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S1 Proofs

Proof of Proposition 1

Let Z ∼ H . Then
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which follows from the stationarity of p1(x), p2(x), p3(x), . . . .
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Proof of Theorem 1

It is easy to show (see Griffin and Steel, 2006) that for any measurable set B
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and so

Corr(Fx(B), Fy(B)) =
2

M + 2
E

[ ∞∑

i=1

Bi

(
M

M + 1

)∑i−1
j=1 Aj

(
M + 1
M + 2

)∑i−1
j=1 Bj

]
.

Proof of Theorem 2

E

[ ∞∑

i=1

Bi

(
M

M + 1

)∑i−1
j=1 Aj

(
M + 1
M + 2

)∑i−1
j=1 Bj

]

= E


 ∑

{i|y∈S(φi) or x∈S(φi)}
Bi

(
M

M + 1

)∑i−1
j=1 Aj

(
M + 1
M + 2

)∑i−1
j=1 Bj


 .

The set {i|y ∈ S(φi) or x ∈ S(φi)} must have infinite size since it is contained by the set
{i|x ∈ S(φi)} which has infinite size. Let φ′1, φ

′
2, φ

′
3, . . . be the subset of φ1, φ2, φ3 for which
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{i|y ∈ S(φi) or x ∈ S(φi)} and define B′
i = I (y ∈ S(φ′i) and x ∈ S(φ′i)) then
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Proof of Theorem 3

Since (C, r, t) follows a Poisson process onRp×R2
+ with intensity f(r), p(Ck|s ∈ S(φk) or v ∈

S(φk), rk) is uniformly distributed on Brk
(s) ∪ Brk

(v) and p(rk|s ∈ S(φk) or v ∈ S(φk)) =
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where ν(·) is Lebesgue measure. Then
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=
∫ ∫

Brk
(s)∩Brk

(v)

p (Ck, rk|s ∈ S(φk) or v ∈ S(φk)) dCk drk

=
∫

ν (Brk
(s) ∩Brk

(v)) f(rk) drk∫
ν (Brk

(s) ∪Brk
(v)) f(rk) drk

.

Proof of Theorem 4

The autocorrelation function can be expressed as f(ps,s+u) where f(x) = 2(M+1
M+2 )/(1 + M

M+2x).
Then by Faá di Bruno’s formula
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lim
u→0

dn

dun
f(ps,s+u) =

∑ n!
m1!m2!m3! . . .

lim
u→0

dm1+···+mnf

dpm1+···+mn
s,s+u

∏

{j|mj 6=0}

(
djps,s+u

duj

1
j!

)mj

.



S4 J.E. Griffin and M. F. J. Steel

Since limu→0
dm1+···+mnf

dp
m1+···+mn
s,s+u

= limps,s+u→1
dm1+···+mn f

dp
m1+···+mn
s,s+u

is finite and non-zero for all values of

n, the degree of differentiability of the autocorrelation function is equal to the degree of dif-
ferentiability of ps,s+u. We can write ps,s+u =

(
4µ
a − 1

)−1
with a = 2µ2 − uI . Now

dkps,s+u

ak = (k − 1)!(4µ − a)−k and limu→0
dkps,s+u

dak = (k − 1)!(2µ)−k which is finite and
non-zero. By application of Faá di Bruno’s formula
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and the degree of differentiability is determined by the degree of differentiability of a. If p(r) ∼
Ga(α, β) then dµ2

du = − 1
2

(
u
2

)α exp{−u/2} and dI
du = − 1

2

(
u
2

)α−1 exp{−u/2} and it is easy to
show that dna

dun = Cnuα−n+1 exp{−u/2} + ζ where ζ contains terms with power of x greater
than α− n + 1. If limu→0 uα exp{−u/2} is finite then so is limu→0 uα+k exp{u/2} for k > 0
and so the limit will be finite iff α− n + 1 ≥ 0, i.e. α ≥ n− 1.

S2 Computational Details

As we conduct inference on the basis of the Poisson process restricted to the set R, all quantities
(C, r, t, V, θ) should have a superscript R. To keep notation manageable, these superscripts are
not explicitly used in this Supplement.

