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Abstract: One approach to likelihood inference for a parameter of interest in the

presence of a nuisance parameter is to use an integrated likelihood in which the

nuisance parameter is eliminated from the likelihood by integrating with respect

to a prior density. In this paper, the frequency properties of point estimators

and interval estimators based on an integrated likelihood function are considered.

These results are used to study the problem of choosing the prior density so that

the resulting integrated likelihood function is useful for non-Bayesian likelihood

inference.
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1. Introduction

Consider a model with parameter θ ∈ Θ, and suppose that θ may be written
θ = (ψ, λ) where ψ is a real-valued parameter of interest and λ is a nusiance
parameter. We assume, without loss of generality, that ψ and λ are orthogonal
parameters in the sense that corresponding off-diagonal elements of the Fisher
information matrix are 0; see, e.g., Cox and Reid (1987). Let L(ψ, λ) denote
the likelihood function corresponding to a particular set of data and consider
likelihood inference for ψ.

In models without a nuisance parameter, inference can be based directly
on the likelihood function; when there is a nuisance parameter in the model,
likelihood inference is often based on a pseudolikelihood function, a function of
ψ and the data with properties similar to those of a likelihood function. For
instance, one commonly-used pseudolikelihood is the profile likelihood function,
given by

Lp(ψ) = sup
λ∈Λ

L(ψ, λ);

here Λ denotes the space of possible λ. Other pseudolikelihood functions include
marginal and conditional likelihoods, although these require specific model struc-
tures, and modified versions of the profile likelihood; see e.g., Barndorff-Nielsen
(1983, 1994), Barndorff-Nielsen and Cox (1994, Chap. 8) Cox and Reid (1987),
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Fraser (2003), Fraser and Reid (1989), Kalbfleisch and Sprott (1970, 1973), Mc-
Cullagh and Tibshirani (1990) and Severini (2000, Chap. 9) for discussion of
various approaches to likelihood inference in the presence of a nuisance parame-
ter.

An alternative approach is to eliminate λ in the likelihood function by in-
tegrating with respect to a nonnegative weight function π(λ|ψ) on Λ. We refer
to π(λ|ψ) as the prior density for λ given ψ even though, for our purposes, it is
not necessary that π be a genuine density function; also, it should be understood
that the prior density for λ is a conditional density given ψ and, hence, it may
depend on ψ. Then the integrated likelihood function with respect to π is given
by ∫

Λ
L(ψ, λ)π(λ|ψ)dλ; (1.1)

see, for example, Berger, Liseo, and Wolpert (1999), Kalbfleisch and Sprott
(1970), Liseo (1993), and Severini (2007) for further discussion of integrated
likelihoods.

Thus, unlike pseudolikelihoods based on the profile likelihood, integrated
likelihoods are based on averaging rather than maximization and, unlike marginal
and conditional likelihoods, integrated likelihoods are always available. Of course,
integrated likelihood functions have the drawback that the prior density must be
chosen.

One approach to selecting the prior density is to attempt to construct an inte-
grated likelihood function that has properties similar to those of a genuine likeli-
hood. Two such properties are score-unbiasedness and information-unbiasedness;
see, e.g., DiCiccio et al. (1996), and Lindsay (1982). A pseudolikelihood for ψ is
score-unbiased if its log-derivative with respect to ψ has mean 0; it is information-
unbiased if the second moment of its first log-derivative plus the first moment of
its second log-derivative is 0. It has been shown that, if π is chosen so that the
integrated likelihood function L̄(ψ) is approximately score unbiased, then L̄(ψ)
is approximately equal to the Cox-Reid adjusted profile likelihood. If π is chosen
so that the integrated likelihood is approximately score-unbiased and approxi-
mately information-unbiased, then L̄(ψ) is approximately equal to the modified
profile likelihood; these results are discussed in more detail in Section 3.

However, properties such as score bias are not used directly in the con-
struction of statistical procedures. Thus, it is possible that an alternative inte-
grated likelihood, not approximately score-unbiased or approximately informa-
tion-unbiased, may yield better statistical properties.

