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Abstract: Consistency and asymptotic normality properties are proved for vari-

ous composite likelihood estimators in a time series model with a latent Gaussian

autoregressive process. The proofs require different techniques than for clustered

data with the number of clusters going to infinity. The composite likelihood esti-

mation method is applied to a count time series consisting of daily car accidents

with weather related covariates. A simulation study for the count time series model

shows that the performance of composite likelihood estimator is better than Zeger’s

moment-based estimator, and the relative efficiency is high with respect to approx-

imate maximum likelihood.
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1. Introduction

In recent years, composite likelihood methods, based on sum of log-likelihoods
of low-dimensional marginal and conditional densities, have been used for many
models for which maximum likelihood estimation is computationally too diffi-
cult; see Varin (2008) for an excellent review of the area. In this paper, we
study composite likelihood estimation methods for time series models with a la-
tent Gaussian autoregressive process. This is a class of models for which the
likelihood consists of a high-dimensional integral.

We consider the data to be of the form (Yt,Xt), t = 1, . . . , n, where Yt is the
response variable at time t and Xt is the (r +1)-dimensional vector of covariates
(first element is 1 for the intercept) at time t. The Yt are assumed to be condition-
ally independent given a latent process {Λt : t = 1, . . . , n}. Using conventional
notation for densities with random variables indicated in the subscripts, the joint
density of {Yt} is∫ { n∏

i=1

fYt|Λt
(yt|λt)

}
fΛ1,...,Λn(λ1, . . . , λn) dλ1 · · · dλn.
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We make further assumptions on {Yt} and {Λt}, and consider three cases: Yt

real, Yt non-negative integer, and Yt binary 0/1. We assume that the Yt are
exponential family random variables with (conditional) probability density or
mass functions:

[Yt|Λt = λ] ∼ ξ(y; λ) = exp {a(λ)T (y) + b(λ) + S(y)} . (1.1)

The parameter λ lies in the set of positive reals or all real numbers depending
on the model of interest; see special cases given below. Here, the Λt are linked
to the covariates via

log Λt = β0 + β1X1t + · · · + βrXrt + ηt = βTXt + ηt . (1.2)

Models with many parameters for latent processes (or random effects) become
nearly non-identifiable, so we make an assumption that the residuals ηt are mod-
eled by a Gaussian AR(p) process for a small positive integer p:

ηt = φ1ηt−1 + · · · + φpηt−p + Vt , (1.3)

where {Vt} is an independent Gaussian sequence with mean 0 and variance σ2
V .

We are interested in the estimation of the parameters θ = (β, σV , φ1, . . . , φp).
Below are some examples of the models of Yt .

1. Autogressive stochastic volatility (ARSV) model for financial time series:
Yt normal with mean 0 and random variance/volatility σ2

t = Λt: λ = σ2,
a(λ) = −σ−2/2 = −λ−1/2, T (y) = y2, b(λ) = − log σ = −(log λ)/2, S(y) = 0.
Without covariates, different estimation methods for this model has been stud-
ied in Harvey, Ruiz and Shephard (1994) and Sandmann and Koopman (1998),
among others.

2. Poisson with log link function: Yt Poisson with random mean Λt: a(λ) = log λ,
T (y) = y, b(λ) = −λ, S(y) = − log Γ(y + 1). This model was used in Zeger
(1988) for count time series data.

3. Bernoulli with logit link function: Yt Bernoulli with random mean πt =
Λt/(1 + Λt): λ = π/(1 − π), a(λ) = log λ, T (y) = y, b(λ) = log(1 − π) =
− log(1 + λ), S(y) = 0.

The likelihood of the models based on (1.1)−(1.3) involve an n-fold integral,
so that computation of the maximum likelihood estimator is difficult. However
low-dimensional marginal densities such as for (Yj , Yj+m) or (Yj , . . . , Yj+m), with
1 ≤ j ≤ n − m and m a small positive integer can be numerically computed
with (adaptive) Gauss-Hermite quadrature or the Laplace approximation (see
Pinheiro and Chao (2006); Joe (2008)).
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Many applications of composite likelihood methods have been for clustered
data, where the proofs of the asymptotics (as number of clusters goes to infinity)
use the theory of estimating equations. However for composite likelihood meth-
ods applied to a single time series, the proofs of the asymptotics are harder. For
a model specified via (1.1)−(1.3), we provide proofs, with some novel techniques,
of asymptotic results for composite likelihood estimation. In addition, for the
special case where (1.1) is Poisson, we obtain some efficiency results for com-
posite likelihood estimators and the moment-based estimator of Zeger (1988).
For the ARSV financial time series model with autoregressive order p = 1, the
efficiency of composite likelihood methods based on bivariate margins up to lag
m decreases as the latent autocorrelation φ1 increases toward 1 (Qu (2008)).

Our main application of (1.1)−(1.3) in Section 5 is for some accident count
data time series. With (1.1) being Poisson, the resulting time series model for
counts has appeared in Zeger (1988), Chan and Ledolter (1995), Jung, Kukuk
and Liesenfeld (2006) with various estimation methods, but not composite like-
lihood. For count time series, there are other classes of models; see Weiß (2008)
for a survey of models such as integer-autoregressive (INAR) models based on
thinning operators. As a brief comparison, models based on latent Gaussian
processes allow more flexibility in serial dependence patterns including negative
dependence, and INAR-type models allow more flexible univariate margins but
with restricted types of positive serial dependence. The maximum lag 1 serial
correlation depends on the marginal distribution and mean of Yt, whereas INAR-
type models can usually reach a lag 1 serial correlation of 1 in the stationary case.

We outline the remainder of the paper. Section 2 has descriptions of the com-
posite likelihoods that we use. Section 3 has the asymptotic covariance matrices
of the composite likelihood estimators and statements of theorems for consistency
and asymptotic normality. Appendices A and B contain the proofs. Section 4
summarizes our implementation of Zeger’s moment-based estimation method.
Section 5 has the example with an accident count data time series. Section 6
summarizes a simulation study to compare composite likelihood estimation with
Zeger’s method and approximate maximum likelihood via MCMC in WinBUGS.
Section 7 concludes with some discussion.

2. Composite Likelihood

A composite likelihood function can be constructed in several ways because
there are many choices for the marginal distributions. If all the autocorrelations
of {ηt} up to lag m are involved in the marginal density functions, two ways of
constructing the composite likelihood function are given below.



282 CHI TIM NG, HARRY JOE, DIMITRIS KARLIS AND JUXIN LIU

One way is to consider (m + 1)-variate marginals. We define the (m + 1)-
dimensional multivariate composite log-likelihood (MCL) as

Qn(θ) = Qn:m(θ) =
1
n

n−m∑
j=1

qj:m(Yj , Yj+1, . . . , Yj+m; θ), (2.1)

where qj:m(·; θ) = log fYj ,Yj+1,...,Yj+m(·; θ) and fYj ,Yj+1,...,Yj+m is the unconditional
joint density of the (m + 1) random variables Yj , Yj+1, . . . , Yj+m for j = 1, 2, . . ..
The value of θ̂ that maximizes Qn:m is called the MCL or MCL(m+1) estimator.

An alternative approach is to consider the bivariate margins of observations
that are adjacent or nearly adjacent. The pairwise log-likelihood or bivariate
composite log-likelihood (BCL), up to lag m, is

Qn(θ) = Qnm(θ) =
1
n

n−m∑
j=1

m∑
`=1

qj`(Yj , Yj+`; θ), (2.2)

where qj`(y, z; θ) = log fYj ,Yj+`
(y, z; θ) and fYj ,Yj+`

is the unconditional joint
density function of the random variables Yj and Yj+` for j = 1, 2, . . . and ` =
1, 2, . . .. The value of θ̂ that maximizes Qnm is called the BCL or BCL(m)
estimator (BCL(1) is the same as MCL(2), and BCL(2) is different from trivariate
composite likelihood or MCL(3)). The use of bivariate margins of pairs with small
lags for models that are nearly Markovian is studied in Varin and Vidoni (2006)
and Joe and Lee (2009). If the dependence is decreasing with lag, then intuitively
we can use a subset of pairs with lags ≤ m (cardinality O(n)) instead of all pairs
(cardinality O(n2)) in a composite likelihood.

