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Abstract: This note is concerned with the asymptotic properties of pairwise like-

lihood estimation procedures for linear time series models. The latter includes

ARMA as well as fractionally integrated ARMA processes, where the fractional

integration parameter d < 0.5. In some cases, including AR(1) processes and long-

memory processes with d < 0.25, the loss in efficiency in using pairwise likelihood

methods is slight. On the other hand, for some models such as the MA(1), the loss

in efficiency can be large, and for long-memory models with d > 0.25, the pairwise

likelihood estimator is not even asymptotically normal. A comparison between

using all pairs and consecutive pairs of observations in defining the likelihood is

given. We also explore the application of pairwise likelihood to a popular nonlinear

model for time series of counts. In this case, the likelihood based on the entire data

set cannot be computed without resorting to simulation-based procedures. On the

other hand, it is possible to numerically compute the pairwise likelihood precisely.

We illustrate the good performance of pairwise likelihood in this case.

Key words and phrases: ARFIMA model, composite likelihood, linear time series,

pairwise likelihood, Poisson autoregressive model.

1. Introduction

Although the likelihood principle plays an important role in the formal theory
of statistical inference, it is often not feasible to use in applications such as ge-
netic and spatial data where complex interdependences are present. For instance,
the computation of the likelihood may require inversion of a large dimensional
covariance matrix, or repeated evaluation of high-dimensional integrals over the
distribution of a latent process, which are computationally prohibitive. For the
latent-process specified models, one often has to resort to simulation-based meth-
ods to approximate the likelihood and the quality of the approximations can be
difficult to assess.

To overcome the limitations in computing the exact likelihood, Lindsay
(1988) proposed the composite likelihood as a pseudo-likelihood for inference.
The pseudo-likelihood may take various forms such as combinations of likeli-
hoods for small subsets of the data or combinations of conditional likelihoods.
These procedures adopt some features of the full likelihood which are useful for
inference while keeping the computation feasible.
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Pairwise likelihood (PL) is one special case of a composite likelihood, in
which the pseudo-likelihood is defined as the product of the bivariate likelihood
of all possible pairs of observations. That is, for n observations y1, y2, . . . , yn

from a statistical model with parameter η, the pairwise likelihood is defined by∏n
i<j fη,i,j(yi, yj), where fη,i,j(yi, yj) is the joint density of the random variables

yi and yj . The PL can be viewed as the likelihood of an imaginary data set
of n(n − 1)/2 independent samples of bivariate observations. The evaluation of
pairwise likelihood requires n(n−1)/2 evaluations of a bivariate density function,
which is computationally efficient when the bivariate density function can be
computed quickly in comparison to the joint density of n observations. A general
discussion of pairwise likelihood can be found in Cox and Reid (2004).

Due to the simplicity of pairwise likelihood, it has been applied in many fields
in statistics, including image analysis (Nott and Ryden (1999)), longitudinal bi-
nary data (Kuk and Nott (2000)), multivariate survival data analysis (Parner
(2001)), multilevel models (Renard, Molenberghs and Geys (2004)), frailty mod-
els for longitudinal count data (Henderson and Shimakura (2003)), Gaussian
spatial data (Hjort and Omre (1994)), binary spatial data (Heagerty and Lele
(1998)), spatial generalized linear mixed models (Varin and Vidoni (2009)), state
space models (Varin, Høst, and Skare (2005), Joe and Lee (2009)) and vast dimen-
sional time-varying covariance models (Engle, Shephard and Sheppard (2009)).
Mardia et al. (2009) and Joe and Lee (2009) considered pairwise likelihood in
longitudinal time series setting. That is, there are n independent observations
from a p-dimensional multivariate vector, where each entry has a time series
structure. The asymptotic setup is that p is fixed while n → ∞. In this paper,
we consider a traditional time series setting in which we have a single realiza-
tion from a univariate time series. That is, we have a single observation from a
p-dimensional random vector having a time series structure, and p → ∞.

In this paper we provide some theory behind the application of PL in time
series models. As time series observations are ordered in time with the bulk of
the dependence occurring in adjacent observations, it may be more appropriate
to consider a further simplification of pairwise likelihood based only on consec-
utive pairs of observations. We shall call this consecutive pairwise likelihood
(CPL). We first develop theory about consistency and asymptotic distribution
for maximum CPL estimators (MCPLE) in linear time series models. Our set-
ting includes both short-memory models, where the autocorrelation function is
summable, and long-memory models, where ρ(k) ∼ λ|k|2d−1 decays parabolically,
for some constants, λ > 0 and d < 0.5. It is found that MCPLE is consistent
for both short- and long-memory time series. The MCPLE is asymptotically
normally distributed with

√
n convergent rate when the series is short-memory

or long-memory with d ≤ 1/4. When d > 1/4, the MCPLE is no longer normally
distributed and the convergent rate is slower than the standard

√
n rate.
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Secondly, we compare the performance of MCPLE and MLE using some
simple time series models. First, for AR(1) processes, the asymptotic relative
efficiency of the MCPLE to the MLE is one for all values of the AR(1) parameter.
On the other hand, the asymptotic variance of PL estimates is much larger and
in fact becomes infinite as the AR parameter converges to zero. In contrast, in
a MA(1) model the asymptotic relative efficiency of the MCPLE to the MLE is
disappointingly small. This result may seem surprising since the dependence in
an MA(1) model does not extend beyond lag 1. At the other extreme, even for
a long-memory ARFIMA(0,d,0) process, CPL performs extremely well when the
memory parameter d ∈ (0, 0.2). However, when d > 0.25, the procedure breaks
down theoretically in the sense that the asymptotic relative efficiency of MCPLE
to MLE becomes infinite. Based on empirical studies, the MCPLE still has
decent performance in this extremely long-memory case. While it is tempting to
believe that there may be severe information loss using only dependence between
pairwise observations, the loss of information can be small even for complicated
models. In some cases it is even fully efficient, as seen in the AR(1) example in
Section 3; see also Mardia et al. (2009). It is not always clear in which cases
the CPL procedure performs well. As the dependence structure in time series
models are often explicit, we hope the comparison of CPL with the full likelihood
in some standard time series models will shed some light on this issue.

As a comparison to the MCPLE, we study the MPLE, which is defined by
the product of the bivariate densities of all distinct pairs of observations. Con-
sistency of the MPLE is established under the condition that the autocovariance
function of the time series is absolutely summable. We suspect that the MPLE
is inconsistent for ARFIMA models. This is supported by a simulation example
in Section 2.

We also demonstrate the inconsistency of MPLE via a simulation exam-
ple using ARFIMA model where the autocovariance function is not absolutely
summable.