The goal of this paper is to consider the asymptotic frequency properties of
point estimators, and interval estimators based on an integrated likelihood func-
tion. These results are used to study the problem of choosing the prior density so
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that the resulting integrated likelihood function is useful for non-Bayesian likeli-
hood inference. It is shown that, at least in some cases, it is possible to construct
a prior density that yields procedures that are asymptotically superior to those
based on a score-unbiased integrated likelihood.

2. Notation and Some Preliminary Results

2.1. Notation and assumptions

Let L(ψ, λ) denote the likelihood function for the model and let `(ψ, λ) =
log L(ψ, λ) denote the log-likelihood. Assume that L is based on n independent,
identically distributed observations, that the model is regular in the sense `(ψ, λ)
can be approximated by a polynomial, and that integration and differentiation
can be interchanged; see Severini (2000, Sec. 3.4) for further discussion.

Derivatives of `(ψ, λ) with respect to (ψ, λ) will be denoted by subscripts so
that, for example,

`ψ(ψ, λ) =
∂

∂ψ
`(ψ, λ), `λ(ψ, λ) =

∂

∂λ
`(ψ, λ), `ψλ(ψ, λ) =

∂2

∂ψ∂λT `(ψ, λ).

Here `ψ(ψ, λ) is a scalar, `λ(ψ, λ) is a d× 1 vector, and `ψλ(ψ, λ) is 1× d vector,
where d denotes the dimension of λ.

Let `(1) denote the log-likelihood for a single observation. Expected values
of derivatives of `(1) are denoted by µ, with the subscripts of µ indicating the
derivatives under consideration. For example,

µψψ(ψ, λ) = E{`(1)
ψψ(ψ, λ);ψ, λ}, µψ,λ(ψ, λ) = E{`(1)

ψ (ψ, λ)`(1)
λ (ψ, λ)T; ψ, λ},

µψλ,λ(ψ, λ) = E{`(1)
ψλ(ψ, λ)`(1)

λ (ψ, λ)T; ψ, λ},

and so on. Note that µψψ is a scalar, µψ,λ is a 1 × d vector, and µψλ,λ is a
d × d matrix; also note that, in some cases, the dependence of these quantities
on (ψ, λ) is often suppressed.

Let (
iψψ iψλ

iλψ iλλ

)
=

(
µψ,ψ µψ,λ

µλ,ψ µλ,λ

)
= −

(
µψψ µψλ

µλψ µλλ

)
denote the expected information matrix for a single observation. By the assumed
orthogonality of ψ and λ, iψλ = iTλψ = 0.

2.2. Prior densities

Consider the integrated likelihood function

L̄(ψ) =
∫

Λ
L(ψ, λ)π(λ|ψ)dλ, (2.1)
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where π(λ|ψ) is a given prior density. When considering the properties of different
prior densities, we must deal with the issue of standardization. Assume that
either ∫

Λ
π(λ|ψ)dλ (2.2)

has the same finite value for each ψ or, (2.2) is infinite for each ψ and π(λ|ψ)
has been normalized using the approach described in Berger, Liseo, and Wolpert
(1999).

This approach is based on a sequence of nested subsets Ω1, Ω2, . . . of Ψ×Λ,
where Ψ denotes the space of ψ. Assume that Ωm increases to Ψ×Λ as m → ∞,
and let Λm = {λ : (ψ, λ) ∈ Ωm}. Define

Km(ψ) =
∫

Λm

π(λ|ψ)dψ, m = 1, 2, . . . .

Assume that, for any ψ in the interior of Ψ,

lim
m→∞

Km(ψ)
Km(ψ0)

exists, does not depend on ψ, and depends on ψ0 only through a proportionality
constant. It is important to note that different sequences Λ1, Λ2, . . . will lead to
different normalization factors and, hence, different intergrated likelihoods. See
Berger, Liseo, and Wolpert (1999) for further details on this type of normaliza-
tion.