We use notation Qn:m, Qnm if we have to distinguish (2.1) and (2.2), and Qn

for results that cover both cases.

The above density functions f , and their derivatives with respect to the
parameters, are given in the subsequent subsections. Throughout this paper, we
assume that the data generating process is obtained from the model with θ = θ0 .

For the proofs of asymptotic results, we let Θ be a compact region containing θ0.

2.1. Marginals for MCL

Let α = (γ0, γ1, . . . , γm) be a given (m + 1)-dimensional vector for the auto-
covariances of (1.3), and let

Σ0m = Σ0m(α) =


γ0 γ1 · · · γm

γ1 γ0 · · · γm−1
...

...
. . .

...
γm γm−1 · · · γ0

 (2.3)
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be the Toeplitz matrix with these autocovariances. For a function ψ(y, z) , where
y and z are (m + 1)-dimensional, and with η ∼ N(0,Σ0m(α)), write

E η
αψ(y, η) =

1
(2π)(m+1)/2|Σ0m|1/2

∫
ψ(y, z) exp

{
− 1

2
zTΣ−1

0mz
}

dz.

The density function of (Yj , Yj+1, . . . , Yj+m) is

fj:m(y; θ) = fYj ,Yj+1,...,Yj+m(y;θ) = E η
αhj(y, η; β), (2.4)

where

hj(y, η; β) =
m+1∏
i=1

ξ
(
yi, exp{βTXj+i−1 + ηi}

)
. (2.5)

For a function ζ(y) and integer j = 1, 2, . . . , write

E Yζ(Yj , Yj+1, . . . , Yj+m) =
∫

ζ(y)fj:m(y; θ0) dy .

For any function ψ(y, z) , define

E Y,ηψ(Yj , Yj+1, . . . , Yj+m, η1, η2, . . . , ηm)

=
1

(2π)(m+1)/2|Σ0m|1/2

∫
ψ(y, z)hj(y, z; β) exp

{
− 1

2
zTΣ−1

0mz
}

dzdy .

If Y in (1.1) is discrete, the integration sign for y should be replaced by the
summation sign. For simplicity, only integration signs are used below.

2.2. Marginals for BCL

As in the preceding subsection, let α = (γ0, γ1, . . . , γm) be a given (m + 1)-
dimensional vector. Let

Σ` =
(

γ0 γ`

γ` γ0

)
, (2.6)

and let α` = (γ0, γ`). For any 4-dimensional function ψ(y, y′, z, z′) , and (η, η′)T ∼
N(0,Σ`), write

E η
α`

ψ(y, y′, η, η′) =
1

2π|Σ`|1/2

∫
ψ(y, y′, z, z′) exp

{
− 1

2
(z, z′)Σ−1

` (z, z′)T
}

dzdz′.

The density function of (Yj , Yj+`) is

fj`(y, y′;θ) = fYj ,Yj+`
(y, y′; θ) = E η

α`
hj`(y, y′, η, η′;β) ,

where

hj`(y, y′, z, z′; β) = ξ
(
y; exp{βTXj + z}

)
ξ
(
y′; exp{βTXj+` + z′}

)
. (2.7)
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For any 2-dimensional function ζ(y, z) and integer j = 1, 2, . . . , define

E Yζ(Yj , Yj+`) =
∫

ζ(y, y′)fj`(y, y′; θ0) dy dy′ .

2.3. Gradient of the marginals

Let y and η be d-dimensional vectors, with η ∼ N(0,Σ); Σ is one of (2.3),
(2.6), and d is m + 1 or 2, the dimension of Σ. With h being one of (2.5), (2.7),
the marginal density functions for subvectors of Y in the preceding subsections
have the form

E η
αh(y, η; β) =

1
(2π)d/2|Σ|1/2

∫
h(y, z; β) exp

{
− 1

2
zTΣ−1z

}
dz .

We need the derivatives of E η
αh(y, η; β) with respect to α and β for analysis of

the composite likelihoods.

a. Derivative with respect to α : For a square invertible matrix Ω and
a scalar parameter θ, ∂ log |Ω|/∂θ = tr(Ω−1(∂Ω/∂θ)) and (∂Ω−1/∂θ) = −Ω−1

(∂Ω/∂θ)Ω−1. Then for any i = 0, . . . , d − 1 ,

∂

∂γi
E η

αh(y, η; β) =
1
2
E η

α

{
h(y, η; β) · tr

[
∂Σ
∂γi

(
Σ−1ηηTΣ−1 − Σ−1

)]}
.

b. Derivative with respect to β : Let z = (z1, . . . , zd)T . For i = 0, 1, . . . , r

with Xk0 = 1 for all k,

∂

∂βi
h(y, z;β) =

d∑
k=1

Xki
∂

∂zk
h(y, z;β) .

Then, differentiating under the expectation and using integration by parts (and
Novikov’s theorem as stated in Appendix B),

∂E η
αh(y,η; β)

∂βi

=
−1

(2π)d/2|Σ|1/2

d∑
k=1

Xki

∫
h(y, z; β)

∂

∂zk
exp

{
− 1

2
zTΣ−1z

}
dz

=
1

(2π)d/2|Σ|1/2

d∑
k=1

Xki

∫ (
eT

k Σ−1z
)
h(y, z;β) exp

{
− 1

2
zTΣ−1z

}
dz

= (X1i, X2i, . . . , Xdi)Σ−1E η
α {η · h(y, η; β)} ,

where ek is a vector with 1 in the kth position and 0 elsewhere.

c. Derivative with respect to (σ2
V , φ1, . . . , φp∗) : Further suppose that Σ is

the covariance matrix corresponding to an AR(p∗) process with p∗ ≤ d . To find
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the derivatives with respect to (σ2
V , φ1, . . . , φp∗) , we make use of the Jacobian

matrix of the transformation to the autocovariances

(σ2
V , φ1, . . . , φp∗) 7−→ (γ0, γ1, . . . , γp∗) .

The Yule-Walker equations can be written as


γ0

γ1
...

γp∗

 = Γ


σ2

V

φ1
...

φp∗

 , where Γ =


1 γ1 γ2 · · · γp∗

0 γ0 γ1 · · · γp∗−1

0 γ1 γ0 · · · γp∗−2
...

...
0 γp∗−1 γp∗−2 · · · γ0

 .

Let J = ∂(γ0, . . . , γp∗)/∂(σ2
V , φ1, . . . , φp∗) be the Jacobian matrix. Differentiating

the Yule-Walker equations, we have I = ΦU + ΦL + ΓJ−1, or

∂(γ0, . . . , γp∗)
∂(σ2

V , φ1, . . . , φp∗)
= (I − ΦU − ΦL)−1Γ ,

where

ΦU =


0 φ1 · · · · · · φp∗

0 φ2 · · · φp∗

...
... ↗

0 φp∗

0

 , ΦL =


0
φ1 0
φ2 φ1 0
...

...
. . . . . .

φp∗ φp∗−1 · · · φ1 0

 .

For j = 1, . . . , d and i > p∗ , we have the recursive relationships:

dγi

dσ2
V

=
p∗∑

k=1

φk
dγi−k

dσ2
V

,
dγi

dφj
= γi−j +

p∑
k=1

φk
dγi−k

dφj
.

For (2.1), this is applied with p∗ = p and Σ the Toeplitz matrix based on
φ1, . . . , φp in (1.3); for (2.2), this is applied with p∗ = 1 and Σ = Σ`, where
φ1 is the lag ` autocorrelation of (1.3).

3. Asymptotic Covariance Matrix of Composite Likelihood Estimators

In this section, the asymptotic covariance matrices of the composite likeli-
hood estimators for (2.1) and (2.2) are expressed in terms of the moments of the
derivatives of the log marginals. Formal results of the existence of such moments
are provided.