Lastly we illustrate the good performance of the pairwise likelihood applied
to a nonlinear model for time series of counts. This model, described in Zeger
(1988) (see also Davis and Rodriguez-Yam (2005)) assumes that conditional on
an AR(1) latent process, the observations are independent Poisson random vari-
ables. In this case, exact likelihood requires an n-fold integration over the joint
distribution of the latent process, which is not feasible to compute. On the
other hand, the CPL, which is computable since it only involves two dimen-
sional integrals, gives performance comparable to the results found in Davis and
Rodriguez-Yam (2005), which uses simulation-based methods to approximate the
likelihood. The good performance suggests the promise of the CPL estimation
technique for more complicated models.

The paper is organized as follows. In Section 2 we show consistency and
weak convergence of estimators for CPL in linear time series models. In Section
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3 we compare the performance of PL, CPL and the full likelihood, and illustrate
the CPL technique with the nonlinear Poisson model.

2. Pairwise Likelihood in Linear Time Series Models

In this section we consider the linear time series model

Xt = µ +
∞∑

j=0

ψjZt−j , t = 1, 2 . . . , (2.1)

where for j ≥ 0, ψj = ψj(θ) satisfies ψ0 = 1 and
∑∞

t=0 ψ2
t < ∞, θ is a parameter

belonging to a compact m-dimensional parameter space Θ, and {Zt} is IID(0, σ2)
with finite fourth cumulant κ. Letting η = (σ2, θ) denote the parameter vector,
the auto-covariance function E((Xt+k−µ)(Xt−µ)) = σ2

∑∞
t=0 ψtψt+k = σ2γθ(k),

where γθ(k) =
∑∞

t=0 ψtψt+k. Further assume that γθ(k) is twice continuously
differentiable for all k. This setting includes both short-memory models, such
as ARMA models where γθ(k) is summable, and long-memory models where
γθ(k) ∼ λ|k|2d−1 decays parabolically, for some constants λ > 0, and d < 0.5.
Without loss of generality we assume µ = 0 in the discussion below.

Estimation using the pairwise likelihood involves computing the joint likeli-
hood (Gaussian likelihood in this case) for all pairs of observations. The bivariate
density for any pair of observations {Xt, Xt+k}, k 6= 0, is

fη(Xt, Xt+k) =
1

2πσ2
√

∆θ(k)
exp

(
−

(X2
t + X2

t+k)γθ(0) − 2XtXt+kγθ(k)
2σ2∆θ(k)

)
,

where σ4∆θ(k) = σ4(γ2
θ (0) − γ2

θ (k)) is the determinant of the covariance matrix
of {Xt, Xt+k}. Note that we are not assuming that {Xt, Xt+1} has a bivari-
ate Gaussian density, rather, this is used only as the objective function for the
estimation procedure.

Given a vector of observation Xn = (X1, . . . , Xn), the pairwise likelihood
is defined to be the product of the bivariate densities of each distinct pair of
observations whereas the consecutive likelihood is the product of the bivariate
densities of consecutive pairs of observations at various lags. Specifically, we have

The Pairwise log-Likelihood (PL):

PL(η;Xn) =
n−1∑
j=1

n−j∑
t=1

log fη(Xt, Xt+j)

= −1
2

n−1∑
j=1

n−j∑
t=1

[
(X2

t + X2
t+j)γθ(0) − 2XtXt+jγθ(j)

σ2∆θ(j)
+ log

(
σ4∆θ(j)

)]
. (2.2)
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The kth order Consecutive Pairwise log-Likelihood (CPLk):

CPLk(η;Xn) =
k∑

j=1

n−j∑
t=1

log fη(Xt, Xt+j)

= −1
2

k∑
j=1

n−j∑
t=1

[
(X2

t + X2
t+j)γθ(0) − 2XtXt+jγθ(j)

σ2∆θ(j)
+ log

(
σ4∆θ(j)

)]
. (2.3)

In many time series models, most of the dependence occurs in adjacent ob-
servations while the dependence diminishes as the time lag between observations
increases. Therefore the use of pairwise likelihood may lose efficiency since too
many redundant pairs of observations can skew the information confined in pairs
of adjacent observations. We will focus on consecutive likelihood. Examples
in Section 3 show that CPL is superior to PL. On the other hand, there is an
identifiability issue relative to CPL. By (2.3), CPLk depends on the model only
through the autocovariances σ2γθ(0), σ2γθ(1), . . . , σ2γθ(k). The model is not
identifiable through these autocovariances for more complicated models such as
an AR(k + 1) model. Generally, when θ is m-dimensional, one takes k ≥ m to
ensure identifiability of the parameters through the autocovariances . If k = m,
it can be shown that one recovers the methods of moment of estimator for θ.
In other words, one solves for θ by matching the theoretical and sample auto-
correlation functions up to lag m. When k > m, CPL is in general different from
the method of moments. Note that CPLn−1(η;Xn) = PL(η;Xn). Thus the kth
order CPL bridges CPL1 and PL.

Another way to resolve identification issues is to work with the consecutive
k-tuple log-likelihood

CTLk(η;Xn) =
n−k∑
t=1

log fη(Xt, Xt+1, . . . , Xt+k) . (2.4)

Since CTLk involves joint densities with higher dimensions, it may be more
computationally expensive to use. As an intermediate step, one can view CPLk

as a further simplification of CTLk. While we will focus on CPLk in this paper,
the theory of CTLk follows in a similar way as that of CPLk. Caragea and Smith
(2007) considered the small blocks method which is similar to CTLK , where a
k-tuple of observations (Xt, Xt+1, . . . , Xt+k) is regarded as a block. But the small
blocks method considers only separated blocks, while CTLK can be viewed as a
moving block method.

As every log fη(Xt, Xt+j) is the exact log-likelihood of the imaginary sample
of two observations {Xt, Xt+j}, CPL naturally shares similar important proper-
ties as the exact log-likelihood, such as that the expectation of the derivative of
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the log-likelihood function is zero and that the maximum of the expected value
of the log-likelihood function is attained at the true parameter. These properties
lead to the consistency of maximum consecutive likelihood estimation, given in
the following theorem.

Theorem 2.1. Suppose {Xt} is the linear process specified in (2.1) with µ = 0
and parameter ηo = (σ2

o , θo). Let

η̂n = arg max
η

CPLk(η;Xn)

be the maximum consecutive likelihood estimator (MCPLE). If the identifiability
condition

σ2
1γθ1(j) = σ2

2γθ2(j) for j = 0, 1, . . . , k iff (σ2
1, θ1) = (σ2

2, θ2) (2.5)

is satisfied, then η̂n
a.s.→ ηo.

