameter w and (b) the actual fraction
of zeros in the final estimate as a function of 1−R/N (the fraction of zeros
in the signal) for different choices of the mixture loss functions (0/1+L1 and
0/1+L2) and non-zero part of the mixture prior (normal and laplace) and
for signal strength V = 5. The corresponding (c) false positive rate (the
fraction of zeros incorrectly labeled as non-zero) and (d) the false negative
rate (the fraction of non-zeros incorrectly labeled as zero) are also shown.
In each plot the dashed line corresponds to the estimator with K = 0.

4.7. Loss functions and priors

The L1 loss itself (with K = 0) can also result in some thresholding. How-
ever our proposed estimator, involving K in the loss, results in a more accurate
threshold. From Figure 9(b) we can see that adding the penalty term in the mix-
ture loss function accurately captures the net sparsity in the signal, but using L1

loss alone does not. Also the total squared error is smaller with the mixture loss
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(a) (b)

Figure 10. (a) The total squared error (TSE) corresponding to the exper-
iment in Figure 9. (b) The corresponding percentage improvement in TSE
obtained due to the mixture loss function.

(See Figure 10).

4.8. Comparison with other methods

We compare our proposed method with some of the best performing methods
in Table I of Johnstone and Silverman (2004).

• The EBayesThresh (Johnstone and Silverman (2004)) method is a special case
of our proposed method, i.e., Laplace prior with K = 0. Results are reported
for both the posterior median and mean.

• The SURE (Donoho and Johnstone (1995)) method minimizes Stein’s unbiased
risk estimate for the mean squared error of soft thresholding.

• The FDR (Abramovich et al. (2006)) method is derived from the principle of
controlling the false discovery rate in simultaneous hypothesis testing.

• The Universal hard threshold corresponds to using a thresholded MLE with the
threshold

√
2 log N .

• We also compare our method with the Lasso estimator. This is a special case
of our proposed estimator with the mixture parameter w = 0 and a Laplace
prior for the non-zero part.

Table 1 shows the results of our simulations for various choices of the prior and
the loss using our recommended K. We also tabulate the results for K = 0.
The results for EBayesThresh, FDR, SURE, and Universal hard threshold are
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directly taken from Table I in Johnstone and Silverman (2004). The following
observations can be made.

1. For very sparse signals(R = 5) the proposed method and the EBayesThresh
show similar performance.

2. For sparse(R = 50) and dense(R = 500) signals the proposed method is better
than the other methods.

3. The posterior mean or median, i.e., K = 0 shows good performance only for
very sparse small strength signals. For the rest of the cases our proposed
thresholding rule with the mixture loss function is superior.

4. For very sparse signals(R = 5) the laplace and normal priors have similar
errors.

5. For sparse(R = 50) and dense(R = 500) signals the normal prior in general
performs better than the laplace.

6. The FDR method shows good performance for some settings; this depends on
the choice of q, which varies from case to case.

7. We also ranked the different procedures by computing the average rank among
all the different scenarios. Based on the table the proposed method with L2/L1

loss and normal prior seems to be the best performing one.

5. Feature Selection for Classification

In a typical two-class classification scenario we are given a training set
D = {(xj , yj)}N

j=1 containing N instances, where xj ∈ Rd is an instance (the
d-dimensional feature vector) and yj ∈ Y = {0, 1} is the corresponding known
class label. The task is to learn a classification function f : Rd → Y that general-
izes well on unseen datasets. During the past few decades it has become relatively
easy to gather datasets with a huge number of features. In such situations very
often we would like the classification function f to use as few features as pos-
sible without any appreciable decrease in predictive accuracy. Feature selection
is very often beneficial for cost effectiveness and interpretability. In many situa-
tions it also increases the prediction accuracy by preventing over-fitting. While
many sophisticated methods have been proposed for feature selection (see Guyon
and Elisseeff (2003) for a review), one of the earliest and the most widely used
algorithms is feature ranking. This is a very simple and scalable method that
has had considerable empirical success either as a stand-alone feature selection
mechanism, or as a pre-processing step for other methods.

Essentially, for each feature, a score measuring the degree of relevance to
the label is computed. The features are then ranked in the order of decreasing
scores. Only the top most relevant features are used and the rest are discarded.
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The number of features to retain is often based on ad-hoc rules and/or domain
knowledge. An important issue is how to set the threshold between the relevant
and irrelevant features.

