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Abstract: An outcome-dependent enriched (ODE) sample results from adding a

random sample to a stratified sample, where the stratification is based on levels of

a categorical outcome. In biometrics, such a sample can be generated by combining

data from a cohort study with data from an independent case-control study. Sup-

pose that the probability of an outcome is determined by covariates according to

a given model. For the case where the marginal distributions of the outcome and

predictors are both unknown, Morgenthaler and Vardi (1986) proposed a weighted

likelihood (WL) method to estimate the model parameters from an ODE sample.

Here, we derive and study the asymptotic properties of the WL estimator. Simula-

tion and an asymptotic comparison demonstrate that when the presumed model is

correct, the performance of the WL method is often comparable to the asymptoti-

cally efficient profile likelihood (PL) method. If the model is misspecified, the WL

method has a nice interpretation and is more robust than the PL method. This

leads us to recommend use of the WL method, especially for the situation where

the fitness of the presumed model is in doubt and the sample size is large.
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1. Introduction

Consider a categorical outcome variable Y whose distribution depends on
a vector X of covariates according to a model specified up to an unknown pa-
rameter θ. Assume that (i) the marginal probability of Y is unknown; (ii) the
marginal mass/density function of X is unknown and free of θ. Although θ can
be estimated from a random sample using the likelihood method, the variance
of its maximum likelihood estimator (MLE) is large if some outcome levels are
rarely observed. This motivates a stratified sampling design based on values of
Y . For example, Doll and Hill (1950) investigated the risk factors for lung can-
cer by querying hospital patients admitted with lung cancer (case) and those
without cancer (control). The other advantage of Y -stratified sampling comes
from its cost. In practice, units in the population are often naturally grouped
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according to their outcome levels. Manski and Lerman (1977) therefore recom-
mended studying the choice of transportation modes by interviewing travelers
at a train station and auto drivers at a parking lot, rather than phoning peo-
ple at home. However, statistical inference from a Y -stratified sample is very
limited. For a binomial outcome, the intercept term in the logit linear model
is not identifiable from a Y -stratified sample (Prentice and Pyke (1979); Chen
(2003)). Depending on whether X is discrete or continuous, the intercept term in
probit and complementary-log-log linear models is either unidentifiable or poorly
determined (Cosslett (1993, Sec. 3.5); Chen (2003)). As a result, it is impossible
to predict Y given X from a Y -stratified sample. The situation is even worse for
a multinomial outcome. Only the baseline-category logit model (Agresti (2002,
Sec. 7.1.1)) is feasible. Applying cumulative logit models for an ordinal outcome
frequently causes the likelihood function to fail to converge or to carry a large
estimation bias.

When the outcome levels are not very rare, problems with model selection
and parameter estimation can be ameliorated by enriching the Y -stratified sample
with an independent random sample of X and Y . In econometrics, Y often cor-
responds to a consumer’s choice. Cosslett (1981a, 1993) defines the combination
of random and Y -stratified samples as a choice-based/endogenously-stratified
enriched sample. In biometrics, Y usually represents a patient’s health status.
The combined sample is known as an outcome-dependent two-component sample
(Zhou et al. (2002); Wang and Zhou (2006)). To promote cross-communication
between these two disciplines, we refer to such a combined sample as Outcome-
Dependent Enriched (ODE). It is worth mentioning that even if the outcome has
some rare levels, ODE sampling is still feasible as long as the sample size for
the random sample component is sufficiently large. For instance, Doll started a
perspective study for the effect of smoking on the mortality of British doctors in
1951. Among those male participants, over twenty-five thousand passed away by
2001, and 1,052 of these deaths were due to lung cancer (Doll et al. (2004, Table
1)). Combining this cohort data with Doll and Hill’s case-control data yields an
ODE sample.

Many semiparametric likelihood methods have been proposed to estimate
θ from a two-stage outcome-dependent (TSOD) sample. The first stage of this
sampling scheme collects a random sample of Y and, perhaps, a partial mea-
surement of X, to define strata. The second stage draws a stratified sample
from the first-stage sample and measures X in detail. For a summary of these
methods, see Lawless, Kalbfleisch and Wild (1999). Note that the ODE sam-
ple considered here is different from the TSOD sample because the random and
stratified components in the ODE sample are independent. There are two pub-
lished likelihood-based methods for estimating θ from an ODE sample when no
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prior knowledge about the marginal distributions of X and Y is available. One
is Cosslett’s (1981a) profile likelihood (PL) method. The other is Morgenthaler
and Vardi’s (1986) weighted likelihood (WL) method where the weights are based
on Vardi’s (1985) nonparametric MLE (NPMLE) of the joint distribution of X
and Y . Consistency, efficiency, and asymptotic normality were obtained for the
PL estimator (Cosslett (1981b)). However, Morgenthaler and Vardi (1986) only
sketched a derivation of the limiting normality of the WL estimator and their
heuristic approach leads to the omission of a positive-semi-definite term that can
result in severely underestimated standard errors (SE), as noted in Remarks 1
and 2 after the proofs of Lemma 1 and Theorem 1, respectively. One of our main
contributions is to rigorously derive the limiting distribution of the WL estimator
via a new technique based on conditioning. Results of this new approach allow
us to compare the WL method with the asymptotically efficient PL method and
provide practitioners with some guidance about their performance. Because they
often behave very similarly when the presumed model is correct, and because the
WL estimator is more robust to model misspecification, we recommend its usage,
especially when fitness of the presumed model is uncertain and the sample size
is large.

Section 2 specifies the WL objective function. In Section 3, we present the
asymptotic properties of its MLE. Section 4 evaluates the WL and PL methods
under properly specified generalized linear models. Section 5 studies the robust-
ness of these two methods when the presumed model is incorrect. In Section 6,
we illustrate these two methods using an ODE sample drawn from a national
survey. Additional comments on the analysis of an ODE sample are made in
Section 7.

2. Semiparametric Likelihood Functions

Suppose that Y has (K + 1) levels and its distribution is determined by X
according to a working model of the form Pr(Y = k | X = x) = ρ(k,x; θ),
k = 0, . . . ,K. For convenience, we take X to be a continuous random vector
with values in Euclidean space, denoted by X . Accordingly, all densities are
with respect to Lebesgue measure on X . The following notation is used to
describe the actual population, whether or not the model is correct:

g(x) : the marginal density function of X;

f(x, y) : the joint distribution of X and Y .