Proof of Theorem 2.1. We only prove the result for the k = 1 case, the
other cases being similar. Let Eη(·) be the expectation evaluated under the Pη,
the probability measure induced by {Xt}, which follows the model (2.1) with
parameter η = (σ2, θ). For true parameter ηo, by the Ergodic Theorem, we have

n−1∑
t=1

X2
t + X2

t+1

n

a.s.→ 2Eηo(X
2
1 ) = 2σ2

oγθo(0)

and
n−1∑
t=1

XtXt+1

n

a.s.→ Eηo(X1X2) = σ2
oγθo(1) . (2.6)

Thus we have

1
n

CPL(η;Xn) =
1
n

n−1∑
t=1

log fη(Xt, Xt+1)

a.s.→ Eηo(log fη(X1, X2)) .

We claim that the maximum of Eηo(log fη(X1, X2)) over η is attained uniquely
at η = ηo. For Gaussian distributed {Xt}, Jensen’s Inequality implies that

Eηo

(
log

fη1
(Xt, Xt+1)

fηo(Xt, Xt+1)

)
≤ log Eηo

(
fη1

(Xt, Xt+1)
fηo(Xt, Xt+1)

)
= log(1) = 0 .

It follows that

Eηo(log fηo(Xt, Xt+1)) ≥ Eηo(log fη1
(Xt, Xt+1)) (2.7)
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for any η1, and the equality holds if and only if fηo(Xt, Xt+1) = fη1
(Xt, Xt+1)

almost surely, which holds if and only if (2.5) is satisfied. From (2.3), it can be
seen that the expectation Eηo

(
log(fη1

(Xt, Xt+1)/fηo(Xt, Xt+1))
)

depends only
on the autocovariance function of the model regardless of the distribution as-
sumption, and hence (2.7) in fact holds for any distribution of {Xt} with finite
second moments. This proves the claim.

To make use of the compactness property of Θ we profile out σ2. For a fixed
θ, CPL(η;Xn) ≡ CPL((σ2, θ);Xn) can be shown to be maximized by

σ̂2
n(θ) =

γθ(0)
∆θ(1)

n−1∑
t=1

X2
t + X2

t+1

2n
− 2γθ(1)

∆θ(1)

n−1∑
t=1

XtXt+1

2n
. (2.8)

Thus maximizing CPL(η;Xn) over η is equivalent to maximizing CPL((σ̂2
n(θ), θ);

Xn) over θ. Let θ̂n be this maximizer and Bc be a null set of the probability space
Ω such that (2.6) holds for all ω ∈ B. We show that for each ω ∈ B, θ̂n → θo.
For any ω ∈ B, suppose on the contrary that θ̂n 9 θo. By the compactness of Θ
there exists a subsequence {nk} such that θ̂nk

→ θ∗ for some θ∗ 6= θo. Then

σ̂2
nk

(θ̂nk
) → γθ∗(0)

∆θ∗(1)
σ2

oγθo(0) − γθ∗(1)
∆θ∗(1)

σ2
oγθo(1) =: σ2

∗ .

Now

lim
k→∞

1
nk

CPL((σ̂2
nk

(θ̂nk
), θ̂nk

);Xnk
)

≥ lim
k→∞

1
nk

CPL((σ2
o , θo);Xnk

) = Eηo(log fηo(X1, X2))

> Eηo(log f(θ∗,σ2
∗)(X1, X2)) = lim

k→∞

1
nk

CPL((σ2
∗, θ

∗);Xnk
)

= lim
k→∞

1
nk

CPL((σ2
nk

(θ̂nk
), θ̂nk

);Xnk
) ,

which is a contradiction. Hence θ̂n → θo for each ω ∈ B. It then follows from
(2.8) that σ̂2

n(θ̂n) → σ2
o for each ω ∈ B, which establishes the strong consistency.

Once the consistency of the MCPLE has been established, the asymptotic
distribution can be derived using a Taylor series expansion of the pseudo-likelihood
around the true value. It turns out that asymptotical normality with rate

√
n

only holds in the short-memory and long-memory cases with d < 0.25. This is
the content of the following theorem.

Theorem 2.2. For k ≥ 1, let

ak(η) =
γθ(0)

σ2∆θ(k)
, bk(η) = − γθ(k)

σ2∆θ(k)
, ck(η) = log σ4∆θ(k) .
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Denote the k-dimensional column vector with one in every entry by 1, the deriva-
tive with respect to η by ′ and matrix transpose by T . Set

H(η) = 2σ2γθo(0)
k∑

j=1

a′′j (η) + 2σ2
k∑

j=1

b′′j (η)γθo(j) +
k∑

j=1

c′′j (η) ,

τi,j = σ4

( ∞∑
k=−∞

γθo(k)γθo(k+i−j)+
∞∑

k=−∞
γθo(k)γθo(k+i+j)+κγθo(i)γθo(j)

)
,

Σ1 = τ0,011T , Σ2 = 1(τ0,1 τ0,2 . . . τ0,k) , Σ3 = (τi,j)i,j=1,...,k ,

M =
(

Σ1 Σ2

ΣT
2 Σ3

)
,

V = (a′1(ηo) . . . a′k(ηo) b′1(ηo) . . . b′k(ηo)) ,

where H(ηo) is assumed to be invertible in a neighborhood of ηo. If (2.5) holds
and {Xt} is

• short-memory or long-memory with d < 1/4, then
√

n(η̂n − ηo) → N
(
0, 4H(ηo)−1V MV T HT (ηo)−1

)
.

• long-memory with d = 1/4, then√
n/ log n(η̂n − ηo) → N

(
0, 16λ2σ2

oH(ηo)−1V 11T V T HT (ηo)−1
)

.

• long-memory with d > 1/4, then n1−2d(η̂n − ηo) converges to a non-Gaussian
centered random variable with variance [16λ2σ2

o/(−1 + 4d)]H(ηo)−1V 11T V T

HT (ηo)−1.

Proof of Theorem 2.2. Define

Hn(η) =
1
n

CPL′′
k(η;Xn)

=
1
n

k∑
j=1

n−j∑
t=1

[
(X2

t + X2
t+j)a

′′
j (η) + 2XtXt+jb

′′
j (η) + c′′j (η)

]
and

Jn(η) =
1√
n

CPL′
k(η;Xn)

=
1√
n

k∑
j=1

n−j∑
t=1

[
(X2

t + X2
t+j)a

′
j(η) + 2XtXt+jb

′
j(η) + c′j(η)

]
. (2.9)

A Taylor series expansion of Jn(η) and Theorem 2.1 give

Jn(ηo) = Hn(η+
n )

√
n(ηo − η̂n) ,
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where η+
n is between ηo and η̂n. To derive the asymptotic distribution of η̂n,

it suffices to look at the asymptotic properties of Hn(η+
n ) and Jn(ηo). By the

Ergodic Theorem and the fact that η+
n

a.s.→ ηo, we have

Hn(η+
n ) a.s.→ 2σ2

oγθo(0)
k∑

j=1

a′′j (ηo) + 2σ2
o

k∑
j=1

b′′j (ηo)γθo(j) +
k∑

j=1

c′′j (ηo) = H(ηo) .