Let zi, i = 1, . . . , d, be the computed ranking criterion for the ith feature.
Various ranking scores have been used in different application domains (Guyon
and Elisseeff (2003)). Commonly used scores are related to Fisher’s criterion
or the t-test criterion, but the form may vary. For example zi can be a scaled
difference between means among two classes.

zi =
m+

i − m−
i√

(σ+
i )2/N+ + (σ−

i )2/N−
, (5.1)

where m+
i and m−

i are the means, (σ+
i )2 and (σ−

i )2 are the variances, and N+ and
N− are the number of examples of the positive and negative class, respectively.
Note that if a feature is irrelevant then zi is close to zero.

We assume that each zi is a noisy realization of some underlying µi, zi =
µi + εi, where the εi are independent and identically distributed as εi ∼ N (0, σ2),
a normal distribution with mean zero and a known variance σ2 (which can be
well estimated when it is unknown). The normality assumption of the score zi

is valid among most commonly used scores. Even though the features are not
necessarily independent, it is a reasonable assumption in the context of feature
ranking methods. It has also been noticed that for datasets with a large number
of features, treating features independently give us as good a classifier as others
or even better ones (see for example Domingos and Pazzani (1997); Bickel and
Levina (2004)).

Note that if a feature is irrelevant, then the corresponding µi is zero, relevant
features have µi 6= 0. Based on the observation z = (z1, z2, . . . , zd), we need to
find a desirable estimate µ̂ of the unknown parameters µ = (µ1, µ2, . . . , µd), and
to determine how many of them are zero. With this setup we can directly use the
proposed Bayesian thresholding procedure to estimate µ̂ and select the number
of relevant features.

5.1. Experimental validation

Table 2 summarizes the four publicly available datasets used in our ex-
periments. These datasets were downloaded from http://www.nipsfsc.ecs.
soton.ac.uk/datasets/ and http://www.agnostic.inf.ethz.ch/datasets.
php, and have been previously used for feature selection challenges.

Our proposed method of selecting the relevant features can be used in con-
junction with any ranking criterion having an approximate normal distribution.
For our experiments we used the two-sample t-statistic (5.1) for the scores. We

http://www.nipsfsc.ecs.soton.ac.uk/datasets/
http://www.nipsfsc.ecs.soton.ac.uk/datasets/
http://www.agnostic.inf.ethz.ch/datasets.php
http://www.agnostic.inf.ethz.ch/datasets.php
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Table 2. The four data sets used in our feature selection experiments.

Dataset Training examples Validation examples Number of features Domain
madelon 2,000 600 500 Synthetic

gina 3,153 315 970 Handwriting
ada 4,147 415 48 Marketing
sylva 13,086 1,309 216 Ecology

compared the number of features selected by the proposed method to those se-
lected by the cross-validated area under the ROC curve (AUC) based criterion.
The AUC based criterion operates as follows: features are first sorted based on
the absolute value of the two-sample t-statistic; a linear discriminant analysis
(LDA) classifier is trained using the top t features. The performance of this
classifier was tested on an independent validation set (see Table 2). We used the
AUC as our performance metric. This was repeated for t varying from 1 to d–the
number of features. The optimal number of features selected was the value of t

where the AUC on the validation set was maximum.
Table 3 compares the number of features selected by the proposed method

with those selected by the cross-validated AUC based criteria. The resulting
AUC on the validation set was also compared. This table can be studied in
conjunction with Figure 11 which plots the AUC on both the training and the
validation set as a function of t. The following observations can be made.

1. From Table 3, for most datasets the number of features selected by the pro-
posed algorithm is very close to those selected by the cross-validation based
criterion; in cases where they differ the proposed method achieves very similar
AUC on the test set.

2. For some datasets (see Figures 11(a) and (b)) the AUC on the validation set
reaches a peak and then starts decreasing. In such cases the number of features
selected by the proposed algorithm is very close to the features selected by
cross-validation.

3. For some datasets (see Figures 11(c) and (d)), the AUC on the validation set
saturates after which there is no further significant improvement in the AUC
by including more features. In such cases the proposed method achieves very
similar AUC on the validation set.

4. The proposed algorithm shows good generalization properties. The number
of features selected by the proposed algorithm leads to the best AUC on the
validation set.