Statistical inference about θ is made from an ODE sample of size N , denoted by
{(Xi, Yi)}N

i=1. The following notation is used to describe this sample:

R = {Indices of units that belong to the random sample component};
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nR = Size of R;

m+k =
∑

i∈R I(Yi = k),
∑K

k=0 m+k = nR;

Sk = {Indices of units in the stratified sample that belong to stratum with

Y = k};
nk = Size of Sk, nR +

∑K
k=0 nk = N .

Note that for i ∈ Sk, Yi ≡ k; while for i ∈ R, Yi is a categorical random variable
with (K + 1) possible levels. The PL method estimates θ by first expressing the
full log-likelihood as

lN (θ, g(·)) =
∑
i∈R

log(ρ(Yi,Xi; θ)g(Xi)) +
K∑

k=0

∑
i∈Sk

log
(
ρ(Yi,Xi; θ)

g(Xi)
π+k

)
. (2.1)

Here, π+0, . . . , π+K ∈ (0, 1) denote the marginal probabilities of Y , and
∑K

k=0 π+k

= 1. They are unknown and considered to be nuisance parameters. The pre-
sumed model connects θ and g(x) with the restriction π+k =

∫
X f(x, k)dx =∫

X ρ(k,x; θ)g(x)dx, k = 0, . . . ,K. Under a nonparametric framework, the den-
sity function of continuous X is estimated by a discrete distribution, which puts
probability mass over the observed data points. Fixing ν = (θ, π+1, . . . , π+K),
Cosslett (1981a) showed that (2.1) is maximized at g̃(x,ν) = (NT (x; ν))−1∑N

i=1 I(Xi = x), where

T (x;ν) =
nR

N
+

K∑
k=0

[nk

N

ρ(k,x; θ)
π+k

]
.

Recall that the ODE sample arises from combining a random sample of X and Y

with a Y -stratified sample of X. Regarding X, this is equivalent to mixing g(x)
and f(x, y; θ)/Pr(Y = k) with weights nR/N and nk/N , k = 0, . . . ,K. Provided
the assumed working model is correct, the resulting mixture distribution of X
can be represented by g(x)T (x; ν). So, a heuristic rational for g̃(x; ν) is that it is
the empirical estimate of g(x)T (x; ν), N−1

∑N
i=1 I(X = x), divided by T (x; ν).

Replacing g(x)in (2.1) with g̃(x; ν), the final objective function of the PL method
is

lPN (ν) =
∑
i∈R

log
(ρ(Yi,Xi; θ)

T (Xi; ν)

)
+

K∑
k=0

∑
i∈Sk

log
( ρ(Yi,Xi; θ)

T (Xi; ν)π+k

)
. (2.2)

Cosslett (1981b) proved that the PL estimator of θ is efficient in the sense that it
is consistent and its asymptotic variance achieves the Cramér-Rao lower bound
for all asymptotically unbiased estimators under the same restrictions.

Morgenthaler and Vardi (1986) recognized that the stratified sample com-
ponent in an ODE sample can be viewed as a biased sample where the biasing
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is caused by truncation on Y . They applied Vardi’s (1985) general methodology
for analyzing biased samples and derived the NPMLE of f(x, Y = k) = Pr(Y =
k)f(x | Y = k) to be

f̃(x, y) =
m+k

nR

∑N
i=1 I(Xi = x, Yi = k)

nk + m+k
. (2.3)

An intuitive explanation for (2.3) is that the first term estimates Pr(Y = k) solely
based on the random sample component, and the second term pools information
from the random and the stratified components together to estimate f(x | Y =
k). Let Θ be the parameter space of θ. It is well known that the true value of θ,
denoted by θ∗, minimizes the Kullback-Leibler divergence between f(x, y) and
ρ(y,x; θ)g(X) (Kullback (1997)), i.e.,

θ∗ ∈ argmin
θ∈Θ

{ K∑
k=0

∫
X

log
( f(x, k)

ρ(k,x; θ)g(x)

)
f(x, k)dx

}
.

By replacing f(x, y) with Vardi’s NPMLE of f(x, y) given at (2.3), it naturally
follows that one should maximize the weighted log-likelihood type function

lN (θ) =
N∑

i=1

{f̃(Xi, Yi) log(ρ(Yi,Xi; θ)g(Xi))}.

Because g(x) is free of θ, we can estimate θ without specifying a parametric form
for g(x). The WL objective function is

lWN (θ) =
N∑

i=1

K∑
k=0

{m+k

nR

I(Yi = k)
nk + m+k

log(ρ(Yi,Xi; θ))
}

. (2.4)

Weighting is customary in analyzing complex survey data, where a pseudo log-
likelihood function is adjusted by the sampling weight of each unit. Unlike the
pseudo likelihood approach, the weights in the WL method are based on Vardi’s
NPMLE of f(x, y). According to Vardi (1985), necessary and sufficient conditions
for the NPMLE of f(x, y) to exist under ODE sampling are that

(i) a random sample component is present in the ODE sample, i.e., nR 6= 0;
(ii) the random sample component contains all levels of Y , i.e., m+k 6= 0 for all

k = 0, . . . ,K.

These conditions also serve as the prerequisites for the application of the WL
method.

The WL method is easy to interpret because, as noted before, it minimizes
the Kullback-Leibler divergence between the model and the empirical joint dis-
tribution of X and Y . The WL method also benefits from its computational
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ease. Note that (2.4) has only θ as its argument, and a model-free estimate of
π+k can be obtained from (2.3), namely π̃+k = m+k/nR. In contrast, the PL
method estimates π+1, . . . , π+K and θ simultaneously using the presumed model.
It is interesting to see that when the ODE sample contains only a random sam-
ple component, both the WL and PL objective functions reduce to the standard
likelihood function from a random sample.