(2.10)
Next we compute the asymptotic mean and variance of Jn(ηo). Note that

Jn(ηo) has expectation zero as it is a sum of derivatives of log-likelihood functions.
For the variance of Jn(ηo), it suffices to consider only the non-deterministic terms

Aj :=
a′j(ηo)√

n

n−j∑
t=1

(X2
t + X2

t+j) and Bj :=
2b′j(ηo)√

n

n−j∑
t=1

XtXt+j ,

j = 1, . . . , k. Note that for i, j ≤ k, we have the approximation

Cov

(
n−i∑
t=1

(X2
t + X2

t+i),
n−j∑
t=1

(X2
t + X2

t+j)

)

= 4
n∑

t=1

n∑
k=1

Cov(X2
t , X2

k)

= 4
n∑

t=1

n∑
k=1

[
Cum(Xt, Xt, Xt+k, Xt+k) + 2Cov(Xt, Xt+k)2

]
= 4σ4

o

n∑
t=1

n∑
k=1

κ
∑
p≥1

ψ2
pψ

2
p+k + 8σ4

o

n∑
t=1

n∑
k=1

γ2
θo

(k)

∼ 4nσ4
o

(
2

n∑
k=−n

γ2
θo

(k) + κγ2
θo

(0)

)
, (2.11)

where xn ∼ yn means xn/yn → 1 as n → ∞. Similarly, we have

Cov

(
n−i∑
t=1

XtXt+i,

n−j∑
t=1

XtXt+j

)

∼ nσ4
o

(
n∑

k=−n

γθo(k)(γθo(k + i − j) + γθo(k + i + j)) + κγθo(i)γθo(j)

)
, (2.12)

Cov

(
n−i∑
t=1

(X2
t + X2

t+i),
n−j∑
t=1

XtXt+j

)

∼ 2nσ4
o

(
2

n∑
k=−n

γθo(k)γθo(k + j) + κγθo(0)γθo(j)

)
. (2.13)
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When Xt is short-memory or long-memory with d < 1/4,

n∑
k=−n

γθo(k + i)γθo(k + j)

converges for all i, j ≤ k as n → ∞. From (2.11)−(2.13), we have

Cov(Ai, Aj)→4τ0,0a
′
ia

T
j , Cov(Ai, Bj)→4τ0,ja

′
ib

T
j , Cov(Bi, Bj)→4τi,jb

′
ib

T
j (2.14)

which, combined with (2.9) and (2.14), gives

Var(Jn(ηo)) = Var(
k∑

j=1

Aj +
k∑

j=1

Bj) → 4V MV T . (2.15)

For long-memory processes, γθo(k) ∼ λk2d−1, it can be shown that for any integer
j,

lim
n→∞

∑n
k=−n γθo(k)γθo(k + j)

log n
= 2λ2 (2.16)

for d = 1/4, and

lim
n→∞

∑n
k=−n γθo(k)γθo(k + j)

n−1+4d
=

2λ2

−1 + 4d
(2.17)

for d > 1/4. Putting (2.9), (2.11)−(2.13) and (2.16)−(2.17) together, we have

1
log n

Var(Jn(ηo)) → 16λ2σ2
oV 11T V T , if d =

1
4
, (2.18)

and
1

n−1+4d
Var(Jn(ηo)) →

16λ2σ2
o

−1 + 4d
V 11T V T , if d >

1
4

. (2.19)

Next we consider the limiting distribution of the term Jn(ηo). Note that
Jn(ηo) is a linear combination of the Aj ’s and Bj ’s, which involve the sample
autocovariance functions. If {Xt} is short memory, it is well known that (e.g.,
Brockwell and Davis (1991, Thm. 7.2.1) the sample autocovariances are asymp-
totically multivariate normal. When {Xt} is long-memory, the distributional
properties of the sample autocovariances have been studied by Hosking (1996).
For the case d ≤ 1/4, the sample autocovariances are asymptotically normal.
Therefore, for the short-memory or long-memory cases with d ≤ 1/4, Jn(ηo) is
asymptotically normal with mean zero and variance given in (2.15) and (2.18),
respectively. If d > 1/4, the sample autocovariances converge to a non-Gaussian
distribution related to the Rosenblatt process (Rosenblatt (1961) and Jn(ηo) is
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not asymptotically normal. Since
√

n(η̂n − ηo) = −Hn(η+
n )−1Jn(ηo), the result

now follows from (2.10), (2.15) and (2.18)−(2.19).

In the following we discuss some aspects of the pairwise likelihood. Since the
dependence between two observations decreases with the time lag, the bivariate
density fη(Xt, Xt+k) is close to the product of marginals fη(Xt)fη(Xt+k), when
k is large. Therefore, PL is dominated by the marginal densities when n is
large. Indeed, it can be shown that when normalized by n2, the PL converges to
the expected value of the marginal log-likelihoods, E(log fη(Xt)), where fη(Xt) =
1/

√
2πσ2γθ(0) exp(−X2

t /2σ2γθ(0)) is the marginal density of Xt. As dependence
parameters are not identifiable from the marginal distribution in most time series
models, the proof of consistency of CPL does not extend to the case of PL.
Nevertheless, when the autocovariance function γθ(·) is absolutely summable,
the PL produces consistent estimators. This is the content of Theorems 2.3 and
2.4.

Theorem 2.3. For each η ∈ R+ × Θ,

lim
n→∞

∣∣∣∣ 1
n2

PL(η;Xn) − E(log fη(X1))
∣∣∣∣ = 0 almost surely .

Proof of Theorem 2.3. For any η ∈ R × Θ,

1
n2

PL(η;Xn) =
1
n2

n−1∑
k=1

n−k∑
t=1

log fη(Xt, Xt+k)

=
1

2n2

n∑
t=1

n∑
u6=t

(log fη(Xt, Xu) − log fη(Xt)fη(Xu))

+
1

2n2

n∑
t=1

n∑
u6=t

log fη(Xt)fη(Xu)

= An,η + Bn,η , say .