2.3. Laplace approximation

Consider the integrated likelihood L̄(ψ) based on a prior π(λ|ψ). Using a
Laplace approximation (see, e.g., Evans and Swartz (2000, Chap. 4)) for the
integral in (2.1), it follows that

L̄(ψ) =
∫

Λ
(ψ, λ)π(λ|ψ)dλ = c0 L(ψ, λ̂ψ)| − `λλ(ψ, λ̂ψ)|−1/2π(λ̂ψ|ψ){1 + Dn(ψ)},

(2.3)
where λ̂ψ denotes the maximum likelihood estimate of λ for fixed ψ; here Dn(ψ) =
O(n−1) for any fixed ψ, and c0 does not depend on ψ. Let ψ̂ denote the maximum
likelihood estimator of ψ. For ψ = ψ̂ + O(n−1/2), Dn(ψ) = Dn(ψ̂)[1 + O(n−1/2)]
so that, by modifying the definition of c0, the expansion given in (2.3) holds with
error O(n−3/2).

Note that L̄(ψ) can be written as

L̄(ψ) = LA(ψ)π(λ̂ψ|ψ)[1 + Dn(ψ)],
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where LA denotes the Cox-Reid adjusted profile likelihood (Cox and Reid (1987)),
given by

LA(ψ) = L(ψ, λ̂ψ)| − `λλ(ψ, λ̂ψ)|−1/2;

here, as elsewhere in the paper, multiplicative terms not depending on ψ have
been ignored.

3. Score-Unbiased Integrated Likelihoods

In general, an integrated likelihood function is not a likelihood function, in
the sense that it is not based on a marginal or conditional density function. Thus,
an integrated likelihood does not necessarily have the frequency properties of a
genuine likelihood function. Important properties of this type are the first two
Bartlett identities. If M(ψ) is a genuine likelihood function for ψ and m(ψ) =
log M(ψ), the first Bartlett identity states that E{m′(ψ); θ} = 0, known as score
unbiasedness. The second Bartlett identity states that

E{m′′(ψ) + m′(ψ)m′(ψ)T; θ} = 0,

known as information unbiasedness.
If L̄(ψ) is an integrated likelihood function and ¯̀(ψ) = log L̄(ψ) then, in

general, E{¯̀′(ψ); θ} and E{¯̀′(ψ) + ¯̀′(ψ)¯̀′(ψ)T; θ} are both O(1) as n → ∞
(Severini (1998)).

Consider an integrated likelihood of the form

L̄(ψ) =
∫

Λ
L(ψ, λ)π(λ|ψ)dλ

and let ¯̀(ψ) = log L̄(ψ). If π(λ|ψ) does not depend on ψ then, ignoring constants
not depending on ψ, ¯̀(ψ) = `A(ψ) + O(n−1), where `A(ψ) denotes the Cox-
Reid adjusted log-likelihood; see Sweeting (1987) and Severini (2007) for further
discussion.

Using this result, it follows that if π(λ|ψ) does not depend on ψ, then L̄(ψ)
is score-unbiased to O(n−1): E{¯̀′(ψ); θ} = O(n−1); see Ferguson, Reid, and Cox
(1991). Furthermore, suppose that L̄0 is an integrated likelihood such that

E{¯̀′
0(ψ);ψ, λ} = O(n−1). (3.1)

By (2.3), for ψ = ψ̂ + O(n−1/2), ¯̀
0(ψ) = `A(ψ) + h(ψ, λ̂ψ) + O(n−3/2), where

h(ψ, λ) = log π(λ|ψ). Let hψ, hλ denote the derivatives of h with respect to ψ

and λ, respectively, and let λ̂′
ψ = dλ̂ψ/dψ. Then

d

dψ
h(ψ, λ̂ψ) = hλ(ψ, λ̂ψ)λ̂′

ψ + hψ(ψ, λ̂ψ).
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For ψ = ψ̂ + O(n−1/2), λ̂′
ψ = O(n−1/2) and λ̂ψ = λ + O(n−1/2). Thus, for

ψ = ψ̂ + O(n−1/2),

d

dψ
hψ(ψ, λ̂ψ) = hψ(ψ, λ) + Op(n−1/2)

and, hence,
¯̀′
0(ψ) = `′A(ψ) + hψ(ψ, λ) + O(n−1).

It follows that if (3.1) holds, then hψ(ψ, λ) = 0 for all λ and ψ. Hence, under
(3.1), for ψ = ψ̂ + O(n−1/2), h(ψ, λ̂ψ) = h(ψ̂, λ̂) + Op(n−1), so that π(λ̂ψ|ψ) =
π(λ̂|ψ̂){1 + O(n−1)}.