Updating the centres

We update each centre C1, . . . , CK from its full conditional distribution Metropolis-Hastings
random walk step. A new value C ′i for the i-th centre is proposed from N(Ci, σ

2
C) where σ2

C

is chosen so that the acceptance rate is approximately 0.25. If there is no xi such that xi ∈
(C ′i − ri, C

′
i + ri) or if there is one value of j such that sj = i for which xi /∈ (C ′i − ri, C

′
i + ri)

then α(Ci, C
′
i) = 0. Otherwise, the acceptance probability has the form

α(Ci, C
′
i) =

∏n
j=1

∏
h<sj and C′h−rh<xj<C′h+rh

(1− Vh)
∏n

j=1

∏
h<sj and Ch−rh<xj<Ch+rh

(1− Vh)
.

Updating the distances

The distances can be updated using a Gibbs step since the full conditional distribution of rk has a
simple piecewise form. Recall that dik = |xi−Ck| and let Sk = {j|sj ≥ k}. We define Sord

k to
be a version of Sk where the element have been ordered to be increasing in dik, i.e. if i > j and
i, j ∈ Sord

k then dik > djk. Finally we define d?
k = max[{xmin−Ck, Ck−xmax}∪{dik|si = k}]

and m? be such that xi ∈ Sord
k and xm? > d?

k and xm?−1 < d?
k. Let l be the length of Sord

k .
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The full conditional distribution has density

f?(z) ∝





f(z) if d?
k < z ≤ dSord

m? k

f(z)(1− Vk)i−m?+1 if dSord
i k < z ≤ dSord

i+1k, i = m?, . . . , l − 1
f(z)(1− Vk)l−m?+1 if z > dSord

l k

.

Swapping the positions of atoms

The ordering of the atoms should also be updated in the sampler. One of the K included atoms,
say (Vi, θi, Ci, ri), is chosen at random to be swapped with the subsequent atom (Vi+1, θi+1, Ci+1, ri+1).
If i < K, the acceptance probability of this move is min {1, (1− Vi+1)ni/(1− Vi)ni+1} . If
i = K, then a new point (VK+1, θK+1, CK+1, rK+1) is proposed from their prior and the swap
is accepted with probability min {1, (1− VK+1)ni}.

Updating θ and V

The full conditional distribution of θi is proportional to h(θi)
∏
{j|si} k(yj |θi), where h is the

density function of H . We update Vi from a Beta distribution with parameters 1+
∑n

j=1 I(sj = i)
and M +

∑n
j=1 I(sj > i, |xj − Ci| < ri).

Updating M

This parameter can be updated by a random walk on the log scale. Propose M ′ = M exp(ε)
where ε ∼ N(0, σ2

M ) with σ2
M a tuning parameter chosen to maintain an acceptance rate close to

0.25. The proposed value should be accepted with probability

M ′K+1
[∏K

i=1(1− Vi)
]M ′

β(M ′)αK exp
{
−β(M ′)

∑K
i=1 ri

}
p(M ′)

MK+1
[∏K

i=1(1− Vi)
]M

β(M)αK exp
{
−β(M)

∑K
i=1 ri

}
p(M)

,

where β(M) is β expressed as a function of M , as in our suggested form

β =
2
x?

log
(

1 + M + ε

ε(M + 2)

)
.

Posterior inferences on Fx̃

We are often interested in inference at some point x̃ ∈ X about the distribution Fx̃. We define
(Ṽ1, θ̃1), (Ṽ2, θ̃2), . . . , (ṼJ , θ̃J) to be the subset of (V1, θ1), (V1, θ2) . . . , (VK , θK) for which |x̃−
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Ci| < ri. Then

Fx̃ =
J∑

i=1

δθ̃i
Ṽi

∏

j<i

(1− Ṽj)
∏

j≤i

nj∏
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(j)
l

)
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(i)
j
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∏
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+
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i=1
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θ
(i)
j

V
(i)
j

∏
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(
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(i)
l

) ∏
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nl∏
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(
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m

)

where nj is a geometric random variable with success probability 1 − p̃, θ
(i)
j ∼ H , V

(i)
j ∼

Be(1,M), θ̃m ∼ H and Ṽm ∼ Be(1, M) for m > N . We calculate p̃ in the following way.
If xmin < x̃ < xmax, define i so that x(i) < x̃ < x(i+1), where x(1), . . . , x(n) is an ordered
version of x1, . . . , xn, then p̃ = β

2α q̃ where

q̃ =(x(i+1) − x(i))I
(

x(i+1) − x(i)

2

)
+ (x(i) − x̃)I

(
x̃− x(i)

2

)
− (x(i+1) − x̃)I

(
x(i+1) − x̃

2

)

− 2µ?