286 CHI TIM NG, HARRY JOE, DIMITRIS KARLIS AND JUXIN LIU

Convention 3.1. For any s-dimensional real-valued function g(θ1, . . . , θs), let
∇g and ∇2g denote, respectively, the gradient and the Hessian matrix of g,

∇g =
(

∂g

∂θi

)
i=1,...,s

and ∇2g =
(

∂2g

∂θi∂θj

)
i,j=1,...,s

.

3.1. Covariance matrix

m-variate composite likelihood: For (2.1), with Yj:m = (Yj , . . . , Yj+m), let

Ω1n = nVarY∇Qn(θ0) = nVarY
{ 1

n

n−m∑
j=1

∇qj:m(Yj:m; θ0)
}

,

Ω2n = −EY∇2Qn(θ0) = EY
{ 1

n

n−m∑
j=1

∇qj:m(Yj:m; θ0)∇T qj:m(Yj:m; θ0)
}

.

Standard arguments yield that the asymptotic covariance matrix of the composite
likelihood estimator is

nVar(θ̂n) ≈ Ω−1
1n Ω2nΩ−1

1n , (3.1)

where θ̂n =arg minΘ Qn(θ), provided that the expectations in Ω1n,Ω2n exist.

BCL(m): For (2.2), Ω1n,Ω2n, θ̂n are defined differently, but the asymptotic
covariance matrix (3.1) has the same form. Let

Ω1n = nVarY∇Qn(θ0) = nVarY
{ 1

n

n−m∑
j=1

m∑
`=1

∇qj`(Yj , Yj+`; θ0)
}

,

Ω2n = −EY∇2Qn(θ0) = EY
{ 1

n

n−m∑
j=1

m∑
`=1

∇qj`(Yj , Yj+`;θ0)∇T qj`(Yj , Yj+`; θ0)
}

.

3.2. Existence of the moments

The main results of moment conditions are stated below; the details of the
proofs are given in Appendices A and B. The assumptions are listed below.
A1: The expectation

EYEη
α

{
log ξ(Yj , exp(βTXj + ηj))

}
exists and is a continuous function of θ , for j = 1, . . . , n.
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B1: When θ = θ0 , we have

rank


∂γ1

∂φ1
· · · ∂γ1

∂φp

...
. . .

...
∂γm

∂φ1
· · · ∂γm

∂φp

 = p .

Note that Assumption B1 guarantees that the parameters are identifiable.
For BCL(m) and MCL(m+1), it rules out the cases of m < p. It is obvious that
the AR parameters are not identifiable when m < p.
Let Θ be a compact parameter space satisfying

C1. the true parameter vector θ0 is an interior point of Θ;
C2. |Σ(θ)| is bounded below by a positive constant, where | · | is a matrix norm;
C3. for any θ ∈ Θ , both Σ−1(θ0) ± 6[Σ−1(θ0) − Σ−1(θ)] are positive definite.

Remark 3.1. Assumption A1 is satisfied if EYT (Y1) , EYS(Y1) , Eηa(Ceη1) ,
and Eηb(Ceη1) are finite and the last two are continuous functions of C > 0 and
θ . These conditions can be checked for individual cases of (1.1).

Theorem 3.1. Suppose that A1 and B1 are satisfied. Then, for MCL(m+1) in
(2.1) and BCL(m) in (2.2), the moment matrices Ω1n and Ω2n exist, and Ω2n

is invertible. Furthermore, if the covariates X are stationary, m-dependent, and
bounded, then Ω1n and Ω2n converge as n → ∞ .

3.3. The case without covariates

In this subsection, we state the results of consistency and asymptotic nor-
mality of the composite likelihood estimator when there are no covariates. In
this case, Xi degenerates to 1.

m-variate composite likelihood: For (2.1), define the limiting matrices Ω1

and Ω2 as follows,

Ω1 = Ω(m)
1 = lim

n→∞
nVarY∇Qn(θ0) = lim

n→∞
nVarY

{ 1
n

n−m∑
j=1

∇qj:m(Yj:m; θ0)
}

,

Ω2 = Ω(m)
2 = −EY∇2qj:m(Yj:m; θ0) .

BCL(m): For (2.2), define the limiting matrices Ω1 and Ω2 as follows,

Ω1 = Ω(m)
1 = lim

n→∞
nVarY∇Qn(θ0) = lim

n→∞
nVarY

{ 1
n

n−m∑
j=1

m∑
`=1

∇qj`(Yj , Yj+`; θ0)
}

,

Ω2 = Ω(m)
2 = −

{ m∑
`=1

EY∇2qj`(Yj , Yj+`; θ0)
}

.
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Theorem 3.2. Suppose that A1 and B1 are satisfied. Then, for (2.1) and (2.2)
there exist matrices Ω1 and Ω2 , where Ω2 is invertible, such that the Hessian
matrix −∇2Qn(θ0) a.s.→ Ω2 and

√
n∇Qn(θ0) d→ N(0,Ω1). Let Θ be a compact

parameter space satisfying C1−C3. With θ̂n = arg minΘ Qn(θ), then θ̂n−θ0 a.s.→ 0

and
√

n(θ̂n − θ0) d→ N(0,Ω−1
2 Ω1Ω−1

2 ).

3.4. The case with covariates

The details are similar with covariates but involve more notation. The as-
sumption of conditionally identically distributed no longer holds, so consistency
and asymptotic normality results require that the covariates are well-behaved,
such as being stationary and bounded. The conditions CO1 and AN2 in Ap-
pendix A must be assumed instead of being proved, because the ergodic theorem
does not apply. For the case of covariates Xt being stationary and m-dependent,
Lemma B.1 can be applied to justify the conditions CO1 and AN2.

4. Zeger’s Method for Count Time Series

Zeger (1988) assumes (1.1)−(1.3) with Yt being conditional Poisson. Addi-
tional notation is:

σ2
η = Var(ηt),

ρηk = Corr(ηt, ηt+k),

σ2 = exp(σ2
η) − 1 =

Var (eηt)
[E (eηt)]2

, (4.1)

ρk =
exp(ρηkσ

2
η) − 1

exp(σ2
η) − 1

= Cov (eηt , eηt−k), (4.2)

β∗ = (β0 + 1
2
σ2

η, β1, . . . , βr),

µt = exp(XT
t β∗) = E (Yt), (4.3)

Var(Yt) = µt + σ2µ2
t , (4.4)

Cov(Yt, Yt−k) = σ2ρkµtµt−k . (4.5)

Zeger (1988) suggested a two-step iterative algorithm. The algorithm requires
an initial guess for β∗. In each iteration, the estimation of σ̂2

V and (φ̂1, . . . , φ̂p) is
updated via a moment matching scheme. Then, β∗ is updated from a weighted
least square equation for which the solution can be computed by a Kalman filter.

For the moment matching for φ and σ2
V , given an initial guess of β̂

∗
, then

based on (4.3)−(4.5), take

µ̂t = exp(XT
t β̂

∗
),
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σ̂2 =
∑n

t=1

[
(Yt − µ̂t)2 − µ̂t

]∑n
t=1 µ̂2

t

,

ρ̂k =
∑n

t=k+1(Yt − µ̂t)(Yt−k − µ̂t−k)
σ̂2

∑n
t=k+1 µ̂tµ̂t−k

.

Substitute σ̂2 and ρ̂k into equations (4.1) and (4.2) to solve for σ̂2
η and ρ̂ηk. Then,

σ̂2
V and φ̂1, . . . , φ̂p are obtained by the Yule-Walker equations. For p ≥ 2, it is

possible that some estimated ρ̂k’s exceed 1, or {ρ̂k} does not lead to a positive
definite Toeplitz matrix.

5. Data Example

In this section, we compare composite likelihood estimation and Zeger’s
method for some count time series data consisting of daily car accident counts on
different major roads in large cities in the Netherlands in 2001; see Brijs, Karlis
and Wets (2008) and Sermaidis (2006) for details. One purpose is to study the
effects of weather conditions. Initial data analysis shows moderate serial correla-
tions and overdispersion relative to Poisson in some locations. Many covariates
were measured each day, but we found only a few of them to be important when
fitting regression models that ignore the serial dependence. However to determine
the importance of different covariates, the serial dependence should be accounted
for.