It now follows from (2.3) that L̄0(ψ) can be approximated by LA(ψ), with
error O(n−1) for ψ = ψ̂ + O(n−1/2); that is, any integrated likelihood function
L̄0(ψ) that is approximately score unbiased is approximately equal to the Cox-
Reid adjusted profile likelihood. In particular, the modified profile likelihood and
approximations to the modified profile likelihood agree with LA to order O(n−1).

4. Frequency Properties of Inferences Based on an Integrated Likeli-

hood
4.1. Introduction

The results described in the previous section show that if the goal is to
construct an integrated likelihood function that is approximately score unbiased,
then that integrated likelihood can be approximated by the Cox-Reid adjusted
profile likelihood.

However, properties such as score bias are not used directly in the construc-
tion of statistical procedures. Thus, it is possible that an alternative integrated
likelihood, that is not score unbiased, may yield statistical procedures that are
superior to those based on the Cox-Reid adjusted profile likelihood.

In this section, the frequency properties of procedures based on an integrated
likelihood are considered. In particular, the dependence of the frequency proper-
ties on the prior density are considered, and the possibility of improving on the
properties of those procedures based on LA(ψ) is explored. Note that, although
the comparisons considered here are described in terms of LA, the same results
hold for the modified profile likelihood as well as approximations to the modified
profile likelihood.

We consider two frequency properties of likelihood-based methods: the cov-
erage probability of an integrated-likelihood ratio confidence interval and the
mean squared error of the maximum integrated likelihood estimator. In each
case, asymptotic expansions of the relevant property are presented and the im-
plications of those results for the selection of π(λ|ψ) are considered.
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Recall that an integrated likelihood function based on a prior density π(λ|ψ)
can be approximated by LA(ψ)π(λ̂ψ|ψ). It is shown that the frequency properties
under consideration depend on π(λ|ψ) through hψ(ψ, λ) = ∂h(ψ, λ)/∂ψ, where
h(ψ, λ) = log π(λ|ψ).

4.2. Integrated-likelihood ratio confidence intervals

Let W̄ (ψ) = 2[¯̀(ψ̄) − ¯̀(ψ)], where ¯̀(ψ) = log L̄(ψ) and ψ̄ is the value of ψ

that maximizes L̄(ψ). If F (ψ, λ) = n[E{W̄ (ψ);ψ, λ} − 1], then F (ψ, λ) = O(1)
and 1 + F (ψ, λ)/n is the Bartlett correction factor for the statistic W̄ (ψ); see
DiCiccio and Stern (1994) for discussion of the result that W̄ (ψ) is Bartlett-
correctable. If W̄c(ψ) = W̄ (ψ)/[1 + F (ψ̂, λ̂)], then under the distribution with
parameter (ψ, λ), W̄c(ψ) has a chi-squared distribution with error o(n−1).

The (1−α)×100% integrated likelihood ratio confidence region based on L̄(ψ)
consists of those values of ψ for which W̄ (ψ) ≤ χ2

1(α), where χ2
1(α) denotes

the 1 − α-quantile of the chi-squared distribution with one degree-of-freedom.
Although this confidence region is not necessarily an interval, Mukerjee and Reid
(1999) show that it can be approximated by an interval that has coverage prob-
ability α + o(n−1).

Let C̄ denote the length of the confidence interval based on the integrated
likelihood and let CA denote the length of the confidence interval based on LA.
Then, using the results of Mukerjee and Reid (1999),

E{
√

nC̄} = E{
√

nCA} +
1
n

zα/2√
iψψ(ψ, λ)

∆L + o(
1
n

)

∆L(ψ, λ) = 2
∂

∂ψ

hψ(ψ, λ)
iψψ(ψ, λ)

+
hψ(ψ, λ)2

iψψ(ψ, λ)
;

here zα denotes the 1−α quantile of the standard normal distribution. Thus, the
expected length of the integrated likelihood confidence interval tends to be small
whenever hψ(ψ, λ)/iψψ(ψ, λ) is a decreasing function of ψ. If ∂[hψ(ψ, λ)/iψψ(ψ, λ)]
/∂ψ is sufficiently negative, then the expected length of the integrated likelihood
confidence interval is less than that of the confidence interval based on LA.