Note that for any fixed η, Bn,η = [(n − 1)/n2]
∑n

t=1 log fη(Xt)
a.s.→ E(log fη(X1))

as n → ∞ by the Ergodic Theorem. The proof is completed if An,η
a.s.→ 0. To

show this, note that

log fη(Xt, Xu) − log fη(Xt)fη(Xu)

=
(X2

t + X2
u)γ2

θ (|t − u|) − 2XtXuγθ(|t − u|)γθ(0)
2σ2γθ(0)∆θ(|t − u|)

+ log
(

1 − γθ(|t − u|)2

γ2
θ (0)

)
.
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Thus, for C being some generic constant, |An,η| is bounded by

C

n2

n∑
t

n∑
u6=t

(X2
t + X2

u)γ2
θ (|u − t|)

2σ2γθ(0)∆θ(|u − t|)
+

C

n2

n∑
t

n∑
u 6=t

(X2
t + X2

u)|γθ(|u − t|)|
2σ2∆θ(|u − t|)

+
C

∑n
t=1

∑n
u 6=t γ2

θ (|u − t|)
n2γ2

θ (0)

≤ C

γθ(0)

∑n
t=1 X2

t

n

1
n

n∑
k=0

γ2
θ (k)

∆θ(k)
+

C
∑n

t=1 X2
t

n

1
n

n∑
k=0

|γθ(k)|
∆θ(k)

+
C

nγ2
θ (0)

n∑
k=1

γ2
θ (k) , (2.20)

where we have used the fact that 2|XtXu| ≤ X2
t + X2

t and log(1 − x) < x for
positive x. Since γθ(k) → 0 as k → ∞ in both the short and long-memory cases, it
follows by Cesaro summability that

∑n
k=0 γθ(k) = o(n) and

∑n
k=0 γ2

θ (k) = o(n).
Hence An,η indeed coverges to 0 almost surely.

Theorem 2.4. Suppose {Xt} satisfies (2.1) with parameter ηo = (σ2
o , θo). For

Xn = (X1, . . . , Xn), let

η̃n = arg max
η

PL(η;Xn)

be the maximum pairwise likelihood estimator (MPLE). If
∑∞

k=0 |γθ(k)| < ∞,
then η̃n

a.s.→ ηo.

Proof of Theorem 2.4. Similar to the proof of Theorem 2.1, for any fixed θ we
can find a profile likelihood estimator σ̃2

n(θ), where maximizing PL(η;Xn) over
η is equivalent to maximizing PL((σ̃2

n(θ), θ);Xn) over θ. Let Bc be a null set of
the probability space Ω such that

∑n
t=1 X2

t /n
a.s.→ Eηo

(X2
1 ) and, for all integer

k,
∑n

t=1 XtX
2
t+k/n

a.s.→ Eηo
(X1X1+k) hold for all ω ∈ B. We show that for each

ω ∈ B, θ̃n → θo. For any ω ∈ B, suppose on the contrary that θ̃n 9 θo. By the
compactness of Θ, there exists a subsequence {nk} such that θ̃nk

→ θ∗ for some
θ∗ 6= θo. Let σ2

∗ = limk→∞ σ̃2
nk

(θ∗), η∗ = (σ2
∗, θ

∗), and γ̌η(k) = σ2γθ(k). We first
show that

1
n

PL(ηo ;Xn) − 1
n

PL(η∗;Xn) > 0 (2.21)

almost surely, for all sufficiently large n. We only consider the case where fη(Xt)
is unidentifiable in the sense of (2.5), i.e., γ̌ηo(0) = γ̌η∗(0). Otherwise the proof
is obvious by Theorem 2.3 and the fact that Eηo

(fηo
(X1)) > Eηo

(fη∗(X1)) when
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γ̌ηo(0) 6= γ̌η∗(0). Note that, for any integer q < n − 1,

1
n

PL(ηo ;Xn) − 1
n

PL(η∗;Xn)

=
1
n

(CPLq(ηo;Xn) − CPLq(η∗;Xn))

+
1
n

n−1∑
k=q+1

n−k∑
t=1

(
log fηo

(Xt, Xt+k) − log fη∗(Xt, Xt+k)
)

= Cn,q,ηo,η∗ + Dn,q,ηo,η∗ , say.

We show (2.21) by arguing that Cn,q,ηo,η∗ is positive and Dn,q,ηo,η∗ is of smaller
order than Cn,q,ηo,η∗ for sufficiently large q and n. By the Ergodic Theorem,

Cn,q,ηo,η∗ =
q∑

k=1

1
n

n−k∑
t=1

(
log fηo

(Xt, Xt+k) − log fη∗(Xt, Xt+k)
)

→
q∑

k=1

(
Eηo(log fηo

(Xt, Xt+1)) − Eηo(log fη∗(Xt, Xt+1))
)

.

Using (2.7) and its straightforward generalization to the pairs {Xt, Xt+k} for
k = 2, . . . , q, it can be seen that Cn,q,ηo,η∗ is strictly positive for sufficiently large
n. Next, after some algebra, we have

Dn,q,ηo ,η∗ =
γ̌ηo

(0)
n

n−1∑
k=q+1

n−k∑
t=1

(X2
t + X2

t+k)(γ̌
2
η∗(k) − γ̌2

ηo
(k))

∆η∗(k)∆ηo
(k)

− 2
n

n−1∑
k=q+1

n−k∑
t=1

(XtXt+k)(γ̌ηo
(k) − γ̌η∗(k))(γ̌2

ηo
(0) + γ̌η∗(k)γ̌ηo

(k))
∆η∗(k)∆ηo

(k)

+
1
n

n−1∑
k=q+1

(n − k)(log ∆ηo
(k) − log ∆η∗(k))

= D1 + D2 + D3 , say.

Similar to the calculations in (2.20), we have

|D1| ≤ C

∑n
t=1 X2

t

n

n−1∑
k=q+1

|γ̌2
η∗(k) − γ̌2

ηo
(k)|

∆η∗(k)∆ηo
(k)

,

|D2| ≤ C

∑n
t=1 X2

t

n

n−1∑
k=q+1

|γ̌ηo
(k) − γ̌η∗(k)|

∆η∗(k)∆ηo
(k)

,

|D3| ≤ C

n−1∑
k=q+1

|γ̌2
ηo

(k) − γ̌2
η∗(k)| .
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Table 1. Sample variances of MCPLE and MPLE for d in the ARFIMA(0,0.2,0)
model for various sample size n over 500 replications.

n 100 400 1,600 6,400
MCPLE 0.1630 0.0758 0.0371 0.0187
MPLE 0.3086 0.2539 0.3188 0.3186

For q ≥ 1 and all sufficiently large n, Cn,q,ηo,η∗ is positive and thus there exists
an ε > 0 such that Cn,q,ηo,η∗ > ε. By the assumption that γθ(·) is summable,
for sufficiently large n there exists an integer q∗ such that |Di| ≤ ε/3 for i =
1, 2, 3. Thus |Dn,q∗,ηo ,η∗ | ≤ ε. It follows that for sufficiently large n, Cn,q∗,ηo,η∗ +
Dn,q∗,ηo,η∗ > 0 and (2.21) follows. In fact, if E is a compact neighborhood of θ∗

that does not cover θo, then (2.21) holds uniformly on θ∗ ∈ E. Therefore, for a
sufficiently large nk, θ̃nk

∈ E and

1
nk

PL((σ̃2
nk

(θ̃nk
), θ̃nk

);Xnk
)≥ 1

nk
PL((σ2

o , θo);Xnk
)>

1
nk

PL((σ̃2
nk

(θ̃nk
), θ̃nk

);Xnk
),

which is a contradiction. Hence θ̃n → θo for each ω ∈ B. It can then be shown
that σ̃2

n(θ̃n) → σ2
o , which establishes the strong consistency.