3. Asymptotic Properties

Because application of the WL method requires the random sample com-
ponent be present in the ODE sample, a crucial restriction in our asymptotic
derivation is that as N → ∞, nR/N → λR with λR 6= 0. Let the generic
1 × q parameter vector θ range over the parameter space Θ, an open subset of
q-dimensional Euclidean space. Let θ̂W stand for the estimator that maximizes
(2.4). Sufficient conditions for deriving the asymptotic properties of θ̂W can be
sorted into three groups. The first conditions, for all k = 0, . . . ,K, θ ∈ Θ, are
common in general likelihood theory.

(C1) The first- and second-partial derivatives of ρ(k,x; θ) with respect to θ,
denoted by the 1× q vector ∇ρ(k,x;θ) and the q × q matrix ∇2ρ(k,x; θ),
exist and are continuous a.e. with respect to g(x). For any constant q × 1
vector a,

∫
X |∇ log(ρ(k,x; θ))a|3f(x, k)dx < ∞.

(C2) For any triplet of elements in θ, (θi, θj , θl),
∫
X |∂3 log(ρ(k,x; θ))/∂θi∂θj∂θl|

f(x, k)dx < ∞.

The second conditions apply specifically to categorical outcomes and require that
ρ(k,x; θ), k = 0, . . . ,K, be a valid probability model. In particular,

(C3) For all k = 0, . . . ,K, θ ∈ Θ, 0 < ρ(k,x; θ) < 1 and
∑K

k=0 ρ(k,x;θ) = 1
a.e. with respect to g(x).

(C4) The model is identifiable, i.e., if θ1 6= θ2 and θ1,θ2 ∈ Θ, then

K∑
k=0

∫
X

log
(ρ(k,x; θ2)

ρ(k,x; θ1)

)
ρ(k,x;θ1)g(x)dx 6= 0.

The identifiability condition used by Cosslett (1981b) requires that if θ1 6= θ2 and
θ1,θ2 ∈ Θ, there must be a region L ⊆ X such that for some k ∈ {0, . . . ,K},∫

L
ρ(k,x; θ1)g(x)dx 6=

∫
L

ρ(k,x; θ2)g(x)dx.

By Jensen’s Inequality, Cosslett’s condition implies (C4). The following condition
establishes the asymptotic variance of θ̂W .
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(C5) For all k = 0, . . . ,K the components of the 1 × q vector ∇ρ(k,x; θ) are
linearly independent a.e. with respect to g(x).

Conditions (C1)−(C5) are comparable to what Cosslett (1981b) used to obtain
consistency of the PL estimator. As Cosslett pointed out, these conditions are
not as restrictive as they may first appear. For example, if we choose ρ(k,x; θ),
k = 0, . . . ,K, to be a generalized linear model with appropriate parameterization,
these conditions simplify into moment regularities.

Taking the first- and second-partial derivatives at (2.4) with respect to θ

gives rise to the score type function ∇lWN (θ) and the Hessian function ∇2lWN (θ).
They are

∇lWN (θ) =
N∑

i=1

K∑
k=0

{m+k

nR

I(Yi = k)
nk + m+k

∇ log(ρ(Yi,Xi; θ))
}

,

∇2lWN (θ) =
N∑

i=1

K∑
k=0

{m+k

nR

I(Yi = k)
nk + m+k

∇2 log(ρ(Yi,Xi; θ))
}

.

Each term inside the summands here depends on m+k, Yi and Xi. Obtaining the
asymptotic distribution of ∇lWN (θ) is challenging because it is not a sum of inde-
pendent terms. However, we recognize that conditional on YN = (Y1, . . . , Yn)′,
the vector MN = (m+0, . . . ,m+K)′ is a constant and ∇lWN (θ) becomes a sum of
independent, but not identical, functions of Xi. Proving the asymptotic normal-
ity of ∇lWN (θ) at θ∗, the true value of θ, involves first applying Liapounov’s Cen-
tral Limit Theorem (CLT) for triangular arrays (Lehmann (1999, Thm. 2.7.2))
to the conditional distribution of YN , and then using dominated convergence to
remove the conditioning. The following lemma summarizes our findings. Note
that the operator ‘×2’ stands for the outer product of a vector with itself and 0q

stands for 1 × q a vector of zeros.

Lemma 1. Suppose that the outcome variable Y has (K + 1) possible levels,
its joint distribution with predictor X is f(x, y), and Pr(Y = k | X = x) =
ρ(k,x; θ∗), θ∗ ∈ Θ. As N → ∞, nR/N → λR, λR 6= 0, and nk/N → λk,
k = 0, . . . ,K. Set

Ak(θ) =
∫

X
∇ log(ρ(k,X;θ))f(x, k)dx,

Bk(θ) =
∫

X
{∇ log(ρ(k,X; θ))}2f(x, k)dx,

π∗
+k = Pr(Y = k) =

∫
X

f(x, k)dx,

(3.1)
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Va(θ) =
K∑

k=0

{ λk

λRπ∗
+k(λk + λRπ∗

+k)
Ak(θ)×2

}
,

Vb(θ) =
K∑

k=0

{ π∗
+k

λk + λRπ∗
+k

Bk(θ)
}

,

H(θ) = −
K∑

k=0

Bk(θ).

Consider the likelihood function given at (2.4). If (C1) and (C3) are satisfied,
then as N → ∞,

√
N∇lWN (θ∗) D−→ Normal(0q,Va(θ∗) + Vb(θ∗)),

∇2lWN (θ∗) a.e.−→ H(θ∗).

Proof. When we condition on YN = (Y1, . . . , Yn)′, MN = (m+0, . . . ,m+K)′ is a
constant and there are (nk + m+k) independent X terms in the ODE sample at
the Y = k level. First, we employ Liapounov’s CLT and the Cramer-Wold device
to establish the asymptotic normality of ∇lWN (θ), for any θ ∈ Θ, conditioning on
YN . Note that, ∇lWN (θ) can be re-expressed as

∇lWN (θ) =
K∑

k=0

[ m+k

nR(nk + m+k)

{ ∑
i∈R,Yi=k

∇ log(ρ(k,Xi; θ))

+
∑
i∈Sk

∇ log(ρ(k,Xi;θ))
}]

.