(
x(i+1) − x(i)

2

)
+ 2µ?

(
x̃− x(i)

2

)
+ 2µ?

(
x(i+1) − x̃

2

)

with I(y) =
∫ y

0
f(r) dr and µ?(y) =

∫ y

0
rf(r) dr. Otherwise if x̃ < xmin

q̃ = 2µ?

(
xmin − x̃

2

)
+ (xmin − x̃)

(
1− I

(
xmin − x̃

2

))

and if x̃ > xmax

q̃ = 2µ?

(
x̃− xmax

2

)
+ (x̃− xmax)

(
1− I

(
x̃− xmax

2

))
.

We use a truncated version of Fx̃ with h elements which are chosen so that
∑h

i=1 pi = 1 − ε
where ε is usually taken to be 0.001.

Model 2

This section is restricted to discussing the implementation when m(x) follows a Gaussian pro-
cess prior where we define Pij = ρ(xi, xj). We also reparametrise from ui to φi = σ2ψi.

Updating ψi|s

The full conditional distribution has the density

p(φi) ∝ φ
0.5(1−∑ I(sj=i,1≤j≤n))
i exp{−0.5φi/σ2}, φi > φmin

where φmin = max
{

(yi −m(xi))
2 |sj = i, 1 ≤ j ≤ n

}
. A rejection sampler for this full con-

ditional distribution can be constructed using the envelope

h?(φi) ∝
{

φ
0.5(1−∑ I(sj=i,1≤j≤n))
i φmin < φi < z

z0.5(1−∑ I(sj=i,1≤j≤n)) exp{−0.5(φi − z)/σ2} φi > z
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which can be sampled using inversion sampling. The acceptance probability is

α(φi) =

{
exp{−0.5(φi − φmin)/σ2} φmin < φi < z(

φi

z

)0.5−0.5k

exp{−0.5(z − φmin)/σ2} φi > z

and the choice z = σ2
∑

I(sj = i, 1 ≤ j ≤ n) maximizes the acceptance rate.

Updating σ−2

Using the prior Gamma(ν1, ν2), the full conditional distribution of σ−2 is again a Gamma dis-
tribution, where we define P = (Pij)

σ−2 ∼ Ga

(
ν1 +

3K

2
+

n

2
, ν2 +

1
2

K∑

i=1

φi +
1
2ω

m(x)T P−1m(x)

)
.

Updating m(x1), . . . , m(xn)

It is possible to update m(xi) using its full conditional distribution. However this tends to lead
to slowly mixing algorithms. A more useful approach uses the transformation m(x) = C?z
where C? is the Cholesky factor of σ−2

0 P−1, where z ∼ N(0, I). We then update zj using
their full conditional distribution which is a standard normal distribution truncated to the region
∩n

i=1(yi −
∑

k 6=j Cikzk −
√

φi, yi −
∑

k 6=j Cikzk +
√

φi).

Updating ω

We define ω2 = σ2/σ2
0 . If ω2 follows a Gamma distribution with parameters a0 and b0 then

the full conditional of σ−2
0 follows a Gamma distribution with parameters a0 + n/2 and b0 +

σ−2m(x)T P−1m(x)/2. A similar updating occurs for the Generalized inverse Gaussian prior
used here.

Updating the Matèrn parameters

We update any parameters of the Matèrn correlation structure by a Metropolis-Hastings random
walk. The full conditional distribution of the parameters (ζ, τ ) would be proportional to

|P |−1/2 exp
{−σ−2ω−2m(x)T P−1m(x)

}
p(ζ, τ).