When
∑∞

k=0 |γθ(k)| = ∞, the remainder term Dn,q,ηo ,η∗ is of order larger
than O(1), meaning that (2.21) may not hold in general. Thus we do not expect
PL to be consistent in this case. Table 1 compares the performance of CPL
and PL for the long-memory ARFIMA(0, d, 0) model with d = 0.2. While the
MCPLE shows a

√
n rate of consistency, the sample variances of the MPLE stay

around the same level as the sample size increases, demonstrating the possibility
of inconsistency of PL when

∑∞
k=0 |γθ(k)| = ∞.

3. Examples

In this section we compare the performance of the maximum likelihood
estimators (MLE) and the maximum consecutive pairwise likelihood estima-
tors (MCPLE) through three simple time series models: AR(1), MA(1) and
ARFIMA(0,d,0).

Example 3.1. Suppose {Xt} follows the AR(1) model,

Xt = φXt−1 + Zt ,

φ ∈ (−1, 1), Zt ∼ IID(0,σ2), and let η = (σ2, φ). The exact log-likelihood



COMMENTS ON PAIRWISE LIKELIHOOD IN TIME SERIES MODELS 269

L(η;Xn) and the consecutive pairwise log-likelihood CPL1(η;Xn) are given by

L(η;Xn) =
n−1∑
t=1

log fη(Xt+1|Xs, s ≤ t) + log fη(X1)

=
n−1∑
t=1

log fη(Xt+1|Xt) + log fη(X1) ,

CPL1(η;Xn) =
n−1∑
t=1

log fη(Xt, Xt+1) =
n−1∑
t=1

log fη(Xt+1|Xt) +
n−1∑
t=1

log fη(Xt) .

Note the similarity between the log-likelihood and the CPL1. Interestingly, MC-
PLE has a closed form expression

φ̂n = ρ̂(1) and σ̂2 = γ̂2(0)(1 − φ̂2
n) ,

where γ̂(0) =
∑n−1

t=1 (X2
t + X2

t+1)/2(n − 1), γ̂(1) =
∑n−1

t=1 XtXt+1/(n − 1), and
ρ̂(1) = γ̂(1)/γ̂(0).

As is well known, (see Brockwell and Davis (1991)), φ̂n = ρ̂(1) is the Yule-
Walker estimator and is asymptotically efficient for estimating φ, so the asymp-
totic relative efficiency (ARE) of the MCPL1 to MLE is identically 1. The ex-
cellent performance of MCPLE can be explained by the fact that both MLE and
MCPLE are asymptotically using the complete and sufficient statistics

∑n
t=1 X2

t

and
∑n

t=2 XtXt−1 to obtain an asymptotically unbiased estimator. This argu-
ment can be extended to a general AR(p) model, thus it is best to use CPLp to
estimate an AR(p) model. In the AR(1) case, as the CPL1 is efficient, there is
no reason to consider CPLk, for k > 1. It is interesting to note, however, that
there is a decrease in efficiency as k increases (see Table 2 and Figure 1a). The
ARE of the CPLk estimator relative to the MLE is smallest for |φ| around 0.5
and approaches 1 as |φ| → 0 or 1.

Example 3.2. Let {Xt} follow the MA(1) model,

Xt = Zt + θZt−1 ,

θ ∈ (−1, 1), Zt ∼ IID(0,σ2). The asymptotic variance of the MLE is σ2(1 − θ2)
(e.g., Brockwell and Davis (1991)). For this model, it does not make sense to use
PL or higher order CPL since Xt and Xt+k are independent for k ≥2. There-
fore we compare CPL1 with CTL2 and CTL3. Figure 1b shows the asymptotic
variance of the four estimators across the parameter θ ∈ (−1, 1). Surprisingly,
in contrast to Example 3.1, the MCPLE and MCTLE gives relatively higher
asymptotic variance than that of the MLE. The asymptotic variance even ap-
proaches infinity near θ = ±1. Although for the MA(1) model the dependence
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Figure 1. Asymptotic variances of MLE and consecutive likelihood estimators
for various models. Fig 1a): φ in AR(1) model. Fig 1b): θ in MA(1) model. Fig
1c): d in ARFIMA(0,d,0) model. Thin-solid-line: MLE. Dash-line: MCPLE.
For Fig 1a) and 1c), Dotted-line: estimator of CPL2. Thick-solid-line: estima-
tor of CPL3. For Fig 1b), Dotted-line: estimator of CTL2. Thick-solid-line:
estimator of CTL3.

Table 2. Asymptotic relative efficiency between CPL and CTL estimators and
MLE for φ in AR(1), θ in MA(1) and d in ARFIMA(0,d,0) models.

AR(1)
φ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CPL1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CPL2 1.000 0.966 0.913 0.889 0.893 0.911 0.933 0.953 0.972 0.987
CPL3 1.000 0.963 0.890 0.831 0.808 0.816 0.848 0.888 0.929 0.966

MA(1)
θ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CPL1 1.000 0.961 0.845 0.671 0.468 0.278 0.135 0.051 0.013 0.001
CTL2 1.000 0.989 0.951 0.890 0.728 0.530 0.313 0.137 0.038 0.004
CTL3 1.000 0.995 0.979 0.940 0.859 0.711 0.491 0.250 0.078 0.009

ARFIMA(0, d, 0)
d 0.01 0.05 0.10 0.15 0.20 0.24 d ≥ 0.25

CPL1 0.627 0.706 0.812 0.894 0.831 0.313 0
CPL2 0.776 0.840 0.901 0.932 0.786 0.264 0
CPL3 0.841 0.890 0.927 0.907 0.725 0.231 0

only exists in consecutive pairs, in contrast to the AR(1) model, MCPLE and
MCTLE are much inferior to the MLE. This example shows the potential large
loss in efficiency using pairwise likelihood, even for short memory models.