Under (C1), the conditional mean and variance of ∇lWN (θ) are

E(∇lWN (θ) | YN ) =
K∑

k=0

{m+k

nR
E(∇ log(ρ(k,X; θ)) | Y = k)

}}
=

K∑
k=0

{ m+k

nRπ∗
+k

Ak(θ)
}

,

Var (∇lWN (θ) | YN ) =
K∑

k=0

{(m+k

nR

)2 1
nk + m+k

Var (∇ log(ρ(k,X; θ)) | Y = k)
}

=
K∑

k=0

[(m+k

nR

)2 1
nk + m+k

{ 1
π∗

+k

Bk(θ) − 1
(π∗

+k)
2
Ak(θ)×2

}]
.
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Let a be any q × 1 non-zero vector of constants. To apply Liapounov’s CLT, we
examine the third moment of those terms summed by ∇lWN (θ)a. Set

U(∇lWN (θ)a | YN )

=
K∑

k=0

{(m+k

nR

)3 1
(nk + m+k)2

E
(∣∣∣∇ log(ρ(k,X;θ))a − 1

π∗
+k

Ak(θ)a
∣∣∣3 | Y = k

)}
.

As N → ∞, we have

NVar (∇lWN (θ) | YN ) = Vb(θ) −
K∑

k=0

{ 1
λk + λRπ∗

+k

Ak(θ)×2
}

+ O(1),

N2U(∇lWN (θ)a | YN ) =
K∑

k=0

{ (π∗
+k)

3

(λk + λRπ∗
+k)

2
E

(∣∣∣∇ log(ρ(k,X; θ))a

− 1
π∗

+k

Ak(θ)a
∣∣∣3 | Y = k

)}
+ O(1).

According to Liapounov’s CLT (Lehmann (1999, Thm. 2.7.2)) and Slutsky’s
Theorem,

√
N

{
∇lWN (θ)a − E(∇lWN (θ)a | YN )

}
| YN

D−→ Normal
(
0q, a′

[
Vb(θ) −

K∑
k=0

{ 1
λk + λRπ∗

+k

Ak(θ)×2
}]

a
)
.

The Dominated Convergence Theorem allows us to remove the conditioning on
YN . An application of the Cramer-Wold theorem (Lehmann (1999, Thm. 5.1.8))
then results in

√
N

{
∇lWN (θ) − E(∇lWN (θ) | YN )

}
D−→ Normal

(
0q,Vb(θ) −

K∑
k=0

{ 1
λk + λRπ∗

+k

Ak(θ)×2
})

. (3.2)

Condition (C3) and the fact that Pr(Y = k | X = x) = ρ(k,x;θ∗) imply that, at
θ = θ∗,

K∑
k=0

Ak(θ∗) = 0q,

K∑
j,k=0;
j 6=k

Ak(θ∗)′Aj(θ∗) = −
K∑

k=0

Ak(θ∗)×2.
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Because E(∇lWN (θ) | YN ) is a linear combination of the multinomial vector MN ,
we have

E(E(∇lWN (θ∗) | YN )) =
K∑

k=0

Ak(θ∗) = 0q,

Var (E(∇lWN (θ∗) | YN ))

=
K∑

k=0

{Var (m+k)
(nRπ∗

+k)
2
Ak(θ∗)×2

}
+

K∑
j,k=0;
j 6=k

{Cov (m+k,m+j)
(nR)2π∗

+kπ
∗
+j

Ak(θ∗)′Aj(θ∗)
}

=
1

nR

K∑
k=0

{1 − π∗
+k

π∗
+k

Ak(θ∗)×2
}
− 1

nR

K∑
j,k=0;
j 6=k

{
Ak(θ∗)′Aj(θ∗)

}

=
1

nR

K∑
k=0

{ 1
π∗

+k

Ak(θ∗)×2
}

and, most importantly,

√
NE(∇lWN (θ∗) | YN ) D−→N

(
0q,

1
λR

K∑
k=0

{ 1
π∗

+k

Ak(θ)×2
})

. (3.3)

Note that E(∇lWN (θ∗) | YN ) is an orthogonal projection of ∇lWN (θ∗) onto the
sample space of YN . It then follows from (3.2) and (3.3) that

√
N∇lWN (θ∗) D−→Normal

(
0q,Va(θ∗) + Vb(θ∗)

)
.

Regarding ∇2lWN (θ), the uniform convergence of (2.3) to the joint distribution of
X and Y (Vardi (1985)) implies that, at θ = θ∗,

∇2lWN (θ∗) a.e.−→
K∑

k=0

∫
X

∇2 log(ρ(k,x; θ∗))f(x, k)dx.

Because f(x, k) = ρ(k,x;θ∗)g(x), the right-hand side of the above is

K∑
k=0

∫
X

∇2ρ(k,x; θ∗)g(x)dx −
K∑

k=0

∫
X
{∇ log(ρ(k,x; θ∗))}×2f(x, k)dx

= −
K∑

k=0

Bk(θ∗) ≡ H(θ∗).

This completes the proof.
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Remark 1. Recall that π∗
+k, the marginal probability of Y , is unknown. From

the above proof, we observe that its model-free estimator π̃+k = m+k/nR con-
tributes to the variance of

√
N∇lWN (θ∗). Morgenthaler and Vardi (1986) over-

looked the randomness of π̃+k and incorrectly derived the asymptotic variance
of

√
N∇lWN (θ∗) to be Vb(θ∗). Moreover, even if one could replace π∗

+k with π̃+k,
Var (

√
N∇lWN (θ∗)) should be

Vb(θ∗) −
K∑

k=0

{ 1
λk + λRπ∗

+k

Ak(θ∗)×2
}

+ o(1).

Since {Ak(θ∗)′Ak(θ∗)}K
k=0 are all positive-semi-definite matrices, Morgenthaler

and Vardi’s formula underestimates the asymptotic variance of
√

N∇lWN (θ∗).
When λR = 1, the ODE sample becomes a random sample. In this case,

Va(θ∗) is a square matrix of zeros and H(θ∗) = −Vb(θ∗). The standard like-
lihood approach thus requires only H(θ∗) be full-rank (Rao (1973, Sec. 5.e.2)).
To accommodate ODE sampling, we impose the stronger condition (C5) so that
each Bk(θ∗), k = 0, . . . ,K, is positive-definite. This allows H(θ∗) to be negative-
definite and hence, invertible. Application of Lemma 1 and Rao’s general likeli-
hood theory (Rao (1973, Sec. 5.e.2)) yields the following theorem.