5. The proposed method is computationally efficient. It does not require any
sort of cross-validation. The cross-validated AUC based criteria is very time
and memory consuming, especially if the number of features is large.



EMPIRICAL BAYESIAN THRESHOLDING FOR SPARSE SIGNALS 471

(a) (b)

(c) (d)

Figure 11. The Area under the ROC curve (AUC) for both the training and
the validation set as a function of the number of top features used to train
the LDA classifier for different datasets. The number of features selected by
the proposed method (which requires no cross-validation) is marked as a red
dotted line. The number of features selected by the cross-validation based
AUC criterion is marked as a dotted black line.

Appendix: Computational details

In this appendix we list the details needed for the implementation of our
thresholding rules.

A.1. Quantities of interest for the Normal prior

For the normal prior γa(µ) = N (µ|0, a2) = (2πa2)−1/2 exp (−µ2/2a2), we
have ga(x) = N (x|0, 1 + a2), G(µ) = N (µ|m,σ2), where m = [a2/(1 + a2)]x
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and σ =
√

a2/(1 + a2). Then EG[µ] = m and EG[|µ|] = m[2Φ(m/σ) − 1] +

2φ(m/σ), where Φ(x) =
∫ x
−∞ φ(z)dz is the cumulative distribution function of

the standard normal φ(x) = N (x|0, 1). The solution to
∫ y
−∞ G(µ)dµ = c is given

by y = σΦ−1(c) + m, and
∫ ∞
−∞ |µ̂ − µ|G(µ)dµ = (m − µ̂)(2Φ((m − µ̂)/σ) − 1) +

2φ((m − µ̂)/σ).

A.2. Quantities of interest for the Laplace prior

For the Laplace prior γa(µ) = (a/2) exp (−a|µ|) we have the following,

ga(x) =
a

2
exp(

a2

2
) [exp(−ax)Φ(x − a) + exp(ax)(1 − Φ(x + a))] . (A.1)

G(µ) =
exp(−sgn(µ)ax)N (µ|x − sgn(µ)a, 1)

exp(−ax)Φ(x − a) + exp(ax)(1 − Φ(x + a))
, (A.2)

where sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 if z < 0.

EG[µ]

=
exp(−ax) ((x−a)Φ(x−a)+φ(x−a))+exp(ax) ((x+a)(1−Φ(x+a))−φ(x+a))

exp(−ax)Φ(x − a) + exp(ax)(1 − Φ(x + a))
.

(A.3)

EG[|µ|]

=
exp(−ax) ((x−a)Φ(x−a)+φ(x−a))−exp(ax) ((x+a)(1−Φ(x+a))−φ(x+a))

exp(−ax)Φ(x − a) + exp(ax)(1 − Φ(x + a))
.

(A.4)

∫ y

−∞
G(µ)dµ =


eaxΦ(y − (x + a))

e−axΦ(x − a) + eax(1 − Φ(x + a))
if y < 0

eaxΦ(−(x+a))+e−ax(Φ(y−(x−a))−Φ(−(x−a)))
e−axΦ(x − a) + eax(1 − Φ(x + a))

if y ≥ 0.
(A.5)

The solution to
∫ y
−∞ G(µ)dµ = c is given by

y =

x+a+Φ−1{c(e−2axΦ(x−a)+1−Φ(x+a))} if y < 0

x−a+Φ−1{1+x−a+(c−1)(e2ax+Φ(x−a)−e2axΦ(x+a))} if y ≥ 0.

(A.6)
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−∞
|µ − µ̂|G(µ)dµ

=



{eax{2(µ̂−x−a)Φ(µ̂−x−a)−(µ̂−x−a)Φ(−(x+a))−φ(x+a)}
+e−ax{φ(a−x)−(µ̂−x+a)Φ(x−a)}}/{e−axΦ(x−a)
+eax(1−Φ(x+a))} if µ̂<0

{eax{(µ̂−x−a)Φ(−(x+a))+φ(x+a)}
e−ax{2(µ̂−x+a)Φ(µ̂−x+a)−(µ̂−x+a)Φ(a−x)−(µ̂−x+a)
+2φ(µ̂−x+a)−φ(a−x)}}/{e−axΦ(x−a)+eax(1−Φ(x+a))} if µ̂≥0.

(A.7)
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