Example 3.3. Let {Xt} be the long-memory ARFIMA(0,d,0) model defined by

(1 − B)dXt = Zt , {Zt} ∼ IID(0, σ2) ,

where B is the lag operator and d ∈ (0, 0.5). The asymptotic variance of the
MLE of d is 6/π2 and the convergence rate is

√
n (e.g., Beran (1994)). Since the

convergence rate of MCPLE is
√

n only when d ∈ (0, 0.25), it only makes sense to
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Figure 2. Sample variances of d̂ for MLE and CPL1 of ARFIMA(0,d,0) models
for various n, based on 500 replications. See Example 3.3. Solid-line: CPL1.
Dash-line: MLE.

compare the asymptotic variance of the three estimators in this range (see Figure
1c). Even though the dependence of the process is long and the log-likelihood
function is not at all similar to the CPL function, the asymptotic variances of
MLE and MCPLE are very close in the range d ∈ (0, 0.2).

As the convergence rate of MCPLE is slower than
√

n when d ∈ [0.25, 0.5),
MCPLE is less efficient than the MLE. Nevertheless, we explored the empirical
variance of the estimators via simulation. Figure 2 shows the sample variance
of the MLE and MCPLE for the cases d = {0.05, 0.1, 0.15, . . . , 0.4, 0.45} and
sample sizes n = {100, 400, 1,000, 3,000}, each based on 500 replications. From
the figures, the sample variances decrease as n increases for all three estimators.
This demonstrates the consistency of the estimators. As explained by Theorem
2.2, the curve bends upward when d ≥ 0.25 as n increases as a result of the
different convergent rates between d < 0.25 and d ≥ 0.25. Note that even for
large sample size n =3,000, the variance of MCPLE is only about two times
higher than that of MLE in the range d = [0.25, 0.5). Since the computation of
MCPLE can be done much more efficiently than the MLE, the MCPLE might
be used as a preliminary estimator.

From the three examples shown above, we note that MCPLE achieves the
same efficiency as MLE in the AR(1) model. For the MA(1) model, the efficiency
of MCPLE is poor with ARE values ranging from 1 to 0. On the other hand,
for long-memory models such as ARFIMA models with d ∈ (0, 0.25), the loss in
efficiency of MCPLE is slight with ARE values around 0.8. For cases of ARFIMA
models with d ∈ (0.25, 0.5), the ARE is 0. So while MCPLE may work well for
many time series models, its performance can suffer for both short-memory (e.g.,
MA(1)) and long-memory (e.g., ARFIMA with d ∈ (0.25, 0.5)) models.
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Example 3.4. In this example we consider a nonlinear time series model for
time series of counts. The Poisson-autoregressive (PAR) model assumes that
there is a latent autoregressive process αt underlining the observation Yt such
that given the αt process, the Yt are independent and Poisson-distributed with
mean λt = eβ+αt . The conditional probability density of Yt is described by

p(yt|αt; ψ) = e−eβ+αt e(β+αt)yt

yt!
αt = φαt−1 + ηt ,

where {ηt} ∼ IIDN(0, σ2), |φ| < 1, and ψ = {β, φ, σ2} is the parameter vector.
Let the observed data be yn = (y1, . . . , yn) and ααα = (α1, . . . , αn). The exact
likelihood is given by

L(ψ;yn) =
∫ n∏

t=1

p(yt|αt; ψ)fψ(ααα)dααα, (3.1)

where fψ(ααα) is the joint distribution of ααα. Since the integral in (3.1) is high
dimensional, it is infeasible to compute the exact likelihood directly. Computa-
tional intensive simulation methods such as importance sampling or MCMC have
been used to estimate the likelihood. (see Davis and Rodriguez-Yam (2005)). We
compare the result of MCPLE to the estimation using likelihood approximation
in Davis and Rodriguez-Yam (2005). The consecutive pairwise log-likelihood is
given by

CPL(ψ;yn) = log

[
n−1∏
t=1

∫ ∫
p(yt|αt; ψ)p(yt+1|αt+1; ψ)fψ(αt, αt+1)dαtdαt+1

]
.

Here the computation reduces to n− 1 double integrals, which can be efficiently
evaluated by numerical methods such as Gauss-Hermite quadrature.

Davis and Rodriguez-Yam (2005) studied the performance of a likelihood-
approximation based estimator called AIS, which works as follows. After com-
puting a posterior mode α∗, the likelihood L(ψ,yn) can be expressed as

L(ψ;yn) = La(ψ;yn, α∗)Era(ψ) ,

where La(ψ;yn, α∗) is an approximation of L(ψ;yn) with closed form expres-
sion and Era(ψ) is the associated approximation error. One can estimate ψ by
maximizing La(ψ;yn, α∗) numerically. Alternatively, Era(ψ) can be linearized
around the maximizer of La(ψ;yn, α∗) and then estimated using importance
sampling. Putting these two pieces together we can produce a quick simulation
procedure for optimizing an approximation to L(ψ;yn).
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Table 3. Comparison of AIS and CL estimates for PAR models. n = 500 and
500 replications. rmse stands for root mean square errors.

β φ σ β φ σ β φ σ
TRUE -0.613 -0.500 1.236 -0.613 0.500 1.236 -0.613 0.900 0.622
AIS-biases -0.031 0.022 0.052 -0.056 -0.005 0.094 -0.001 0.010 0.010
AIS-rmse 0.093 0.063 0.100 0.143 0.065 0.120 0.294 0.029 0.058
CPL1-biases 0.105 -0.005 -0.148 0.120 0.004 -0.134 0.842 0.019 -0.389
CPL1-rmse 0.095 0.065 0.134 0.142 0.057 0.128 0.199 0.050 0.141
CPL2-biases 0.101 -0.001 -0.137 0.110 -0.005 -0.110 0.483 -0.016 -0.105
CPL2-rmse 0.130 0.077 0.174 0.184 0.079 0.173 0.466 0.061 0.184
CPL3-biases 0.096 0.004 -0.128 0.104 -0.006 -0.129 0.477 -0.016 -0.109
CPL3-rmse 0.134 0.074 0.162 0.187 0.080 0.164 0.470 0.064 0.182