Theorem 1. Suppose that f(x, y) = ρ(y,x; θ∗)g(x) and θ∗ is in the interior of
the parameter space Θ. As N → ∞, ng/N → λR, λR 6= 0, and nk/N → λk,
k = 0, . . . ,K. If (C1)−(C5) are satisfied, the MLE at (2.4), θ̂W , satisfies

√
N(θ̂W − θ∗) D−→Normal(0q,Σ(θ∗)),

where Σ(θ∗) = H(θ∗)−1{Va(θ∗) + Vb(θ∗)}H(θ∗)−1 with H(θ∗), Va(θ∗), and
Vb(θ∗) as in Lemma 1.

Proof. Since Theorem 1 follows from Lemma 1 along fairly well-known lines,
we only sketch out the steps involved in its proof. Our derivation relies heavily
on the fact that f̃(x, y) at (2.3) converges uniformly to f(x, y) (Vardi (1985)).
Consequently,

lWN (θ)
uniform−→

K∑
k=0

∫
X

log(ρ(k,x;θ))f(x, k)dx ≡ lW (θ).

It is easy to verify that under (C1) and (C3), ∇lW (θ∗) = 0q and ∇2lW (θ∗) =
H(θ∗). Condition (C5) implies that H(θ∗) is negative-definite. Thus, θ∗ must
maximize lW (θ). Conditions (C1) and (C4) imply that θ̂W , the estimator that
maximizes lWN (θ), exists a.e. and converges a.e. to θ∗. A Taylor series expansion
of ∇lWN (θ̂W ) at θ∗ yields

∇lWN (θ̂W ) = ∇lWN (θ∗) + (θ̂W − θ∗)∇2lWN (θ̆), (3.4)
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where θ̆ = γθ∗ + (1− γ)θ̂W for some γ ∈ [0, 1]. Obviously, θ̆
a.e.−→θ∗. Under (C2),

we have ∇2lWN (θ̆) a.e.−→H(θ∗). Since θ̂W maximizes ∇lWN (θ), ∇lWN (θ̂W ) = 0. Then
(3.4) implies that θ̂W −θ∗ = −∇lWN (θ∗){∇2lWN (θ̆)}−1. An application of Lemma
1 and Slutsky’s Theorem completes the proof.

Remark 2. Morgenthaler and Vardi (1986) incorrectly gave the asymptotic
variance of

√
N(θ̂W ) as H(θ∗)−1Vb(θ∗)H(θ∗)−1. The case study presented in

Section 4 shows that this severely underestimates the variance of the intercept
estimator in generalized linear models. However, if one of the row/column vectors
in H(θ∗)−1 is orthogonal to all the Ak(θ∗) terms, some of the diagonal elements in
Σ(θ∗), including the variance of the slope estimator in generalized linear models,
are unaffected. Also, when the ODE sample contains only a random sample
(λR = 1), both formulas lead to Σ(θ∗) = −H(θ∗)−1.

Remark 3. The analysis of a TSOD sample requires that the second-stage sam-
ple contains units from each level of Y (Breslow, McNeney and Wellner (2003)).
From the proofs of Lemma 1 and Theorem 1, we can see that this restriction
is unnecessary for ODE sampling; as long as the random sample component is
present, the model parameter is theoretically estimable, even if some or all of the
Y -strata are missing.

For a realized ODE sample, Σ(θ∗) can be approximated by its plug-in es-
timator, which requires integrations in (3.1) with respect to an empirical dis-
tribution of f(x, y). The ODE sample offers three nonparametric estimates
of f(x, y): the first utilizes its random sample component alone; the second
estimates Pr(X | Y = k) from the Y = k stratum and then multiplies it
by π̃+k; the third is given by Vardi’s NMPLE of f(x, y). We prefer Vardi’s
estimator, because it is constructed from the entire ODE sample. Accord-
ingly, replace π∗

+k in (3.1) with π̃+k. The variance of θ̂W is approximated by
N−1Σ̂ = N−1{∇2lWN (θ̂W )}−1(V̂a + V̂b){∇2lWN (θ̂W )}−1, where

V̂a + V̂b =
K∑

k=0

{ Nnk

m+k(nk + m+k)
Â×2

k

}
+

K∑
k=0

{ Nm+k

nR(nk + m+k)
B̂k

}
,

Âk =
m+k

nR(nk + m+k)

N∑
i=1

{I(Yi = k)∇ log(ρ(k,X; θ̂W ))},

B̂k =
m+k

nR(nk + m+k)

N∑
i=1

[I(Yi = k){∇ log(ρ(k,X; θ̂W ))}×2].

The asymptotic variance of the PL estimator also involves integrating over f(x, y).
We prefer estimating this variance using (2.3) as well (details are available from
the authors).
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4. Case Study Under Properly Specified Models

This section implements the WL and PL methods under properly specified
generalized linear models.

4.1. Models using the canonical link

For a categorical outcome that is measured only on a nominal scale, the
canonical link is commonly used to describe the effect of linear combinations of
X on Y . The model is

log
(ρ(k,x; θ)

ρ(0,x; θ)

)
= αk + βkx′, k = 1, . . . ,K,

(4.1)
K∑

k=0

ρ(k,x; θ) = 1.

The 1 × q parameter vector θ here consists of intercept terms, α1, . . . , αk, and
slope terms, β1, . . . , βk, i.e., θ = (α1 · · ·αkβ1 · · ·βk). When K = 1, (4.1) reduces
to the binary logit model, where the term “logit” refers to the link function
logit(p) = log(p/(1 − p)). When K ≥ 2, (4.1) is known as the baseline-category
logit model (Sec. 7.1.1 of Agresti (2002)). Under this model,

Ak(θ∗)H(θ∗)−1 =
(
− ek 0q−K

)
, k = 1, . . . ,K,

A0(θ∗)H(θ∗)−1 =
( K∑

k=1

ek 0q−K
)
,

where ek represents the 1×K unit vector whose kth element is one. It is thus seen
that omitting Va(θ∗) causes the variance of the WL intercept estimator of (4.1)
to be underestimated while the variance of the slope estimator is not affected.
Also note that without the random sample component (nR = 0), the PL objective
function (2.2) can be viewed as the likelihood function from a random sample
with parameters αk + log(π+0nk/(π+kn0)) and βk, k = 1, . . . ,K. As a result,
only β1, . . . , βK can be estimated. The values α1, . . . , αK and π+1, . . . , π+K

cannot be identified separately from a Y -stratified sample. In this situation, the
PL method is equivalent to the method developed specifically for case-control
studies (Prentice and Pyke (1979)). As mentioned in Section 2, existence of
Vardi’s NPMLE requires the presence of the random sample component. The
WL method is thus inapplicable for analyzing a Y -stratified sample. In fact,
plugging nR = m0 = · · · = mK = 0 into (2.3) would lead to an undefined term
of zero divided by zero.