Full explanations and interpretation of the effects of the weather variables
are beyond the scope of the present paper. There is some controversy on how
these weather variables affect accident counts, and also there is dependence on
the scale of measurement and on local conditions.

To compare estimation methods, we now restrict ourselves to one location
that has serial dependence and overdispersion; the location is near Schiphol,
the airport in the Netherlands. The covariates that we use for the time series
modeling are: (a) WD=cosine of twice the mean wind direction in degrees, (b)
RA=mean hourly radiation in Joule/cm2 as a measurement on the intensity
of the sun, (c) PD=mean hourly precipitation duration over units of 0.1 hour,
(d) IWD=indicator of weekday (1 for Monday–Friday and 0 for Saturday and
Sunday).

For composite likelihood estimation with (2.1) and (2.2), each marginal den-
sity was computed with adaptive Gauss-Hermite quadrature, with 3 quadrature
points per dimension, and the numerical optimization was done with a quasi-
Newton routine (Nash (1990)); see Appendix C for some details. We fitted
latent AR(1), AR(2), and AR(3) models for conditional Poisson with the above
four covariates and estimation with BCL(3). The estimates of the β’s and σV
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were essentially the same; the estimated AR parameters were 0.56 for AR(1),
(0.36, 0.22) for AR(2), and (0.38, 0.30,−0.13) for AR(3). For AR(2), the corre-
sponding (ρη1, ρη2) estimates were (0.45, 0.38). The β’s for the covariates RA
and WD seem less important, especially the former, so we also fitted models
with three and two covariates. We also fitted latent AR models for conditional
negative binomial, but large standard errors for composite likelihood estimates
result; this model implies a Poisson mixing distribution which is a combination
of gamma and lognormal distributions, with potential near non-identifiability.

Using BCL(3) for the nine fits (three AR orders crossed with three subsets of
covariates), we compared the composite likelihood information criterion in Defi-
nition 3 of Varin and Vidoni (2005); the penalty term tr(JH−1) is −tr(Ω1Ω−1

2 )
in our notation. Based on this information criterion, the values with three-
covariate models with AR(1)−AR(3) and the two-covariate model with AR(1)
are very close, and the values for the other models are smaller.

We continue with the three-covariate model with AR(2) latent process for
further summaries. Table 1 has the estimates based on MCL(3) and BCL(3)
and Zeger’s method, together with standard errors (SEs) for MCL/BCL. The
estimated covariance matrix in (3.1) for composite likelihood was obtained via
a parametric bootstrap method. We simulated paths from the parameter θ̂n,
and then the expectation terms in Ω1 and Ω2 were obtained from Monte-Carlo
simulation, with derivatives of qj` evaluated using Gauss-Hermite quadrature.
Also given are estimates and SEs for approximate maximum likelihood based on
Markov chain Monte Carlo (MCMC) using WinBUGS (Lunn et al. (2000)).

For approximate maximum likelihood, the validity of using a Bayesian MCMC
method is based on the following. If the prior is flat, then the posterior mode is
the same as the maximum likelihood estimate (MLE). If in addition the posterior
density is roughly multivariate normal (this holds for large samples via asymp-
totic theory), then the posterior mode and posterior mean vector are roughly the
same, and the posterior covariance matrix matches that inverse Hessian of the
negative log-likelihood (or estimated covariance matrix of the MLE). In MCMC,
after the Markov chain has reached stationarity (and is thinned if necessary to
reduce the serial correlation), the sample distribution of the chain, theoretically,
has distribution matching the posterior, and the mean vector and covariance
matrix of the chain lead to the MLE and estimated covariance matrix of the
MLE.

For MCMC, we modified some WinBUGS code from Meyer and Yu (2000).
For a nearly flat prior, we took β0, β1, . . . , βr, σV , (φ1, . . . , φp) to be independent
and (i) each β parameter with a normal distribution with mean 0 and SD 100;
(ii) 1/σ2

V having a gamma distribution with mean 1 and SD 100; (iii) the AR
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Table 1. Parameter estimates for Poisson regression with latent Gaussian
AR(2) model: BCL(3), MCL(3), Zeger’s moment method, and maximum
likelihood via MCMC in WinBUGS; for the first three methods, SEs are
based on parametric bootstrap.

parameter BCL(3) SE MCL(3) SE Zeger SE MLE SE
β0: intercept 1.594 0.061 1.590 0.062 1.790 0.250 1.588 0.065
β1: WD -0.056 0.037 -0.058 0.036 -0.040 0.054 -0.053 0.036
β2: PD 0.175 0.019 0.174 0.018 0.130 0.032 0.174 0.018
β3: IWD 0.472 0.053 0.478 0.053 0.400 0.130 0.475 0.055
σV 0.273 0.016 0.270 0.016 0.231 0.036 0.270 0.031
φ1 0.350 0.130 0.340 0.130 0.360 0.170 0.390 0.150
φ2 0.250 0.140 0.280 0.140 0.320 0.200 0.270 0.140

parameters (φ1, . . . , φp) with a uniform distribution over their parameter space by
choosing the partial correlations with appropriate beta distributions (see Jones
(1987)). After some checks for insensitivity to parameters in the nearly flat prior
and MCMC convergence for the data set, we chose a chain length of 105 with a
burn-in of 2 × 104 and a thin rate of every 50.

For this and other similar data sets, Brijs, Karlis and Wets (2008) used some
models based on binomial thinning, where the innovation term was Poisson with
mean depending on the covariates. To get more overdispersion relative to Poisson,
other distributions can be used for the innovation, or other thinning operators
could be used. For these daily accident data, the latent Gaussian process model is
a plausible mechanism for the serial dependence. In general, the latent Gaussian
process model can allow for a wider range of autocorrelation structure (relative
to lag 1 serial correlation) than models based on thinning operators.

6. Simulation Study

A simulation study was run with the Poisson model for (1.1). We mention
the design of the study and then show some representative results to compare
estimation via (a) composite likelihood methods such as BCL(2) and BCL(3),
(b) Zeger’s method, and (c) approximate maximum likelihood via MCMC. For
MCMC, we used the control parameters (thin rate, burn-in etc.) mentioned in
the preceding section.

Based on experience with other models where composite likelihood estima-
tion has been used, we expect more efficiency loss relative to maximum likelihood
when the latent autocorrelation is stronger or when σV is smaller. We do not
expect the number of covariates or the β parameters to have much effect on
relative efficiency. The range of dependence in the observed Yt, as σ2

V changes,
depends on (1.1). For a Poisson model, with other parameters held fixed, serial
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independence is reached in the limit as σV or ση goes to 0 or ∞; this can be
checked based on (4.1)−(4.5).

6.1. Choice of covariates

For the simulation study, we used one continuous covariate and one discrete
covariate, with β values near the data example. For the continuous covariate, as a
first choice we used the wind direction covariate WD mentioned in Section 5 and
as the second choice we used the precipitation duration covariate PD. (WD is in
interval −1 to 1, whereas PD is right-skewed). For the discrete covariate, we used
the indicator of weekday IWD. We label the covariates as x1, x2 with regression
parameters β1, β2 for the simulation study. We set (β0, β1, β2) = (1.5,−0.1, 0.4)
for x1 =WD or (β0, β1, β2) = (1.5, 0.2, 0.4) for x1 =PD; these are values close to
those in Table 1.

In order to have arbitrary n, we replicated the WD (or PD) column of the
data set for n > 365, so that WDi = WDi−365. It was better to increase n

in this way because of some serial correlation in the covariate time series; that
is, this was a better extension than independent randomly generated covariates.
For IWD, the sequence was continued with five 1’s and two 0’s periodically, for
n > 365.

6.2. Choice of AR coefficients

We used three sets of (φ1, φ2) for AR(2). The first choice is close to that in
Table 1, and the second and third correspond to stronger autocorrelations.

1. φ1 = 0.34, φ2 = 0.26, or latent serial correlations ρη1 = 0.46, ρη2 = 0.42.

2. φ1 = 0.56, φ2 = 0.06, or latent serial correlations ρη1 = 0.60, ρη2 = 0.40.