4.3. Mean squared error of the maximum integrated likelihood esti-
mator

As above, let ψ̄ denote the value of ψ that maximizes L̄(ψ). Then ψ̄ can be
used as a point estimator of ψ. Let ψ̂A denote the value of ψ that maximizes
LA(ψ). The results of Mukerjee and Reid (1999) can be used to show that

nE{(ψ̄ − ψ)2; ψ, λ} = nE{(ψ̂A − ψ)2; ψ, λ} +
1
n

∆M (ψ, λ) + o(
1
n

),
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where

∆M (ψ, λ) =
1

iψψ(ψ, λ)
{∆L(ψ, λ) +

1
i2ψψ

[2µψ,ψψ(ψ, λ) + µψψψ(ψ, λ)]hψ(ψ, λ)}.

Thus if ∆M (ψ, λ) < 0 then ψ̄ is preferable to ψ̂A as an estimator of ψ when
(ψ, λ) is the true parameter. As with the case of the expected confidence interval
length, the mean squared error of the maximum integrated likelihood estimator
tends to be small whenever hψ(ψ, λ)/iψψ(ψ, λ) is a decreasing function of ψ. If
∂[hψ(ψ, λ)/iψψ(ψ, λ)]/∂ψ is sufficiently negative, then the mean squared error of
the maximum integrated likelihood estimator is less than that of the maximizer
of LA.

It is important to note that the type of comparison implicit in the use of ∆M

is not uniform in (ψ, λ), so that this type of asymptotic mean squared comparison
is different than the type of comparisons used when considering the admissibility
of estimators. The estimator ψ̂A is inadmissible if E{(ψ̂A − ψ)2; ψ, λ} ≥ E{(ψ̄ −
ψ)2; ψ, λ} for all ψ, λ, with strict inequality for some (ψ, λ). If ∆M (ψ, λ) < 0
then, for sufficiently large n,

E{(ψ̂A − ψ)2; ψ, λ} < E{(ψ̄ − ψ)2; ψ, λ}; (4.1)

however, how large n needs to be for (4.1) to hold may depend on (ψ, λ). Thus,
it is possible to have ∆M (ψ, λ) < 0 for all ψ, λ even when ψ̂A is an admissible
estimator.

4.4. The effect of reparameterization

We now consider the effect of reparameterization on the quantities ∆L and
∆M . Two types of reparameterization are of interest. One is reparametrization
of the nuisance parameter in terms of φ = g(λ) for some smooth function g.
All of the properties discussed above are invariant with respect to this type of
reparameterization.

A second type of reparameterization is reparameterization of the parameter
of interest. Let η = q(ψ), where q is a smooth, one-to-one function on the space
of possible ψ, and let Q = q−1. Consider the analysis of confidence intervals,
hypothesis tests, and point estimators of η and let ∆̃L(η, λ) and ∆̃M (η, λ) denote
∆L and ∆M , respectively, based on this new parameterization. Let π̃(λ|η) denote
the prior density for constructing the integrated likelihood for η, and let π(λ|ψ)
denote the corresponding prior in the original parameterization. Then π̃(λ|η) =
π(λ|Q(η)) and, hence,

h̃η(η, λ) =
∂

∂η
log π̃(λ|η) = hψ(Q(η), λ)Q′(η).
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Using standard properties of log-likelihood derivatives under reparameteri-
zation, it follows that

∆̃L(η, λ) = ∆L(Q(η), λ) −
hψ(Q(η), λ)Q′′(η)
iψψ(Q(η), λ)Q′(η)2

,

∆̃M (η, λ) =
∆M (Q(η), λ)

Q′(η)2
− 2

Q′′(η)
iψψ(Q(η), λ)2Q′(η)4

hψ(Q(η), λ).

Thus, comparisons based on confidence interval length and the mean squared er-
ror of estimators depend on the parameterization used. Therefore, when consid-
ering specific examples, it is important to keep in mind that different conclusions
might be reached if the parameter of interest is reparameterized.

5. Examples

5.1. Combining the results from two apparently unrelated experiments

The purpose of this example is to show how using a prior density for λ that
depends on ψ might lead to improved inferences for ψ, even in cases in which ψ

and λ are not statistically related. In this example, ψ and λ are strongly unre-
lated, in the sense that the likelihood function for (ψ, λ) factors into a function
of ψ times a function of λ.