Consider the case in which Y is binary, X = (X1 X2), X1 and X2 are
independent, X1 ∼ Normal(0, 1), and X2 ∼ Bernoulli(0.5). ODE samples with
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N = 500 and n0 = n1 were simulated according to the following logit model at
α∗ = −2.5, β∗

1 = 0.2, β∗
2 = 0.6 (π∗

+1 ≈ 0.1):

logit(ρ(1, (x1 x2);θ)) = α + β1x1 + β2x2. (4.2)

Table 1.a results from fitting (4.2) to one thousand simulated ODE samples at
nR/N = 1, 0.8, 0.5, 0.2, or 0. All likelihood maximizations were successful. At
nR/N = 0, the WL method is infeasible and the PL method estimates only β1

and β2. As nR/N increases, the SE of the intercept estimator decreases while the
SE of the slope estimator increases. From the coverage rate (CR) of confidence
intervals constructed with a 95% nominal level, we observe that Morgenthaler
and Vardi’s formula underestimates the SE of the WL estimator for α and has
no effect on the SE of the WL estimators for β1 and β2 (see the CR labeled with
“∗”).

4.2. Models using non-canonical links

For a binary outcome, alternatives to the logit link include the probit and
complimentary-log-log links. When K ≥ 2 and levels of Y are ordered, cumu-
lative logit/probit/complimentary-log-log links are generally preferred over the
baseline-category logit link. If one chooses these links, the diagonal elements in
Va(θ∗) are positive. Nevertheless, results of our simulation show that omitting
Va(θ∗) has a great impact on estimating the variance of the WL intercept estima-
tor and, to a lesser degree, on that of the WL slope estimator. For continuous or
partially continuous X, the intercept terms in these models can be identified, in
theory, from a Y -stratified sample using the PL method. However, our simulation
shows that without the random sample component, the likelihood maximization
either fails to converge or carries large estimation bias for the intercept terms.

Let Y be a trinary outcome, i.e., K = 2, and let X be a univariate standard
normal random variable. One thousand ODE samples with N = 600 and n0 =
n1 = n2 were simulated according to the following cumulative logit model at
α∗

1 = −2, α∗
2 = −1, β∗ = 0.2 (π∗

+0 ≈ 0.12, π∗
+1 ≈ 0.15):

logit(ρ(0, x; θ)) = α1 + βx,
(4.3)

logit(ρ(0, x; θ) + ρ(1, x; θ)) = α2 + βx.

Results in Table 1.b are obtained by fitting the simulated samples with Model
(4.3). Convergence of the likelihood maximization took place for all the random
and ODE samples (nR/N = 1, 0.85, 0.5, 0.15), whereas maximization of the PL
function failed in 94% of the Y -stratified samples (nR/N = 0). Again, omitting
Va(θ∗) causes the SE of the intercept estimator to be underestimated. As nR/N
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Table 1. Simulation results for properly specified models. Values labeled
with “∗” correspond to the coverage rates (CRs) of 95% confidence intervals
constructed using Morgenthaler and Vardi’s formula. Results posted here
are based on samples with converged likelihood maximization.

a. Model (4.2).

α̂ β̂1 β̂2

nR/N Bias SE CR Bias SE CR Bias SE CR
1 PL/WL -0.039 0.251 0.952 0.002 0.154 0.938 0.013 0.315 0.953

0.8 PL -0.037 0.224 0.949 0.008 0.122 0.952 0.015 0.235 0.950
WL -0.037 0.225 0.949 0.008 0.122 0.954 0.016 0.235 0.952

0.897* 0.954* 0.952*

0.5 PL -0.036 0.248 0.949 0.004 0.101 0.947 0.006 0.201 0.953
WL -0.037 0.248 0.95 0.005 0.102 0.949 0.006 0.202 0.952

0.787* 0.949* 0.952*

0.2 PL -0.040 0.372 0.957 0.000 0.097 0.943 0.011 0.194 0.940
WL -0.041 0.372 0.957 0.001 0.098 0.953 0.012 0.194 0.941

0.553* 0.953* 0.941*

0 PL NA NA NA 0.005 0.092 0.955 0.008 0.184 0.948

b. Model (4.3).

α̂1 α̂2 β̂

nR/N Bias SE CR Bias SE CR Bias SE CR
1 PL/WL -0.003 0.120 0.961 0.000 0.091 0.955 0.007 0.093 0.939

0.85 PL -0.010 0.137 0.962 -0.005 0.103 0.932 0.009 0.087 0.950
WL -0.010 0.137 0.962 -0.005 0.103 0.932 0.009 0.087 0.955

0.898* 0.907* 0.954*

0.5 PL -0.015 0.182 0.944 -0.009 0.135 0.950 0.001 0.082 0.941
WL -0.015 0.182 0.943 -0.009 0.135 0.952 0.001 0.083 0.945

0.729* 0.797* 0.944*

0.15 PL -0.045 0.330 0.963 -0.018 0.240 0.959 0.006 0.081 0.950
WL -0.045 0.330 0.964 -0.017 0.240 0.960 0.006 0.083 0.955

0.387* 0.546* 0.954*

0 PL 0.541 0.824 1.000 0.844 0.452 1.000 0.024 0.058 1.000

increases, we gain precision in estimating the intercept, but lose precision in
estimating the slope.