3. φ1 = 0.55, φ2 = 0.22, or latent serial correlations ρη1 = 0.70, ρη2 = 0.60.

6.3. Choice of σV

We chose two levels of σV : (i) 0.3 near that in Table 1, and (ii) 0.2, a smaller
value. A smaller σV leads to larger serial correlations for exp(ηt) in (4.2), but
smaller correlations for Yt in (4.5). For σV around 0.15 or smaller, the correlations
of the Yt might be small enough that one would not consider a model with time
dependence.

6.4. Comparisons

The main design for the simulation study to evaluate composite likelihood
estimators is: 3 × 2 × 2: three sets of dependence parameters, two σV values
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and two sample sizes (n = 365 and n =1,095). This design was used with
x1 =WD (or x1 =RD) and x2 =IWD. We could quickly run 500 replications
per combination for BCL(2), BCL(3), BCL(4) and MCL(3), and Zeger’s method.
Because approximate maximum likelihood with MCMC/WinBUGS takes much
longer, we ran fewer replications on a subset of the 3 × 2 × 2 design. With an
Intel 2.40Ghz processor, a sample size of n = 1,095 and three covariates, the
computing times in a C program for BCL(2), BCL(3), MCL(3), and BCL(4),
averaged about 5,5,7, and 10 seconds respectively; the time was much less for
Zeger’s method and over 70 minutes for approximate maximum likelihood with
MCMC/WinBUGS.

The results for MCL(3) are almost the same as BCL(2); conclusions are
similar for the two choices of the continuous covariate x1, so the summary ta-
bles include only x1 =WD. BCL(3) is better than BCL(2) in cases of stronger
dependence and/or smaller σV . BCL(2) leads to efficient estimators of the β

parameters but BCL(3) leads to slightly more efficient estimators for σV and the
AR parameters φj . The additional improvement from BCL(4) for σV and φj is
even smaller. This pattern of needing more lags in BCL with more dependence
is similar to what was observed in Qu (2008) for the ARSV model.

In Table 2, root mean squared error (MSE) summaries of estimators for
BCL(2), BCL(3), ML/MCMC, and Zeger’s method with sample size n = 1,095
for (a) AR(2): φ1 = 0.34, φ2 = 0.26, and σV = 0.3 (close to that in the data set).
(b) AR(2): φ1 = 0.55, φ2 = 0.22, and σV = 0.2 (stronger latent autocorrelations
and smaller σV than in the data set). The bias is of the order of 10−3 for the
β parameters and 10−2 (and sometimes 10−1) for σV and φ1, φ2, with more bias
for the smaller sample size in our design.

Table 2 shows the range of results in the simulation study. For some AR(2)
parameter vectors, BCL(2) or MCL(3) are efficient with root MSE very close to
ML/MCMC. For other parameter vectors with stronger latent autocorrelations
and smaller σV , BCL(3) or BCL(4) lead to more efficient estimators than BCL(2).
Zeger’s moment-based method does not always have a solution; it is worse in
efficiency even if we only consider the subset of simulated data sets with estimates.
The patterns are confirmed for the AR(1) latent process with parameters close
to case (b) above: φ1 = ρ1 = 0.7, and σV = 0.2; see Table 3.

7. Summary and Discussion

The simulation study in Section 6 shows the composite likelihood estimation
performs very well for (1.1)−(1.3) with a conditional Poisson model. BCL with
a few lags performed at least as well as trivariate composite likelihood, so we
didn’t try composite likelihood based on d consecutive observations with d ≥ 4.
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Table 2. Root MSE of parameter estimates for Poisson regression with latent
Gaussian AR(2) model, covariates WD, IWD; estimation methods BCL(2),
BCL(3), Zeger’s moment method, and approximate maximum likelihood via
MCMC in WinBUGS; parameters (β0, β1, β2) = (1.5,−0.1, 0.4), and (a)
φ1 = 0.34, φ2 = 0.26, σV = 0.3; (b) φ1 = 0.55, φ2 = 0.22, σV = 0.2.
Sample size n =1,095; 400 replications. For Zeger’s method, 394 out of 400
with solutions in (b). For case (a), estimates of parameters were close to
each other for different methods; correlations mostly above 0.9 for BCL(2),
BCL(3) and MCMC with each other, and mostly above 0.8 for each with
Zeger’s method. For case (b), estimates for Zeger’s method could be quite
different; for other methods, correlations were above 0.9 for β’s, above 0.8
for σV , and above 0.6 for for φ1, φ2.

Parameter set (a) Parameter set (b)
par. Zeger BCL(2) BCL(3) ML Zeger BCL(2) BCL(3) ML
β0 0.041 0.037 0.037 0.037 0.135 0.036 0.036 0.036
β1 0.026 0.024 0.024 0.023 0.026 0.022 0.022 0.020
β2 0.039 0.035 0.035 0.035 0.060 0.031 0.031 0.031
σV 0.022 0.022 0.022 0.022 0.044 0.040 0.037 0.032
φ1 0.083 0.082 0.086 0.089 0.260 0.290 0.270 0.210
φ2 0.094 0.094 0.095 0.089 0.260 0.280 0.250 0.180

Table 3. Root MSE of parameter estimates for Poisson regression with
latent Gaussian AR(1) model, covariates WD, IWD; estimation methods
BCL(2−4), Zeger’s moment method, and approximate maximum likeli-
hood via MCMC in WinBUGS; parameters (β0, β1, β2) = (1.5,−0.1, 0.4),
φ1 = 0.7, σV = 0.2. Sample size n =1,095; 400 replications. For Zeger’s
method, 399 out of 400 with solutions. Estimates of parameters were close
to each other for MCMC and BCL(2−4), but were more different for Zeger’s
method. Correlations of parameter estimates with Zeger’s method were
mostly less than 0.8, but for other methods they were mostly above 0.9.

par. Zeger BCL(2) BCL(3) BCL(4) ML/MCMC
β0 0.135 0.034 0.034 0.034 0.034
β1 0.026 0.022 0.022 0.022 0.021
β2 0.061 0.031 0.031 0.031 0.032
σV 0.047 0.027 0.024 0.023 0.021
φ1 0.110 0.069 0.059 0.056 0.055

More lags in BCL(m) are needed with stronger latent dependence in order to
get comparable efficiency with maximum likelihood. For (1.1)−(1.3) for other
conditional distributions, we expect the pattern to be similar, because Joe and
Lee (2009) had this pattern for several models where exact efficiency calculations
were possible for composite likelihood versus full likelihood. For ARSV models
for financial asset return time series, the latent correlation parameter is usually
larger than 0.8, and then Qu (2008) found that there was significant efficiency
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loss even for BCL(m) with m around 4 or 5.
Based on our experience, for good efficiency, a rough rule is to use m = 2 or

3 for weak serial dependence; m = 3 or 4 for moderate serial dependence, and
m ≥ 4 for stronger dependence. For a particular data set, one could increase m

for BCL(m) estimation until the SE estimates have stabilized; further checks can
be made for different m with evaluations of asymptotic covariance matrices near
the BCL estimate θ̂.

Unless one has reason to believe that the dependence is so strong that com-
posite likelihood methods are inefficient, we recommend composite likelihood
methods as they are easier to implement in computer code, and they have faster
computational time than other simulation-based methods mentioned below. A
fast computational method is useful for deciding on the important covariates and
order of the latent autoregressive process. Although Zeger’s moment-based esti-
mation method is even computationally faster than composite likelihood meth-
ods, we do not recommend it for count data as it can be substantially less efficient,
and it can have problems with impossible Toeplitz matrices.

If the efficiency of composite likelihood estimation were worse for approxi-
mate maximum likelihood (cf., McCulloch (1997)) with multidimensional inte-
grals, there are variations of simulated likelihood approaches with importance
sampling, and these take more effort to implement than composite likelihood.
For the ARSV model for financial time series (with no covariates), the Monte
Carlo importance sampling method in Sandmann and Koopman (1998) is imple-
mented in Ox http://www.doornik.com and has reasonable speed.