Let X1, . . . , Xn and Y1, . . . , Yn denote independent random variables such
that for each j = 1, . . . , n, Xj has a normal distribution with mean ψ and stan-
dard deviation 1, and Yj has a normal distribution with mean λ and standard
deviation 1. Here ψ and λ both take values in <. Clearly, ψ and λ are orthogo-
nal parameters and, in fact, there is no statistical connection between them; the
integrated likelihood for ψ based on a prior for λ that does not depend on ψ is
simply the likelihood for ψ using only X1, . . . , Xn. However, if the Xj and Yj

are measurements on similar quantities, it may make sense to use Y1, . . . , Yn to
improve estimation of ψ, as is done in the case of empirical Bayes estimation.
This is true even though (X1, . . . , Xn) and (Y1, . . . , Yn) are independent.

The prior density π(λ|ψ) implies a stochastic relationship between ψ and
λ that can be used to extract information regarding ψ from the distribution of
Y1, . . . , Yn. For instance, consider the prior density

π(λ|ψ) ∝ exp{−ω

2
(λ − ψ)2}, −∞ < λ < ∞, (5.1)

where ω > 0 is known constant; the selection of ω is considered below. Thus,
given ψ, we assume that λ−ψ has a normal distribution with mean 0 and variance
1/ω, and use of this prior can be interpreted as an assumption that there is some
relationship between ψ and λ.
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It is straightforward to show that for this model

∆L(ψ, λ) = ∆M (ψ, λ) = 2
d

dψ
hψ(ψ, λ) + hψ(ψ, λ)2.

For the prior given by (5.1), hψ(ψ, λ) = −ω
2 (λ − ψ)2 and, hence,

∆L(ψ, λ) = ω2{(λ − ψ)2 − 2
ω
}. (5.2)

Thus, confidence intervals and point estimators for ψ based on the integrated
likelihood using prior (5.1) are superior to those based on the likelihood function
for ψ based on X1, . . . , Xn for all ψ, λ such that

(λ − ψ)2 <
2
ω

. (5.3)

The quantity ∆L(ψ, λ) is negative whenever λ and ψ are sufficiently close,
with the parameter ω governing how close λ and ψ must be for the integrated
likelihood approach to be beneficial. Thus, the choice of ω depends on our
assumptions regarding the relationship between ψ and λ. For instance, if ω

is chosen to be very large then, effectively, λ = ψ so that Y1, . . . , Yn contain
considerable information about ψ. On the other hand, if the relationship between
ψ and λ is considered to be very weak, a small value of ω is appropriate. Note
that the set of parameter values for which (5.3) is satisfied can be increased by
choosing ω to be small; however, (5.2) shows that a small value of ω decreases
the magnitude of ∆(ψ, λ). That is, a stronger assumption about the relationship
between λ and ψ potentially results in improved inferences for ψ, but the set of
parameter values for which this stronger assumption is valid is relatively small.

The prior density (5.1) states that λ − ψ has a normal distribution with
variance 1/ω. Thus, (5.3) can be written

(λ − ψ)2

Eπ[(λ − ψ)2|ψ]
< 2, (5.4)

where Eπ denotes expectation with respect to the prior (5.1). This gives a useful
interpretation of the results described above. If λ and ψ satisfy the stochastic
relationship implied by the prior (5.1), in the sense that (5.4) holds, then the
integrated likelihood function yields inferences that are superior to those based
on the likelihood based on X1, . . . , Xn.

The integrated likelihood based on (5.1) is given by

L̄(ψ) = exp{−n

2
(ψ − X̄)2} exp{−1

2
nω

n + ω
(ψ − Ȳ )2}.
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Thus, in terms of the likelihood functions, the difference between the integrated
likelihood based on (5.1) and the likelihood based only on X1, . . . , Xn, is equiv-
alent to the observation of an additional random variable that has a normal
distribution with mean ψ and variance 1/ω + 1/n. However, when considering
frequency properties of the resulting inferences, it is important to keep in mind
that the mean of this random variable is λ, not ψ.