4.3. Comparison of the PL and WL methods

For an ODE sample when the assumed working model is correct, Table 1
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Part a: Part b:

λR λR

Figure 1. Plots of the asymptotic SE ratio of the WL vs. PL estimator at
various values of . Proportions of different stratified components are held
equal here. Part a corresponds to Model (4.2). Part b corresponds to Model
(4.3). Solid lines represent SE ratio for the intercept terms in the generalized
linear model. Dashed lines represent SE ratio for the slope terms.

demonstrates that the PL and WL methods perform similarly: (i) they both
have low estimation bias; (ii) the SE of the WL estimator is only slightly higher
than that of the PL estimator; (iii) the CRs of their confidence intervals both
approach the nominal level. This similarity is also observed from our simulations
using the binary probit/complementary-log-log models, and the trinary baseline-
category logit models (results not shown).

Recall that the PL estimator is asymptotically most efficient. If so, when
does the PL method outperform the WL method? To answer this question,
we computed the asymptotic SE of both estimators using the same parameter
settings as in Table 1. Figure 1 plots the ratio of their asymptotic SE against an
array of λR values (proportions of different strata are held equal). The fact that
the curves are always above one confirms that the PL method is asymptotically
more efficient than the WL method. Nevertheless, the difference between these
two methods is negligible unless λR is very close to zero. A heuristic explanation
for this is that estimation of π+1 at small λR relies more on the model assumption
than on the random sample component. Consequently, the PL method works
better than the WL method. This advantage, however, may be lost in practice;
if some of the outcome levels are rare, one needs a sufficiently large random
sample to observe enough X at each level of Y . The advantage of collecting a
Y -stratified sample is that it estimates the odds ratio between Y and X without
requiring a large sample size. In reality, the size of the Y -stratified sample is
not many folds larger than that of the random sample. For example, the size of
Doll and Hill’s (1950) case-control data is around fourteen hundred and Doll’s
cohort data has over twenty-five thousand participates (Doll et al. (2004)). This
corresponds to a λR value around 0.95.



PARAMETER ESTIMATION FROM AN ODE SAMPLE 1545

Profiling and weighting are two different strategies for constructing objective
functions from complex survey data. In the analysis of a TSOD sample, profiling
involves exploiting the model assumption to patch up the missing X values in the
first-stage sample with what is observed in the second-stage sample (Scott and
Wild (1997)), whereas weighting refers to using the sampling weight to adjust
the likelihood function assembled from the second-stage sample (Kalbfleisch and
Lawless (1988)). Breslow and Chatterjee (1999) observed that these two strate-
gies generate comparable mean-squared errors when stratification in the second
stage is exclusively on Y . Nevertheless finer stratification, such as stratification
on both Y and a partially measured X, manifests the high efficiency associated
with likelihood profiling (Breslow and Chatterjee (1999); Lawless, Kalbfleisch and
Wild (1999)). It is important to stress that the ODE sampling considered here
involves only stratification on Y . Parameter estimation under more intricate en-
riched sampling plans calls for reformulation of the WL/PL objective functions.
More works need to be done in this area.

5. Robustness

This section investigates the robustness of the WL and PL methods when the
assumed working model is incorrect. Because there is no perfect model, Scott and
Wild (1986) suggested that a meaningful model parameter value maximizes the
expectation of the sampling-weight-adjusted log-likelihood function. For a binary
outcome, Manski and Thompson (1989) considered the loss function − log(1 −
|Y − ρ(Y,X; θ)|) and stated that among all models of the form ρ(Y X; θ), the
best is at θ∗, where

θ∗ ∈ argmax
θ∈Θ

{ 1∑
k=0

∫
X

log(1 − |k − ρ(k,X; θ)|)f(x, k)dx
}

. (5.1)

Both ideologies require that θ∗ maximizes the integral of log(ρ(Y,X; θ)) over
the joint distribution of X and Y which, in ODE sampling, corresponds to the
asymptote of the WL objective function lWN (θ) at (2.4). The uniform convergence
of Vardi’s NPMLE to f(x, y) suggests that the WL method offers a consistent
estimator of θ∗ even when the model is misspecified. In contrast, the PL method
relies heavily on the validity of the model. Consistency of its estimator does not
hold if the model is incorrect.

Chatterjee, Chen, and Breslow (2003) defined θ∗ according to (5.1) and
examined the bias of their pseudoscore estimator from a TSOD sample. Our
simulation study adopted their setting and generated ODE samples with binary
outcomes under the logit model with a quadratic term: logit(Pr(Y = 1 | X =
x)) = −2 + x + δx2, X ∼ Normal(0, 1). The model used to fit the ODE sample
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Table 2. Simulation results under misspecified models. The true model
is logit(Pr(Y = 1 | X = x)) = −2 + x + δx2. The working model is
logit(ρ(1, x;θ)) = α + βx. All likelihood maximizations converged.

Part a: δ = 0.3. (α∗ = −1.808, β∗ = 1.205)

α̂ β̂

N Bias SE CR Bias SE CR
500 PL 0.007 0.180 0.955 -0.054 0.138 0.915

WL -0.015 0.184 0.961 0.014 0.141 0.954

1000 PL 0.003 0.127 0.956 -0.060 0.100 0.882
WL -0.019 0.130 0.959 0.007 0.102 0.945

2000 PL 0.021 0.092 0.937 -0.069 0.067 0.831
WL -0.001 0.094 0.949 -0.002 0.069 0.945

Part b: δ = 0.6. (α∗ = −1.484, β∗ = 1.115)