For the count time series model that we are using, while approximate ML
via MCMC with WinBUGS can be used, it is known that there are large auto-
correlations in the Markov chain for models of the form (1.1)−(1.3), and this ex-
plains the length of time needed for numerically stable results. Jung, Kukuk and
Liesenfeld (2006) have proposed an efficient importance sampling (EIS) method;
see also Richard and Zhang (2007). Earlier Chan and Ledolter (1995) proposed
a Monte Carlo-EM approach. We did try an implementation of the Monte Carlo-
EM and Monte Carlo-EIS approaches, but this was much slower than composite
likelihood, and there were more decisions on control parameters affecting the
convergence and the number of iterations needed to approximate the likelihood.

There are models for time series based on a latent Gaussian process that
do not satisfy (1.1)−(1.3); an example is a binary probit time series model with
Yt = I(Zt <= 0), where Zt involves regression on covariates and an error process
that is Gaussian. However composite likelihood should be a good estimation
method and we expect that some of the techniques of the proofs will apply.

http://www.doornik.com
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Appendix A. Proofs

Convention A.1. Let i = {i1, i2, . . . , id} be an unordered tuples in which the
elements are selected from the set {1, . . . , s} and g(θ) be an s-dimensional real-
valued function. We use the notation ∂ig(θ) = (∂d/∂θi1 · · · ∂θid)g(θ) .

Convention A.2. For any s-dimensional vector u and s× s matrix M, we use
the notation ui for the ith element of u and Mi for the ith row of M .

Proof of Theorem 3.1. This parallels that of Theorem 3.2 and is omitted.

Proof of Theorem 3.2. The principle to establish consistency and asymptotic
normality of quasi-maximum likelihood estimation is standard (see for example,
p. 101 of Straumann (2005)). Here, we only give the proof for the m-variate
composite likelihood (2.1) case; the bivariate composite likelihood (2.2) can be
handled in a similar manner. To show that θ̂n → θ0 almost surely, one way is to
establish the following condition.

CO1. With probability 1, the likelihood function Qn(θ) converges uniformly in
Θ to some function Q(θ), i.e., supΘ |Qn(θ) − Q(θ)| a.s.→ 0.

To establish the asymptotic normality of
√

n(θ̂n − θ0), the following condi-
tions are required.
AN1: There exist matrices Ω1 and Ω2 , where Ω2 is positive definite, such that
√

n∇Qn(θ0) d→ N(0,Ω1) and −∇2Qn(θ0) a.s.→ Ω2.

AN2: supΘ

√
n|∇Qn(θ) −∇Q(θ)| a.s.→ 0 and supΘ |∇2Qn(θ) −∇2Q(θ)| a.s.→ 0.

Lemma A.1 below guarantees that the expectation of Q(θ) exists, and that
Ω1 and Ω2 are well-defined. The convergence of the limit in Ω1 is established in
Lemma A.2. The positive definiteness of Ω2 is proved in Lemma A.3.

Conditions CO1 and AN2 are established in Lemma A.4 via the Mean Er-
godic Theorem. The convergence of −∇2Qn(θ0) a.s.→ Ω2m that appears in AN1 is
a consequence of the Mean Ergodic Theorem. Since {Yt, . . . , Yt+m, ηt, . . . , ηt+m},
t ≥ 1, is a Markovian process with homogeneous transition probabilities, the Cen-
tral Limit theorem for a Markov chain (see Theorem 7.5 in Chapter V of Doob
(1953)) can be used to establish that

√
n∇Qn(θ0) d→ N(0,Ω1) . With conditions
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CO1, AN1, and AN2, then θ̂n
a.s.→ θ0 and

√
n (θ̂n − θ0) d→ N(0,Ω−1

2 Ω1Ω−1
2 )

follow from standard arguments. ¤
Lemmas A.1−A.4 are given below. Some technical lemmas used in the proof

of Lemmas A.1−A.4 are given in Appendix B.

Lemma A.1. Let Θ be a compact parameter space satisfying C1−C3.

(I) The expectation Q(θ) = E Y log fj:m(Yj , . . . , Yj+m; θ) exists for all θ ∈ Θ, and
supΘ |Q(θ)| < K for some K > 0 .

(II) Q(θ) is differentiable with respect to (β,α) up to order 3. For every un-
ordered tuple i with order ≤ 3 and the elements selected from the set {β,α} ,

there are constants Ki > 0 such that supΘ |∂iQ(θ)| < Ki .

Proof. In the following, the notation Yj:m = (Yj , . . . , Yj+m) and y refer to
(m + 1)-dimensional vectors.

(I) To show that Q(θ) exists and is bounded, we only need to establish an upper
bound and a lower bound for fj:m(Yj:m; θ) . Jensen’s inequality is used. The
bounds are as follows:

Q(θ) = E Y log fj:m(Yj:m; θ) ≤ log E Yfj:m(Yj:m;θ)

= log
∫

fj:m(y; θ)fj:m(y; θ0)dy ≤ log max
y

fj:m(y;θ0) ;

Q(θ) = E Y log E η
αh(Yj:m, η; β) ≥ E YE η

α log h(Yj:m, η; β)

= (m + 1)E YE η
α log ξ(Yj , exp(β0 + ηj)) .

From A1 and the assumption that Θ is compact, the conclusion follows.

(II) We first establish the results for ∂iQ(θ) in the case that the order of i is one.
The first order derivatives of Q(θ) are

∂iQ(θ) = E Y ∂ifj:m(Yj:m, θ)
fj:m(Yj:m, θ)

. (A.1)

From the results of Section 2.3, the first order derivatives ∂iQ(θ) have the form

∂iQ(θ) = E Y

{
E η

α g(η; θ) h(Yj:m,η; β)
E η

α h(Yj:m, η; β)

}
, (A.2)

where g(η; θ) is a polynomial with order ≤ 2 . The required result is a consequence
of Lemma B.1. For second and third order derivatives of Q(θ), terms like

E Y

{
E η

α g1(η; θ) h(Yj:m, η; β)
E η

α h(Yj:m,η; β)

}{
E η

α g2(η; θ) h(Yj:m,η; β)
E η

α h(Yj:m, η; β)

}
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can be bounded with the Cauchy-Schwarz inequality and, from Section 2.3, dif-
ferentiating the numerator of (A.2) leads to:

E Y

{
(∂/∂θj)E

η
α g(η; θ) h(Yj:m,η; β)

E η
α h(Yj:m, η; β)

}
= E Y

{
E η

α g∗(η; θ) h(Yj:m, η; β)
E η

α h(Yj:m, η;β)

}
for another function g∗ which is a polynomial in η.

Lemma A.2. The limit

Ω1 = lim
n→∞

nVar Y
{ 1

n

n−m∑
t=1

∇q(Yt, Yt+1, . . . , Yt+m;θ0)
}

exists and is finite. Here q = qt:m for all t.

Proof. Note that E Y∇q(Yt, Yt+1, . . . , Yt+m; θ0) = 0 and ∇q(Yt, Yt+1, . . . , Yt+m;
θ0) is stationary. Using the Dominated Convergence Theorem, it can be shown
that the limit Ω1 has the representation Ω1 = v0 + 2

∑∞
i=1 vi, where

vi = Cov Y
{
∇q(Y1, . . . , Ym+1; θ0),∇q(Y1+i, . . . , Ym+1+i; θ0)

}
.

Using Lemma B.3, the series for Ω1 converges.

Lemma A.3. The matrix Ω2m is positive definite.

Proof. Let ν = (νβ, να) be a vector satisfying νT
{
E∇2q(Y1, . . . , Ym+1; θ0)

}
ν =

0 . Here q = qt:m for all t, and the derivatives of q are with respect to (β, α) .
With Assumption B1, it suffices to show that ν = (νβ0 ,να) = 0 . By noting that
E∇q(Y1, . . . , Ym+1; θ0) = 0 and

−E∇2q(Y1, . . . , Ym+1;θ0) = E [∇q(Y1, . . . , Ym+1; θ0)][∇q(Y1, . . . , Ym+1;θ0)]T ,

we have EνT
{
∇q(Y1, . . . , Ym+1; θ0)

}{
∇q(Y1, . . . , Ym+1; θ0)

}T
ν = 0 , which im-

plies {
∇q(y1, . . . , ym+1; θ0)

}T
ν = 0 ∀y . (A.3)

With Σ as in (2.3), let

V = νγ0

∂Σ
∂γ0

+ · · · + νγm

∂Σ
∂γm

=


νγ0 νγ1 · · · νγm

νγ1 νγ0 · · · νγm−1

...
. . .