5.2. Ratio of normal means

Let X1, . . . , Xn, Y1, . . . , Yn denote independent random variables such that
X1, . . . , Xn each have a normal distribution with mean µX and Y1, . . . , Yn each
have a normal distribution with mean µY ; assume that µX > 0 and µY > 0.
The parameter of interest is the ratio of the means, ψ = µX/µY , and take
λ =

√
(µ2

X + µ2
Y ) as the nuisance parameter; then ψ and λ are orthogonal.

Consider construction of a confidence interval for ψ. It is straightforward to
show that

∆L(ψ, λ) = 4
∂

∂λ
ψ2hψ(ψ, λ) + 2ψ2hψ(ψ, λ)2.

The average expected information in the model with ψ known is given by
iλλ(ψ, λ) = 1. Thus, if a reference prior is normalized using rectangles defined
in terms of µX and µY , the reference prior is (1 + ψ2)−1/2. This leads to the
integrated likelihood function given by LI(ψ) = Lp(ψ)/

√
(1+ψ2); here Lp denotes

the profile likelihood,

Lp(ψ) = exp{−n

2
(x̄ − ψȳ)2

1 + ψ2
},

where x̄ and ȳ denote the sample means. The profile likelihood can also be
obtained as a integrated likelihood with respect to a uniform prior for λ; thus, Lp

agrees with LA, ignoring terms of order O(n−1). Note that the profile likelihood
has the property that it does not approach 0 as ψ → ∞.

For this prior density,

∆L(ψ, λ) = −5ψ2 + 2
λ2

.

Thus, in terms of confidence interval length, the integrated likelihood LI(ψ) is
superior to the profile likelihood.

Liseo (1993) proposes the use of LR(ψ) = Lp(ψ)/(1 + ψ2) for likelihood
inference for ψ. The use of LR is equivalent to the use of the prior (1 + ψ2)−1

for λ; for this prior

∆L(ψ, λ) = −8(ψ2 + 1)
λ2

.
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It follows that confidence intervals based on LR are asymptotically shorter than
those based on either LI or Lp; recall that all confidence intervals being compared
have the same coverage probability, neglecting terms of order o(n−1). This is in
agreement with the conclusions in Liseo (1993), where inferences based on LR

were compared with those based on Lp and related pseudolikelihood functions.

5.3. Ratio of exponential means

Let X1, . . . , Xn, Y1, . . . , Yn denote independent random variables such that
X1, . . . , Xn are each exponentially distributed with mean

√
ψ/λ, and Y1, . . . , Yn

are each exponentially distributed with mean 1/[λ
√

ψ]. The parameter of interest
ψ is E(X1)/E(Y1); the nuisance parameter λ is chosen so that ψ and λ are
orthogonal. It is straightforward to show that

∆L(ψ, λ) = 4
∂

∂ψ
ψ2hψ(ψ, λ) + 2ψ2hψ(ψ, λ)2,

∆M (ψ, λ) = 2ψ2[∆L(ψ, λ) + 2ψhψ(ψ, λ)].

Consider a uniform prior for E(X1; ψ, λ)−1. Normalizing such a density over
the regions

ΛM = {λ > 0 : E(X1;ψ, λ)−1 < M}, M > 0, (5.5)

yields the prior for λ given by

π(λ|ψ) =
1√
ψ

, λ > 0. (5.6)

With this choice of prior, it is straightforward to show that

∆L(ψ, λ) = −3
2

and ∆M = −5ψ2.

Thus, interval and point estimates based on the integrated likelihood using prior
(5.6) are superior to those based on LA, to the order considered.

The integrated likelihood based on the prior (5.6) is

L̄(ψ) = ψ−(n+1)(
ψ̂

ψ
+ 1)−(2n+1), (5.7)

where ψ̂ =
∑n

j=1 Xj/
∑n

j=1 Yj denotes the maximum likelihood estimator of ψ.
Using λ as the nuisance parameter, the Cox-Reid adjusted profile likelihood is

LA(ψ) = ψ−(n+1/2)(
ψ̂

ψ
+ 1)−(2n+1).

It is straightforward to show that L̄(ψ) is maximized by ψ̄ = nψ̂/(n + 1) and
that LA(ψ) is maximized by ψ̂A = ψ̂.
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Table 1. Exact confidence interval lengths and mean squared errors in Section 5.3.