TRUE 0.150 -0.500 0.619 0.150 0.500 0.619 0.150 0.900 0.312
AIS-biases -0.004 0.000 0.009 -0.001 0.012 0.010 -0.001 0.010 0.001
AIS-rmse 0.049 0.089 0.059 0.073 0.091 0.061 0.148 0.037 0.048
CPL1-biases -0.001 -0.004 -0.003 -0.001 -0.003 -0.001 -0.029 -0.021 0.023
CPL1-rmse 0.041 0.061 0.079 0.060 0.055 0.073 0.421 0.076 0.199
CPL2-biases -0.001 0.004 -0.003 -0.002 -0.014 0.005 0.031 0.006 -0.055
CPL2-rmse 0.055 0.077 0.098 0.090 0.071 0.103 0.256 0.076 0.129
CPL3-biases 0.005 0.003 -0.003 0.003 -0.012 -0.001 0.035 -0.000 -0.034
CPL3-rmse 0.058 0.075 0.099 0.096 0.072 0.096 0.252 0.043 0.109

TRUE 0.373 -0.500 0.220 0.373 0.500 0.220 0.373 0.900 0.111
AIS-biases 0.005 -0.065 0.012 0.005 0.123 0.003 0.003 0.078 -0.016
AIS-rmse 0.039 0.383 0.088 0.045 0.393 0.083 0.060 0.231 0.062
CPL1-biases 0.009 -0.108 -0.053 0.006 0.076 -0.042 0.146 0.061 -0.102
CPL1-rmse 0.042 0.228 0.110 0.051 0.218 0.106 0.123 0.032 0.013
CPL2-biases 0.006 -0.071 -0.037 -0.001 0.057 -0.032 0.113 0.067 -0.010
CPL2-rmse 0.050 0.233 0.110 0.065 0.222 0.101 0.224 0.036 0.015
CPL3-biases 0.002 -0.045 -0.022 0.006 0.049 -0.026 0.109 0.068 -0.098
CPL3-rmse 0.051 0.209 0.094 0.066 0.219 0.097 0.259 0.029 0.021

A simulation experiment was conducted to compare CPL with AIS in the
same setting as Table 5 in Davis and Rodriguez-Yam (2005). The results are
shown in Table 3. In computing the double integrals in CPL, Gauss-Hermite
quadrature with 10 nodes in each dimension was used. From the table, we notice
that CPL1 is comparable to AIS. In particular, for the cases where φ = 0.5
or −0.5, CPL1 has a smaller root-mean-square error (rmse) than AIS for the
estimates of φ. On the other hand, CPL2 and CPL3 do not appear to outperform
CPL1; they have higher rmse than CPL1 in most of the estimates in the cases
where φ = 0.5 or −0.5. However, MCPLE has poor performance for the cases
where φ = 0.9.
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In the Poisson-Autoregressive model, where computation of the likelihood
is not possible without resorting to simulation methods, the pairwise likelihood
procedure is an attractive alternative. The performance of the MCPLE is com-
petitive and the theory behind the CPL (consistency and asymptotic normality)
are relatively straightforward to derive using standard arguments with mixing
conditions. Moreover, it is possible to give estimates of the standard error of the
MCPLE. Let

cplt(ψ) = cpl(ψ; yt, yt+1)

= log
[∫ ∫

p(yt|αt; ψ)p(yt+1|αt+1; ψ)fψ(αt, αt+1)dαtdαt+1

]
.

Note that CPL1(ψ;yn) =
∑n−1

t=1 cplt(ψ). Let ψo and ψ̂ be the true value and the
CPL1 estimator of the parameter, respectively. Using a Taylor’s series expansion
on CPL′

1(ψ̂;yn, ) around ψo shows that
√

n(ψ̂−ψo) is asymptotically equivalent
to

−
( 1

n

n−1∑
t=1

cpl′′t (ψo)
)−1 1√

n

n−1∑
t=1

cpl′t(ψo) . (3.2)

Since {cpl′′t (ψo)} is an ergodic sequence, we have

1
n

n−1∑
t=1

cpl′′t (ψo)
a.s.−→ E(cpl′′1(ψo)) .

Also, since {cpl′t(ψo)} is a stationary, strongly mixing sequence, (1/
√

n)
∑n−1

t=1

cpl′t(ψo) is asymptotically normal with covariance matrix given by

∞∑
n=−∞

γ(n) ,

where γ(n) is the auto-covariance matrix of {cpl′t(ψo)}. A consistent estimator
of this quantity is

rn∑
k=−rn

(1 − |k|
rn

)γ̂(k) ,

where rn → ∞, rn/n → 0 and

γ̂(k) =
1
n

n−1∑
t=k+1

cpl′t(ψ̂)cpl′Tt−k(ψ̂) .
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Table 4. MCPLE and AIS estimates for the polio data. Std err stands for the
standard error of the estimates.

Parameter β1 β2 β3 β4 β5 β6 φ σ2

AIS 0.239 -3.746 0.161 -0.480 0.414 -0.011 0.661 0.272
Std err 0.285 2.867 0.151 0.164 0.122 0.127 0.209 0.112
CPL1 0.303 -4.738 0.135 -0.492 0.397 -0.016 0.492 0.372
Std err 0.229 2.531 0.116 0.134 0.101 0.147 0.206 0.136

Thus the asymptotic variance of
√

n(ψ̂ − ψo) can be estimated by(
1
n

n−1∑
t=1

cpl′′t (ψ̂)

)−1
 rn∑

k=−rn

(1 − |k|
n

)γ̂(k)

(
1
n

n−1∑
t=1

cpl′′t (ψ̂)

)−1

. (3.3)

Example 3.5. In this example we apply the MCPLE to the Poisson AR model
to the well-known Polio data set consisting of the monthly number of U.S. cases
of poliomyelitis from 1970 to 1983. We compare CPL and AIS using the same
model as in Davis and Rodriguez-Yam (2005), in which the distribution of Yt,
given the state αt is Poisson with rate λt = eαt+xT

t β. Here βT := (β1, . . . , β6), xt

is the vector of covariates given by

xt
T =

(
1,

t

1,000
, cos(2π

t

12
), sin(2π

t

12
), cos(2π

t

6
), sin(2π

t

6
)
)
,

and the state process {αt} is assumed to follow an AR(1) model. The vector of
parameters is ψ = (β1, . . . , β6, φ, σ2). Table 4 shows the parameter and standard
errors estimates of AIS and CPL1. While the asymptotic variance of the AIS
estimates are computed by bootstrap, the asymptotic variance of CPL1 can be
computed efficiently using (24) with rn =

√
n ≈ 13. The estimates of CPL1

are comparable to that of AIS. In particular, only β̂4 and β̂5 are significantly
different from zero for the regression coefficient estimates under both methods.
Besides, the estimated variances of the latent process {αt} for AIS and CPL1 are
in close agreement, 0.272/(1 − 0.6612) = 0.483 and 0.372/(1 − 0.4922) = 0.491,
respectively. The standard error for the parameter estimates in AIS and CPL1

are also comparable. CPL2 and CPL3 produce similar parameter estimates
as CPL1, but their standard error estimates are considerably more difficult to
compute.
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