...
νγm νγm−1 · · · νγ0

 .

Let ω1 = −(1/2)trVΣ−1, ω2 = νβ0Σ
−11, and ω3 = (1/2)Σ−1VΣ−1. From the

derivatives in Section 2.3 and (A.3), it can be checked that ω1,ω2, ω3 as defined
satisfy (B.2) in Appendix B. By Lemma B.4, we have ω1 = 0, ω2 = 0, and
ω3 = 0. Therefore νβ0 = 0, V = 0, and να = 0 .
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Lemma A.4. We have supθ∈Θ |Qn(θ)−Q(θ)| a.s.→ 0, supθ∈Θ |∇Qn(θ)−∇Q(θ)|
a.s.→ 0, supθ∈Θ |∇2Qn(θ) −∇2Q(θ)| a.s.→ 0.

Proof. By Lemma A.1, Q(θ) exists. Using the Ergodic Theorem, we have for
each θ ∈ Θ, Qn(θ) → Q(θ). What remains is to show that the convergence is
uniform. For θ′,θ′′ ∈ Θ, by the Mean Value Theorem,

|Qn(θ′) − Qn(θ′′)|
|θ′ − θ′′|

≤ 1
n

n−m∑
t=1

{
sup
θ∈Θ

∣∣∇q(Yt, . . . , Yt+m; θ)
∣∣} ,

A bound for the right-hand side can be obtained by part (II) of Lemma A.1.
Consequently, we have the equicontinuity

sup
θ′,θ′′∈Θ

|Qn(θ′) − Qn(θ′′)|
|θ′ − θ′′|

≤ O(1), a.s..

Here, the quantity O(1) does not depend on θ′, θ′′ . This implies uniform conver-
gence, supθ∈Θ |Qn(θ) − Q(θ)| a.s.→ 0. Similarly, we obtain the results for the first
and second order derivatives of Qn(θ) .

Appendix B. Technical Lemmae

The hard parts of the proof of the asymptotic results are in the lemmas
in this appendix. Bounding the covariance of derivatives of the m-dimensional
composite likelihood is a key component. Here, for the case of no covariates, we
let q = qj:m for all j and, in (2.5), we let h = hj for all j.

Novikov’s theorem. Let Z ∼ Nd(0,Ω) and let ψ be a differentiable function
in <d. Then∫

<d

zψ(z)e−(1/2)zT Ω−1zdz =
∫
<d

Ω∇ψ(z)e−(1/2)zT Ω−1zdz ,

assuming the integrals exist, or E [Zψ(Z)] = ΩE [∇ψ(Z)].
Note that this theorem appeared in the Russian physics literature in 1964;

a statement is given in Chaturvedi (1983) using different notation. The proof is
based on integration by parts. It is also a multivariate version of Stein’s identity,
for which a general version is given in Arnold, Castillo and Sarabia (2001).

Lemma B.1. Let Θ be a compact space satisfying C1−C3. Let g1(z; θ) be a
polynomial in the (m + 1)-dimensional vector z , and g2(u) be a polynomial in
the (m + 1)-dimensional vector u . Suppose that U ∼ N(0,Σ(θ0)) , where Σ(θ0)
has form (2.3). Then, we have

sup
Θ

E Y,U

{
|g2(U)|E η

α |g1(η; θ)|h(Y, η; β)
E η

α h(Y, η;β)

}k

< ∞
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for k = 1, 2, 3. In particular, when g2(u) = 1 , we have

sup
Θ

E Y

{
E η

α |g1(η; θ0)|h(Y, η; β)
E η

α h(Y,η; β)

}k

< ∞.

Proof. For non-negative A and real-valued B such that the integrals exist,
Hölder’s inequality leads to (

∫
A|B|)c ≤ (

∫
A)c−1(

∫
A|B|c) for c > 1. This

inequality is used twice below with c = 2k and c = 2k + 1, in a similar manner
to its use in Theorem 2.1 of Nie (2006). Also, the inequality |AB| ≤ A2 + B2 is
used once inside integrals. Let η∗ = η + β0 , z∗ = z+ β0, and u∗ = u+ β0. With
Σ = Σ(θ) = Σ(α), define

g∗1(z
∗; θ) = g1(z∗ − β0; θ0) = g1(z; θ0) ,

g∗2(u
∗; θ) = g2(u∗ − β0;θ0) = g2(u; θ0) ,

g∗∗2 (u∗) = max{1, |g∗2(u∗)|} ,

ϕ(z∗;θ) = (2π)−(m+1)/2|Σ|−1 exp
{
− 1

2
(z∗ − β0)TΣ−1(z∗ − β0)

}
(density of η∗) ,

h∗(y, z∗) =
∏m+1

i=1
ξ(yi; exp{z∗i }) .

Then,

E Y,U

{
|g2(U)|E η

α |g1(η; θ)|h(Y, η; β)
E η

α h(Y,η; β)

}k

=
∫ {∫

|g∗1(z∗;θ)|h∗(y; z∗)ϕ(z∗;θ)dz∗∫
h∗(y; z∗)ϕ(z∗; θ)dz∗

}k

·
{∫

|g∗2(u∗)|kh∗(y;u∗)ϕ(u∗; θ0)du∗
}

dy

≤
∫ {∫

h∗(y; z∗)ϕ(z∗;θ0)
(
|g∗1(z∗)|ϕ(z∗; θ)/ϕ(z∗; θ0)

)2k
dz∗

}1/2{∫
h∗(y; z∗)ϕ(z∗; θ)dz∗

}k

·
{∫

h∗(y; z∗)ϕ(z∗;θ0)dz∗
}k−1/2

×
{∫

|g∗2(u∗)|kh∗(y;u∗)ϕ(u∗; θ0)du∗
}

dy

≤
∫ {∫

h∗(y; z∗)ϕ(z∗;θ0)
(
|g∗1(z∗)|ϕ(z∗; θ)/ϕ(z∗; θ0)

)2k
dz∗

}1/2{∫
h∗(y; z∗)ϕ(z∗; θ)dz∗

}k

·
{∫

|g∗∗2 (z∗)|kh∗(y; z∗)ϕ(z∗; θ0)dz∗
}k+1/2

dy

≤
∫ ∫

h∗(y; z∗)ϕ(z∗; θ0)
( |g∗1(z∗)|ϕ(z∗; θ)

ϕ(z∗;θ0)

)2k
dz∗dy

+
∫ {∫

|g∗∗2 (z∗)|kh∗(y; z∗)ϕ(z∗; θ0)dz∗
}2k+1{∫

h∗(y; z∗)ϕ(z∗; θ)dz∗
}2k

dy
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= E η
α0

( |g∗1(η∗)|ϕ(η∗; θ)
ϕ(η∗;θ0)

)2k

+
∫ {∫

|g∗∗2 (η∗)|kh∗(y; z∗)ϕ(z∗; θ)
(
ϕ(z∗; θ0)/ϕ(z∗; θ)

)
dz∗

}2k+1{∫
h∗(y; z∗)ϕ(z∗; θ)dz∗

}2k
dy

≤ E η
α0

( |g∗1(η∗)|ϕ(η∗; θ)
ϕ(η∗;θ0)

)2k

+
∫ ∫

h∗(y; z∗)ϕ(z∗; θ)
( |g∗∗2 (z∗)|kϕ(z∗; θ0)

ϕ(z∗; θ)

)2k+1
dz∗dy

= E η
α0

( |g∗1(η∗)|ϕ(η∗; θ)
ϕ(η∗;θ0)

)2k
+ E η

α0

{
|g∗∗2 (η∗)|k(2k+1)

(ϕ(η∗; θ0)
ϕ(η∗; θ)

)2k}
.