CI Length MSE
n L̄ LA L̄ LA

5 4.51 5.26 0.653 1.000
10 2.28 2.46 0.242 0.306
20 1.40 1.46 0.109 0.123

For this model, it is possible to calculate the exact mean squared errors of ψ̄

and ψ̂A, as well as the exact expected lengths of confidence intervals based on L̄

and LA. These values are given in Table 1 for n = 5, 10, 20, coverage probability
of 95%, and ψ = 1; since ψ is a scale parameter in this model, expected lengths
and mean squared errors for other values of ψ can be obtained by multiplying
the values in the table by ψ and ψ2, respectively.

The results in Table 1 show that the conclusions based on the asymptotic
expansions considered in Section 4, as reflected in the quantities ∆L and ∆M , are
valid even in small samples. For instance, compare ψ̂ and ψ̄ for the case n = 10,
ψ = 1. Since ∆M = −5ψ2,

n2[E{(ψ̄ − ψ)2; ψ, λ} − E{(ψ̂ − ψ)2; ψ, λ}] = −5ψ2 + o(1);

hence, for n = 10, ψ = 1, we expect the mean squared error of ψ̄ to be ap-
proximately 0.05 less than that of ψ̂. According to results in Table 1, the mean
squared error of ψ̄ is actually 0.064 less than that of ψ̂. Consideration of the
other values in Table 1 shows that conclusions based on ∆M and ∆L are valid
for small samples, at least for the cases considered.

6. Discussion

Use of an integrated likelihood function requires selection of the prior density
π(λ|ψ). One approach is to choose the prior so that the integrated likelihood func-
tion is approximately score-unbiased. This can be achieved by choosing π(λ|ψ) so
that it does not depend on ψ; recall that ψ and λ are assumed to be orthogonal.
The resulting integrated likelihood function is then asymptotically equivalent to
the Cox-Reid adjusted profile likelihood. However, the results presented in this
paper show that an integrated likelihood function that is not approximately score
unbiased may yield statistical procedures with improved performance.

One explanation for this result is based on a generalization of the example in
Section 5.1. The prior density places a stochastic constraint on the parameters;
such a constraint effectively allows some of the information available for inference
for λ to be used for inference about ψ. The integrated likelihood yields improved
inferences for ψ when the true parameter values satisfy the stochastic constraint,
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in some sense. Thus, the prior π(λ|ψ) should be chosen so that the constraint
implied by the prior is appropriate for the model, and data, under consideration.

Similar conclusions can be reached by analyzing the likelihood function di-
rectly. Using a Laplace approximation, the integrated likelihood function based
on the prior π(λ|ψ) satisfies

L̄(ψ) = LA(ψ)π(λ̂ψ|ψ)[1 + O(n−1)] = LA(ψ)π(λ̂|ψ)[1 + O(n−1)]

for ψ = ψ̂ + O(n−1). Thus, compared to LA(ψ), L̄(ψ) includes an additional
“observation” λ̂ with corresponding likelihood contribution π(λ̂|ψ). Of course
the density of λ̂ is not π(·|ψ); the additional likelihood contribution is only useful
if π(λ̂|ψ) is “close to” the true likelihood based on λ̂, in some sense.

One limitation of the analysis in this paper is it is based on the asymptotic
scenario in which the number of nuisance parameters remains fixed as the sample
size increases. Thus the results presented here are relevant whenever the number
of parameters is small relative to the sample size. In these cases, inferences based
on an integrated likelihood are first-order equivalent to inferences based on the
profile likelihood, so that the effect of different prior densities can be expected
to be relatively minor unless the sample size is quite small.

For cases in which the number of parameters is large relative to the sample
size, asymptotic theory in which the number of parameters grows with n, may be
more appropriate; see, for example, Barndorff-Nielsen and Cox (1994) and Sartori
(2003). It is well-known that, in these cases, standard likelihood methods such as
those based on the profile likelihood often perform poorly, and the choice of prior
density may have a greater effect on the properties of the resulting integrated
likelihood.

Another limitation of the analysis is that it applies only to the case in which
ψ and λ are orthogonal. Since ψ is a scalar parameter, this can always be achieved
by reparameterization of the nuisance parameter (Cox and Reid (1987)), although
solving the necessary differential equations can be difficult.
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