α̂ β̂

N Bias SE CR Bias SE CR
500 PL 0.013 0.173 0.948 -0.094 0.148 0.869

WL -0.013 0.179 0.951 0.014 0.154 0.947

1000 PL 0.016 0.120 0.951 -0.098 0.101 0.821
WL -0.010 0.124 0.956 0.011 0.106 0.952

2000 PL 0.021 0.086 0.939 -0.103 0.070 0.692
WL -0.004 0.089 0.941 0.005 0.074 0.958

lacks the quadric term: logit(ρ(1, x; θ)) = α+βx. We set δ to be either 0.3 or 0.6.
This represents the situation where the model is either moderately or severely
misspecified. According to (5.1), θ∗ = (αβ) was (-1.808 1.205) at δ = 0.3, and
(-1.484 1.115) at δ + 0.6. Results in Table 2 are based on one thousand ODE
samples with nR/N = 0.5 and n0/N = n1/N = 0.25. As we anticipated, the bias
of the WL estimator got closer to zero when the size of the ODE sample increased,
while that of the PL estimator drifted away from zero. Table 2 also demonstrates
that the SE of the PL estimator was smaller than that of the WL estimator, but
the difference was quite small. The WL method had CRs close to the desired
95% nominal level in all cases we examined. For the PL method, its CR of the
confidence interval for β∗ dropped to as low as 69.2% when the model was severely
misspecified (δ = 0.6) and the sample size was large (N = 2, 000). Whittemore
(1997) and Chatterjee, Chen, and Breslow (2003) also recognized this lack of
robustness associated with heavily model-based methods while analyzing other
types of complex survey data.
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In practice, there is a sense of balance between controlling the bias and SE
in the analysis of an ODE sample. If one is certain about the model assumption,
the PL method has the best efficiency and, of course, should be employed. On
the other hand, if the fitness of the presumed model is suspect and the sample
size is large, eliminating the estimation bias should be the main concern; then
we recommend the WL method.

6. An Example

Here, we illustrate the WL and PL methods using an ODE sample drawn
from a national survey. Between 1988 and 1994, the National Center for Health
Statistics conducted a survey (also known as NHANES III) to obtain health
and nutrition information on the US population. For convenience, we only con-
sider the 16,971 adults whose age, race, blood pressure and body weight are
all non-missing (see Hosmer and Lemeshow (2000)). Each individual in the
survey dataset carried a sampling weight to represent the number of people
in the US possessing the same health and demographic characteristics. Val-
ues of this sampling weight ranged from 226 to 139,745. Treat the NHANES
III data as a mirror image of the US population. A random sample from
the US population is therefore equivalent to a Probability-Proportional-to-Size-
With-Replacement (PPSWR) sample from the NHANES III data, where “Size”
refers to the sampling weight. PPSWR sampling was executed via SAS PROC
SURVEYSELECTR R©with option METHOD=PPS WR (SAS Institute (2004)).
Let Y = 1 be the event that an adult had high blood pressure (systolic blood
pressure over 140 mmHg); Y = 0, otherwise. The Y -stratified sample was col-
lected by taking independent PPSWR samples from the high and regular blood
pressure subpopulations. The resulting data was fit with the binary logit linear
model where age, race and body weight served as predictors. Table 3 shows that
combining the random sample with the Y -stratified sample improved the esti-
mation precision not only for the slope terms, but also for the intercept term.
For example, the SE estimate of age was 0.0146 from the random sample, and it
was 0.0117 from the Y -stratified sample. Analyzing the combined sample cut SE
estimates to 0.0076 (PL method) and 0.0079 (WL method). For the intercept
term, the SE estimate was reduced by almost 50% from 1.39 (random sample)
to 0.70 (PL method) and 0.72 (WL method). SE estimates computed using
Morgenthaler and Vardi’s formula (values labeled with ‘∗’ in Table 3) were all
numerically smaller than those computed using our proposed formula. Rounding
to two significant digits, nevertheless, camouflages this underestimation except
for the intercept term. Even though the WL and PL methods provided slightly
different parameter estimates, both indicate that senior, black, and obese indi-
viduals are among the high-risk group for hypertension.
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Table 3. Analysis of an ODE sample taken from a national survey. Values
labeled with “∗” correspond to the SEs given by Morgenthaler and Vardi’s
formula.

Intercept Age Race Weight
(yr.) (Black vs. Other) (lb.)

Sample Method Est. SE Est. SE Est. SE Est. SE
Random
nR = 250 PL/WL -6.39 1.39 0.081 0.0146 0.60 0.62 0.0011 0.0053

Y -stratified
n0 = n1 = 125 PL NA NA 0.096 0.0117 1.17 0.57 0.0114 0.0040

ODE PL -7.65 0.70 0.083 0.0076 0.69 0.37 0.0083 0.0026
nR = 250 WL -7.52 0.72 0.082 0.0079 0.65 0.37 0.0078 0.0026

n0 = n1 = 125 0.70* 0.0079* 0.37* 0.0026*

7. Discussion

Studies that collect outcome-stratified samples often match units at different
levels of Y according to some other discrete variable, say W . Wang and Zhou
(2006) applied the PL method to an ODE sample where the stratification is
on both Y and W . Their approach treats W as auxiliary in the sense that
Pr(Y = k | X = x, W ) = Pr(Y = k | X = x) = ρ(k,x; θ), k = 0, . . . ,K.
Moreover, the joint distribution of X and W is assumed not to depend on θ.
In adopting Wang and Zhou’s formulation, the WL method calls for only small
alterations to (2.4). To see this, suppose W has L levels. According to Vardi
(1985), the WL method should maximize

lWN (θ) =
N∑

i=1

L,K∑
l=1,k=0

{m+lk

nR

I(Wi = l, Yi = k)
nlk + m+lk

log(ρ(Yi,Xi;θ))
}

,

where nlk is the size of the W = l, Y = k stratum, and m+lk is the count of units
in the random component with W = l and Y = k, l = 1, . . . , L, k = 0, . . . ,K. So
far, it is not clear how this type of stratification affects the precision of parameter
estimation in ODE sampling. It would be interesting to compare the WL and
PL methods under this finer stratification.

In summary, this paper explores semiparametric methods for the analysis of
an ODE sample when the conditional probability of the outcome variable given
the predictor is specified up to certain unknown parameters but the marginal
distributions of the outcome and the predictor are unknown. Under reasonable
regularity conditions, the estimator that maximizes the WL objective function
has an asymptotic normal distribution with mean the true model parameter
value. Although the PL method is asymptotically most efficient, it involves esti-
mating the marginal probability of the outcome based on the model. In contrast,
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the WL objective function has fewer arguments over which to maximize. Simula-
tion and an asymptotic comparison indicate that performance of the WL method
is often comparable to the PL method under properly specified models. On the
other hand, the PL method is vulnerable to model misspecification, whereas the
WL method still offers a meaningful parameter estimate. The robustness of the
WL method leads us to promote its use, especially for the situation where the
fitness of the assumed working model is uncertain and the sample size is large.
Future research will concentrate on developing likelihood-ratio tests for model
goodness-of-fit and nested models, and on applying these methodologies to data.
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