From conditions C1−C3, the right-hand side is bounded above by some constant.

Lemma B.2. Suppose that U ∼ N(0,Σ(θ0)) . Let u = (u0, u1, . . . , um) be an
(m + 1)-dimensional vector. For each i , consider

ς i(u) =
∫ {

∂iq(y; θ0)
}
h(y,u, β0)dy

as a function of u ; this is the expectation of ∂iq(Y; θ0) conditional on U = u.
Then E

{
U ς i(U)

}
exists and is finite.

Proof. From (2.4), q(y;θ) = log E η
αh(y, η; β) where, in (2.5), we let h = hj for

all j in the case of no covariates. Then we let g1(η; θ0) be such that

∂iq(y; θ0) =
E η

α0 g1(η; θ0) h(y, η; β0)

E η
α0 h(y, η; β0)

,

where g1 is a polynomial (Section 2.3 and proof of Lemma A.1). With g2(η)
being a component of η, the conclusion now follows from Lemma B.1.

Lemma B.3. Suppose that ρt ≈ Cρt for a positive constant C and −1 < ρ < 1
when t → ∞ . Then we have the autocovariance

Cov Y(∂i1q(Y1, . . . , Ym+1;θ0), ∂i2q(Yt+1, . . . , Yt+m+1; θ0)) = O(ρt) ,

where i1, i2 ∈ {β, σ2
V , φ1, . . . , φp} .

Proof. Let U1 ∼ N(0,Σ11) and U2 ∼ N(0,Σ22) be independent (m + 1)-
dimensional Gaussian random vectors. Define V = ρtAtU1 + (I − ρ2tBt)1/2U2,
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where At = Σ21,tΣ−1
11 , Bt = Σ21,tΣ−1

11 Σ12,tΣ−1
22 . Then V ∼ N(0,Σ22) (same

distribution as U2). Further let Σ11 = Σ22 = Σ(α) , as given in (2.3), and let

Σ12,t = ΣT
21,t = ρ−t


γt γt+1 · · · γt+m

γt−1 γt · · · γt+m−1
...

...
. . .

...
γt−m γt−m+1 · · · γt

 .

Here, the autocovariance vector γ is computed based on true distribution with
parameter θ0 . Then, (U1,V) has the same law as (η0, . . . , ηm, ηt, . . . , ηt+m) . For
any i and u, define ς i

`(u) as in Lemma B.2. It can be seen that

ρ−tCov Y(∂i1q(Y0, . . . , Ym; θ0), ∂i2q(Yt, . . . , Yt+m; θ0))
= ρ−tE

{
ςi1(U1)ς i2(V) − ς i1(U1)ςi2(U2)

}
= [w(ρt) − w(0)]/ρt, (B.1)

where

w(ε) = E
{

ς i1(U1) ς i2
(
εAtU1 + (I − ε2Bt)1/2U2

)}
, 0 ≤ ε < 1.

We show that the limit of (B.1) can be evaluated under the expectation sign
by differentiating w under the expectation sign. Define A = Σ21Σ−1

11 , where
Σ12 = limt→∞ Σ12,t , i.e.,

Σ12 = ΣT
21 = Cγ0


1 ρ · · · ρm

ρ 1 · · · ρm−1

...
...

. . .
...

ρm ρm−1 · · · 1

 .

Then, the limit of right-hand side of (B.1) becomes

lim
t→∞

ρ−tCov Y(∂i1q(Y0, . . . , Ym; θ0), ∂i2q(Yt, . . . , Yt+m; θ0)) = w′(0)

= E
{

ς i1
` (U1)UT

1 · AT · ∂

∂u2
ς i2
k (U2)

}
= E

{
ς i1
` (U1)UT

1

}
· AT · E

{ ∂

∂u2
ς i2
k (U2)

}
= E

{
ς i1
` (U1)UT

1

}
· Σ−1

11 Σ12Σ−1
22 · E

{
U2 ς i2

k (U2)
}

= O(1) .

In the last line above, we have used Novikov’s theorem and Lemma B.2 for the
existence of E {U1ς

i1
k (U1)} and E {U2ς

i2
k (U2)} .

Lemma B.4. Let η ∼ N(0,Σ(θ0)) with Σ as defined in (2.3). Let ω1, ω2, ω3

be, respectively, a real-valued constant scalar, vector, and matrix satisfying

E η
θ(ω1 + ωT

2 η + ηT ω3η)h(y,η; β0) = 0 (B.2)

for any given (m + 1)-dimensional vector y . Then, ω1 = 0, ω2 = 0 and ω3 = 0.



COMPOSITE LIKELIHOOD FOR TIME SERIES 303

Proof. For z = (z1, . . . , zm+1)T , let g(z) = ω1 + ωT
2 z + zT ω3z. The left-hand

side of (B.2) is the integral transform of the function

1
(2π)(m+1)/2|Σ|1/2

g(z) · exp
{
− 1

2
zTΣ−1z + b(eβ0+z1) + · · · + b(eβ0+zm+1)

}
(B.3)

with kernel
∏m+1

i=1 exp
[
a(eβ0+zi)T (yi)

]
. Since the inverse integral transform of

zero must be zero, we have g ≡ 0 . By noting that g is quadratic, we have ω1 = 0,
ω2 = 0, ω3 = 0 .

Appendix C. Adaptive Gauss-Hermite Quadrature

The integrals in the composite likelihood have the form E [g(Z)], where
Z ∼ Nd(µ,Σ) and d ≥ 2. Let Σ = AAT be the Cholesky decomposition
of Σ where A is lower triangular, and let Z0 ∼ Nd(0, Id). Then E [g(Z)] =
E [g(µ + AZ0] = E [g0(Z0)], where g0(z) = g(µ + Az). Using d-dimensional
Gauss-Hermite quadrature with nq points per dimension, E [g0(Z0)] is evaluated
as

nq∑
i1=1

· · ·
nq∑

id=1

w∗
i1nq

· · ·w∗
i1nq

g0(x∗
i1nq

, . . . , x∗
idnq

), (C.1)

where x∗
inq

= xinq

√
2 , w∗

inq
= π−1/2winq , and xinq are the roots of the Hermite

polynomial of order nq, winq are the Gauss-Hermite weights when integrating
against e−x2

(see Stroud and Secrest (1966)).
To get around the curse of dimensionality as the dimension d increases, and

to reduce nq, adaptive Gauss-Hermite quadrature can be used when the function
g is positive (such as for a term in the composite likelihood). With φd as the
d-variate normal density, write

E [g(Z)] =
∫

g(z) φd(z;µ,Σ) dz =
∫

g(z)
φd(z;µ,Σ)

φd(z; µp,Σp)
φd(z; µp,Σp) dz

= E
[
g(Z∗)

φd(Z∗;µ,Σ)
φd(Z∗; µp,Σp)

]
= E [g∗(Z0)], (C.2)

where Z∗ ∼ N(µp,Σp), Σp = ApAT
p and

g∗(z) = g(µp + Apz) φd(µp + Az; µ,Σ)/φd(µp + Az; µp,Σp).

With g > 0, µp is chosen as the argmin of k(z) = − log g(z) − log φd(z; µ,Σ)
and Σp is the inverse Hessian of k at µp. The parameters µp and Σ−1

p can be
obtained via the Newton-Raphson method.

The final expectation in (C.2) can be evaluated like (C.1). For mixed effect
models based on multivariate normal random effects, Pinheiro and Chao (2006)
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and Joe (2008) show that adaptive Gauss-Hermite quadrature often works well
with nq = 3 or 1 (latter corresponds to Laplace approximation).

Our implementation is in code in the C programming language, in order to
quickly run sets of simulations. We use nq = 3 after comparisons against nq = 1
and nq = 5. Composite likelihood methods for models such as those in this paper
can be implemented in any statistical software with a numerical quasi-Newton
optimizer. Code for Gauss-Hermite quadrature points and weights are available
from several sources including at least one R package (http://www.r-project.
org).
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